Energy Harvesting Technologies for Achieving Self-Powered Wireless Sensor Networks in Machine Condition Monitoring: A Review
Abstract
:1. Introduction
2. Power Demands and Resources of WSN based Condition Monitoring
2.1. Power Consumption of a WSN based System
2.2. Potential Energy Harvesting Sources in Machines
3. Energy Harvesting Techniques and Applications
3.1. Light Energy Harvesting
3.2. Electromagnetic Energy Harvesting
3.3. Thermal Energy Harvesting
3.3.1. Thermoelectric Energy Harvesting
3.3.2. Pyroelectric Energy Harvesting
3.4. Mechanical Energy Harvesting
3.4.1. Piezoelectric Energy Harvesting
3.4.2. Electromagnetic Energy Harvesting
3.4.3. Triboelectric Energy Harvesting
3.4.4. Electrostatic Energy Harvesting
3.5. Hybrid Energy Harvesting
4. Wireless Sensor Network based Machine Condition Monitoring
5. Challenges and Future Research
- The first challenge is the selection and optimization of the WSN. This is the trade-off between data processing and transmission in a WSN node. The advent of BLE 5.0 brings an opportunity for large data transmission with long transmission distance and low power consumption, as well as Wi-Fi. The design of WSNs is not limited to using ZigBee in the future. The ultra-low-power MEMS components with data acquisition, transmission, processing and other functions, as important components, should be improved further.
- The discovery and selection of energy sources that can be exploited with energy harvesters in mechanical systems is the second challenge. Although the recoverable energy in mechanical systems has been analysed in this paper, the energy losses, mechanical structures and environment for various types of machines are different. This obstacle increases the difficulty of the energy harvesting estimation. It is necessary to design adaptive energy harvesting devices or systems for a variety of applications of monitoring different machines.
- The next challenge is the improvement and optimization of EH technologies and devices. The energy loss during mechanical operation is mainly dissipated by thermal energy. Both the spatial and the temporal temperature fluctuations are small, and the conversion efficiency of thermal EH technologies is relatively low. Hence the thermal energy harvesting technologies need to be improved to reduce the limitation of temperature cycling techniques and to obtain more effective and efficient energy conversion. Because of the drawbacks of each EH technology, it is necessary to continuously improve the performance of the EH devices by the structural optimization of the systems. For example, it is challenging to design a harvester with an adjustable and flexible structure that can select the optimal frequency band according to the energy distribution of a mechanical system in the frequency domain.
- The design and optimization of power management circuits is also an important challenge because improving the conversion efficiency of the circuits can effectively and efficiently increase the DC output power, especially for the multi-source energy harvesters.
- The last challenge is the application of nanomaterials and nanotechnology on energy harvesting (nanogenerators). The emergence of nanomaterials has contributed to the integration of multiple energy harvesting technologies to increase the amount of electricity collected. With the help of nanomaterials, micro-scale wireless sensor nodes can be located inside the machine to acquire more accurate signals because the sensor is closer to the potential fault source and the effect of noise is reduced. However, nanomaterials also face the abrasion and performance degradation of materials like other conventional materials. Therefore, researchers should continue to make efforts to improve the durability and efficiency of nanomaterials to extend the lifespan of the harvesters and realize real maintenance-free WSNs for machine condition monitoring.
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rao, B.K.N. Handbook of Condition Monitoring; Elsevier: Oxford, UK, 1996; ISBN 978-1-85617-234-9. [Google Scholar]
- Nandi, S.; Toliyat, H.A. Condition monitoring and fault diagnosis of electrical machines—A review. In Proceedings of the 1999 IEEE Industry Applications Conference Thirty-Forth IAS Annual Meeting, Phoenix, AZ, USA, 3–7 October 1999; Volume 1, pp. 197–204. [Google Scholar]
- Tavner, P.J. Review of condition monitoring of rotating electrical machines. IET Electr. Power Appl. 2008, 2, 215–247. [Google Scholar] [CrossRef]
- Hou, L.; Bergmann, N.W. Novel Industrial Wireless Sensor Networks for Machine Condition Monitoring and Fault Diagnosis. IEEE Trans. Instrum. Meas. 2012, 61, 2787–2798. [Google Scholar] [CrossRef]
- Akyildiz, I.F.; Su, W.; Sankarasubramaniam, Y.; Cayirci, E. Wireless sensor networks: A survey. Comput. Netw. 2002, 38, 393–422. [Google Scholar] [CrossRef]
- Zhou, M.; Al-Furjan, M.S.H.; Zou, J.; Liu, W. A review on heat and mechanical energy harvesting from human—Principles, prototypes and perspectives. Renew. Sustain. Energy Rev. 2017. [Google Scholar] [CrossRef]
- Panatik, K.Z.; Kamardin, K.; Shariff, S.A.; Yuhaniz, S.S.; Ahmad, N.A.; Yusop, O.M.; Ismail, S. Energy harvesting in wireless sensor networks: A survey. In Proceedings of the 2016 IEEE 3rd International Symposium on Telecommunication Technologies (ISTT), Kuala Lumpur, Malaysia, 28–30 November 2016; pp. 53–58. [Google Scholar]
- Wang, H.; Jasim, A.; Chen, X. Energy harvesting technologies in roadway and bridge for different applications—A comprehensive review. Appl. Energy 2018, 212, 1083–1094. [Google Scholar] [CrossRef]
- Ibrahim, R.; Chung, T.D.; Hassan, S.M.; Bingi, K.; Salahuddin, S.K. binti Solar Energy Harvester for Industrial Wireless Sensor Nodes. Procedia Comput. Sci. 2017, 105, 111–118. [Google Scholar] [CrossRef]
- Sebald, G.; Guyomar, D.; Agbossou, A. On thermoelectric and pyroelectric energy harvesting. Smart Mater. Struct. 2009, 18, 125006. [Google Scholar] [CrossRef]
- Wei, C.; Jing, X. A comprehensive review on vibration energy harvesting: Modelling and realization. Renew. Sustain. Energy Rev. 2017, 74, 1–18. [Google Scholar] [CrossRef]
- Hadas, Z.; Janak, L.; Smilek, J. Virtual prototypes of energy harvesting systems for industrial applications. Mech. Syst. Signal Process. 2018, 110, 152–164. [Google Scholar] [CrossRef]
- Prauzek, M.; Konecny, J.; Borova, M.; Janosova, K.; Hlavica, J.; Musilek, P.; Prauzek, M.; Konecny, J.; Borova, M.; Janosova, K.; et al. Energy Harvesting Sources, Storage Devices and System Topologies for Environmental Wireless Sensor Networks: A Review. Sensors 2018, 18, 2446. [Google Scholar] [CrossRef] [PubMed]
- Fleming, W. Energy Harvesting Vehicle Condition Sensing System. U.S. Patent US20,060,176,158A1, 10 August 2006. [Google Scholar]
- Mitcheson, P.D.; Yeatman, E.M.; Rao, G.K.; Holmes, A.S.; Green, T.C. Energy Harvesting From Human and Machine Motion for Wireless Electronic Devices. Proc. IEEE 2008, 96, 1457–1486. [Google Scholar] [CrossRef] [Green Version]
- Xie, X.D.; Wang, Q. Energy harvesting from a vehicle suspension system. Energy 2015, 86, 385–392. [Google Scholar] [CrossRef]
- Gatti, G.; Brennan, M.J.; Tehrani, M.G.; Thompson, D.J. Harvesting energy from the vibration of a passing train using a single-degree-of-freedom oscillator. Mech. Syst. Signal Process. 2016, 66–67, 785–792. [Google Scholar] [CrossRef]
- Lee, J.S.; Yim, W. Energy Harvesting Mechanism for Gyroplanes and Gyrocopters. U.S. Patent US20,160,023,751A1, 28 January 2016. [Google Scholar]
- Panda, P.K. Piezoceramic Materials and Devices for Aerospace Applications. In Aerospace Materials and Material Technologies; Indian Institute of Metals Series; Springer: Singapore, 2017; pp. 501–518. ISBN 978-981-10-2133-6. [Google Scholar]
- Horng, G.-J.; Chang, T.-Y.; Cheng, S.-T. An effective node-selection scheme for the energy efficiency of solar-powered WSNs in a stream environment. Expert Syst. Appl. 2014, 41, 3143–3156. [Google Scholar] [CrossRef]
- Dehwah, A.H.; Shamma, J.S.; Claudel, C.G. A distributed routing scheme for energy management in solar powered sensor networks. Ad Hoc Netw. 2017, 67, 11–23. [Google Scholar] [CrossRef]
- Sherazi, H.H.R.; Grieco, L.A.; Boggia, G. A comprehensive review on energy harvesting MAC protocols in WSNs: Challenges and tradeoffs. Ad Hoc Netw. 2018, 71, 117–134. [Google Scholar] [CrossRef]
- Bowen, C.R.; Taylor, J.; LeBoulbar, E.; Zabek, D.; Chauhan, A.; Vaish, R. Pyroelectric materials and devices for energy harvesting applications. Energy Environ. Sci. 2014, 7, 3836–3856. [Google Scholar] [CrossRef] [Green Version]
- Selvan, K.V.; Mohamed Ali, M.S. Micro-scale energy harvesting devices: Review of methodological performances in the last decade. Renew. Sustain. Energy Rev. 2016, 54, 1035–1047. [Google Scholar] [CrossRef]
- Tao, J.X.; Viet, N.V.; Carpinteri, A.; Wang, Q. Energy harvesting from wind by a piezoelectric harvester. Eng. Struct. 2017, 133, 74–80. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Z.L. Reviving Vibration Energy Harvesting and Self-Powered Sensing by a Triboelectric Nanogenerator. Joule 2017, 1, 480–521. [Google Scholar] [CrossRef]
- He, J.; Wen, T.; Qian, S.; Zhang, Z.; Tian, Z.; Zhu, J.; Mu, J.; Hou, X.; Geng, W.; Cho, J.; et al. Triboelectric-piezoelectric-electromagnetic hybrid nanogenerator for high-efficient vibration energy harvesting and self-powered wireless monitoring system. Nano Energy 2018, 43, 326–339. [Google Scholar] [CrossRef]
- Le, M.Q.; Capsal, J.-F.; Lallart, M.; Hebrard, Y.; Van Der Ham, A.; Reffe, N.; Geynet, L.; Cottinet, P.-J. Review on energy harvesting for structural health monitoring in aeronautical applications. Prog. Aerosp. Sci. 2015, 79, 147–157. [Google Scholar] [CrossRef]
- Ali, A.; Shah, G.A.; Farooq, M.O.; Ghani, U. Technologies and challenges in developing Machine-to-Machine applications: A survey. J. Netw. Comput. Appl. 2017, 83, 124–139. [Google Scholar] [CrossRef]
- Grimm, C. (Ed.) Embedded Systems for Smart Appliances and Energy Management; Embedded systems; Springer: New York, NY, USA, 2013; ISBN 978-1-4419-8794-5. [Google Scholar]
- Alvi, S.A.; Afzal, B.; Shah, G.A.; Atzori, L.; Mahmood, W. Internet of multimedia things: Vision and challenges. Ad Hoc Netw. 2015, 33, 87–111. [Google Scholar] [CrossRef]
- Lee, J.-S.; Su, Y.-W.; Shen, C.-C. A comparative study of wireless protocols: Bluetooth, UWB, ZigBee, and Wi-Fi. In Proceedings of the IECON 2007—33rd Annual Conference of the IEEE Industrial Electronics Society, Taipei, Taiwan, 5–8 November 2007; pp. 46–51. [Google Scholar]
- Rawat, P.; Singh, K.D.; Chaouchi, H.; Bonnin, J.M. Wireless sensor networks: A survey on recent developments and potential synergies. J. Supercomput. 2014, 68, 1–48. [Google Scholar] [CrossRef]
- Dementyev, A.; Hodges, S.; Taylor, S.; Smith, J. Power consumption analysis of Bluetooth Low Energy, ZigBee and ANT sensor nodes in a cyclic sleep scenario. In Proceedings of the 2013 IEEE International Wireless Symposium (IWS), Beijing, China, 14–18 April 2013; IEEE: Piscataway, NJ, USA; pp. 1–4. [Google Scholar]
- Kazeem, O.O.; Akintade, O.O.; Kehinde, L.O. Comparative Study of Communication Interfaces for Sensors and Actuators in the Cloud of Internet of Things. Int. J. Internet Things 2017, 6, 9–13. [Google Scholar]
- Ghamari, M.; Janko, B.; Sherratt, R.; Harwin, W.; Piechockic, R.; Soltanpur, C.; Ghamari, M.; Janko, B.; Sherratt, R.S.; Harwin, W.; et al. A Survey on Wireless Body Area Networks for eHealthcare Systems in Residential Environments. Sensors 2016, 16, 831. [Google Scholar] [CrossRef] [PubMed]
- Randall, R.B.; Antoni, J.; Chobsaard, S. The Relationship between Spectral Correlation and Envelope Analysis in the Diagnostics of Bearing Faults and Other Cyclostationary Machine Signals. Mech. Syst. Signal Process. 2001, 15, 945–962. [Google Scholar] [CrossRef]
- Tian, X.; Xi Gu, J.; Rehab, I.; Abdalla, G.M.; Gu, F.; Ball, A.D. A robust detector for rolling element bearing condition monitoring based on the modulation signal bispectrum and its performance evaluation against the Kurtogram. Mech. Syst. Signal Process. 2018, 100, 167–187. [Google Scholar] [CrossRef]
- Gu, F.; Wang, T.; Alwodai, A.; Tian, X.; Shao, Y.; Ball, A.D. A new method of accurate broken rotor bar diagnosis based on modulation signal bispectrum analysis of motor current signals. Mech. Syst. Signal Process. 2015, 50–51, 400–413. [Google Scholar] [CrossRef]
- Ebert, J.-P.; Aier, S.; Kofahl, G.; Becker, A.; Burns, B.; Wolisz, A. Measurement and Simulation of the Energy Consumption of a WLAN Interface; Technical Report; Technical University of Berlin: Berlin, Germany, 2002. [Google Scholar]
- Balani, R. Energy Consumption Analysis for Bluetooth, Wifi and Cellular Networks. 2007. Available online: Online Httpnesl Ee Ucla Edufwdocumentsreports2007PowerAnalysis Pdf (accessed on 10 August 2018).
- Akhtar, F.; Rehmani, M.H. Energy Harvesting for Self-Sustainable Wireless Body Area Networks. IT Prof. 2017, 19, 32–40. [Google Scholar] [CrossRef]
- Khaligh, A.; Onar, O.C.; Onar, O.C. Energy Harvesting: Solar, Wind, and Ocean Energy Conversion Systems; CRC Press: Boca Raton, FL, USA, 2009; ISBN 978-1-4398-1509-0. [Google Scholar]
- Shevkar, S.; Otari, K. Tidal Energy Harvesting. Int. J. Sci. Eng. Technol. Res. 2015, 4, 990–994. [Google Scholar]
- Elghali, S.E.B.; Benbouzid, M.E.H.; Charpentier, J.F. Marine Tidal Current Electric Power Generation Technology: State of the Art and Current Status. In Proceedings of the 2007 IEEE International Electric Machines Drives Conference, Antalya, Turkey, 3–5 May 2007; Volume 2, pp. 1407–1412. [Google Scholar]
- Jamieson, P. Innovation in Wind Turbine Design; John Wiley & Sons: Hoboken, NJ, USA, 2018; ISBN 978-1-119-13795-5. [Google Scholar]
- Choi, K.; Yeom, J. Modeling of Management System for Hydroelectric Power Generation from Water Flow. In Proceedings of the 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN), Prague, Czech Republic, 3–6 July 2018; pp. 229–233. [Google Scholar]
- Muralidhar, N.; Himabindu, M.; Ravikrishna, R.V. Modeling of a hybrid electric heavy duty vehicle to assess energy recovery using a thermoelectric generator. Energy 2018, 148, 1046–1059. [Google Scholar] [CrossRef]
- National Research Council. Technologies and Approaches to Reducing the Fuel Consumption of Medium-and Heavy-Duty Vehicles; National Academies Press: Washington, DC, USA, 2010. [Google Scholar]
- Wärtsilä Improving Efficiency. Available online: https://www.wartsila.com/sustainability/innovating-for-sustainable-societies/improving-efficiency (accessed on 31 October 2018).
- Elforjani, B.; Xu, Y.; Brethee, K.F.; Wu, Z.; Gu, F.; Ball, A. Monitoring Gearbox Using a Wireless Temperature Node Powered by Thermal Energy Harvesting Module. In Proceedings of the 23rd International Conference on Automation & Computing, Huddersfield, UK, 7–8 September 2017. [Google Scholar]
- Yang, X.; Daoud, W.A. Design parameters impact on output characteristics of flexible hybrid energy harvesting generator: Experimental and theoretical simulation based on a parallel hybrid model. Nano Energy 2018, 50, 794–806. [Google Scholar] [CrossRef]
- Galmés, S.; Escolar, S.; Galmés, S.; Escolar, S. Analytical Model for the Duty Cycle in Solar-Based Eh-Wsn for Environmental Monitoring. Sensors 2018, 18, 2499. [Google Scholar] [CrossRef] [PubMed]
- Sampaio, P.G.V.; González, M.O.A. Photovoltaic solar energy: Conceptual framework. Renew. Sustain. Energy Rev. 2017, 74, 590–601. [Google Scholar] [CrossRef]
- SANYO Semiconductor Co., Ltd. Amorphous Silicon Solar Cells/Amorphous Photosensors; Sanyo Semiconductor Co., Ltd.: Tokwawan, Japan, 2007. [Google Scholar]
- STEVAL-ISV021V1—Energy Harvesting Evaluation Kit Based on the SPV1050—STMicroelectronics. Available online: https://www.st.com/en/evaluation-tools/steval-isv021v1.html (accessed on 2 November 2018).
- Ibn-Mohammed, T.; Koh, S.C.L.; Reaney, I.M.; Acquaye, A.; Schileo, G.; Mustapha, K.B.; Greenough, R. Perovskite solar cells: An integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies. Renew. Sustain. Energy Rev. 2017, 80, 1321–1344. [Google Scholar] [CrossRef]
- Li, Q.; Liu, Y.; Guo, S.; Zhou, H. Solar energy storage in the rechargeable batteries. Nano Today 2017, 16, 46–60. [Google Scholar] [CrossRef]
- Abdin, Z.; Alim, M.A.; Saidur, R.; Islam, M.R.; Rashmi, W.; Mekhilef, S.; Wadi, A. Solar energy harvesting with the application of nanotechnology. Renew. Sustain. Energy Rev. 2013, 26, 837–852. [Google Scholar] [CrossRef]
- Escobedo, P.; de Vargas-Sansalvador, I.M.P.; Carvajal, M.; Capitán-Vallvey, L.F.; Palma, A.J.; Martínez-Olmos, A. Flexible passive tag based on light energy harvesting for gas threshold determination in sealed environments. Sens. Actuators B Chem. 2016, 236, 226–232. [Google Scholar] [CrossRef]
- Zhang, L.; Lv, M.; Meng, J.; Du, H. Optimization of solar-powered hybrid airship conceptual design. Aerosp. Sci. Technol. 2017, 65, 54–61. [Google Scholar] [CrossRef]
- Cardinaletti, I.; Vangerven, T.; Nagels, S.; Cornelissen, R.; Schreurs, D.; Hruby, J.; Vodnik, J.; Devisscher, D.; Kesters, J.; D’Haen, J.; et al. Organic and perovskite solar cells for space applications. Sol. Energy Mater. Sol. Cells 2018, 182, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Guo, Z.; Hou, Z. Solar-powered airplanes: A historical perspective and future challenges. Prog. Aerosp. Sci. 2014, 71, 36–53. [Google Scholar] [CrossRef]
- Abbe, G.; Smith, H. Technological development trends in Solar-powered Aircraft Systems. Renew. Sustain. Energy Rev. 2016, 60, 770–783. [Google Scholar] [CrossRef]
- Aliyu, M.; Hassan, G.; Said, S.A.; Siddiqui, M.U.; Alawami, A.T.; Elamin, I.M. A review of solar-powered water pumping systems. Renew. Sustain. Energy Rev. 2018, 87, 61–76. [Google Scholar] [CrossRef]
- Tang, Q.; Zhang, H.; He, B.; Yang, P. An all-weather solar cell that can harvest energy from sunlight and rain. Nano Energy 2016, 30, 818–824. [Google Scholar] [CrossRef]
- Chaurey, A.; Deambi, S. Battery storage for PV power systems: An overview. Renew. Energy 1992, 2, 227–235. [Google Scholar] [CrossRef]
- Solar Battery Storage: Including Tesla Powerwall, LG Chem, Powervault. Available online: https://nakedsolar.co.uk/storage/ (accessed on 2 November 2018).
- Lu, X.; Wang, P.; Niyato, D.; Kim, D.I.; Han, Z. Wireless Networks With RF Energy Harvesting: A Contemporary Survey. IEEE Commun. Surv. Tutor. 2015, 17, 757–789. [Google Scholar] [CrossRef] [Green Version]
- Mishra, D.; De, S.; Jana, S.; Basagni, S.; Chowdhury, K.; Heinzelman, W. Smart RF energy harvesting communications: Challenges and opportunities. IEEE Commun. Mag. 2015, 53, 70–78. [Google Scholar] [CrossRef]
- Mouapi, A.; Hakem, N.; Mouapi, A.; Hakem, N. A New Approach to Design Autonomous Wireless Sensor Node Based on RF Energy Harvesting System. Sensors 2018, 18, 133. [Google Scholar] [CrossRef] [PubMed]
- Tran, L.-G.; Cha, H.-K.; Park, W.-T. RF power harvesting: A review on designing methodologies and applications. Micro Nano Syst. Lett. 2017, 5. [Google Scholar] [CrossRef]
- Aparicio, M.P.; Bakkali, A.; Pelegri-Sebastia, J.; Sogorb, T.; Bou, V.L. and A. Radio Frequency Energy Harvesting—Sources and Techniques. Renew. Energy Util. Syst. Integr. 2016. [Google Scholar] [CrossRef]
- Jiang, J.-R.; Liao, J.-H. Efficient Wireless Charger Deployment for Wireless Rechargeable Sensor Networks. Energies 2016, 9, 696. [Google Scholar] [CrossRef]
- Zeng, Y.; Clerckx, B.; Zhang, R. Communications and Signals Design for Wireless Power Transmission. IEEE Trans. Commun. 2017, 65, 2264–2290. [Google Scholar] [CrossRef] [Green Version]
- Popović, Z.; Falkenstein, E.A.; Costinett, D.; Zane, R. Low-Power Far-Field Wireless Powering for Wireless Sensors. Proc. IEEE 2013, 101, 1397–1409. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Khan, J.Y.; Ngo, D.T. A Self-Sustainable RF Energy Harvesting Algorithm for WSN-Based IoT Applications. In Proceedings of the GLOBECOM 2017—2017 IEEE Global Communications Conference, Singapore, 4–8 December 2017; pp. 1–6. [Google Scholar]
- Behdad, Z.; Mahdavi, M.; Razmi, N. A New Relay Policy in RF Energy Harvesting for IoT Networks—A Cooperative Network Approach. IEEE Internet Things J. 2018, 5, 2715–2728. [Google Scholar] [CrossRef]
- Hannah, S.E.; James, J.M.; Carter, S.J. Systems and Methods for Monitoring Wheeled Vehicles Using Radio Frequency Identification (rfid) Devices. U.S. Patent US20,170,327,142A1, 16 November 2017. [Google Scholar]
- Vera, G.A.; Allane, D.; Georgiadis, A.; Collado, A.; Duroc, Y.; Tedjini, S. Cooperative integration of harvesting RF sections for passive RFID communication. IEEE Trans. Microw. Theory Tech. 2015, 63, 4556–4566. [Google Scholar] [CrossRef]
- Geballe, T.H.; Hull, G.W. Seebeck Effect in Silicon. Phys. Rev. 1955, 98, 940–947. [Google Scholar] [CrossRef]
- Van Herwaarden, A.W.; Sarro, P.M. Thermal sensors based on the seebeck effect. Sens. Actuators 1986, 10, 321–346. [Google Scholar] [CrossRef] [Green Version]
- Goldsmid, H.J. The Thermoelectric and Related Effects. In Introduction to Thermoelectricity; Springer Series in Materials Science; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–7. ISBN 978-3-662-49255-0. [Google Scholar]
- Ando Junior, O.H.; Maran, A.L.O.; Henao, N.C. A review of the development and applications of thermoelectric microgenerators for energy harvesting. Renew. Sustain. Energy Rev. 2018, 91, 376–393. [Google Scholar] [CrossRef]
- Snyder, G.J. Thermoelectric Energy Harvesting. In Energy Harvesting Technologies; Springer: Boston, MA, USA, 2009; pp. 325–336. ISBN 978-0-387-76463-4. [Google Scholar]
- Proto, A.; Bibbo, D.; Cerny, M.; Vala, D.; Kasik, V.; Peter, L.; Conforto, S.; Schmid, M.; Penhaker, M. Thermal Energy Harvesting on the Bodily Surfaces of Arms and Legs through a Wearable Thermo-Electric Generator. Sensors 2018, 18, 1927. [Google Scholar] [CrossRef] [PubMed]
- Leonov, V. Thermoelectric Energy Harvesting of Human Body Heat for Wearable Sensors. IEEE Sens. J. 2013, 13, 2284–2291. [Google Scholar] [CrossRef]
- Hyland, M.; Hunter, H.; Liu, J.; Veety, E.; Vashaee, D. Wearable thermoelectric generators for human body heat harvesting. Appl. Energy 2016, 182, 518–524. [Google Scholar] [CrossRef] [Green Version]
- Myers, A.; Hodges, R.; Jur, J.S. Human and environmental analysis of wearable thermal energy harvesting. Energy Convers. Manag. 2017, 143, 218–226. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, J.; Chen, S.; Zuo, L. Thermo-element geometry optimization for high thermoelectric efficiency. Energy 2018, 147, 672–680. [Google Scholar] [CrossRef]
- Siddique, A.R.M.; Rabari, R.; Mahmud, S.; Heyst, B.V. Thermal energy harvesting from the human body using flexible thermoelectric generator (FTEG) fabricated by a dispenser printing technique. Energy 2016, 115, 1081–1091. [Google Scholar] [CrossRef]
- Zi, Y.; Wang, Z.L. Nanogenerators: An emerging technology towards nanoenergy. APL Mater. 2017, 5. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Zhao, C.; Cai, Y.; Zhu, L.; Zhang, C.; Wang, J.; Zhao, W.; Cao, P. An optimization study of structural size of parameterized thermoelectric generator module on performance. Energy Convers. Manag. 2018, 160, 176–181. [Google Scholar] [CrossRef]
- Guan, M.; Wang, K.; Xu, D.; Liao, W.-H. Design and experimental investigation of a low-voltage thermoelectric energy harvesting system for wireless sensor nodes. Energy Convers. Manag. 2017, 138, 30–37. [Google Scholar] [CrossRef]
- Champier, D. Thermoelectric generators: A review of applications. Energy Convers. Manag. 2017, 140, 167–181. [Google Scholar] [CrossRef]
- Proto, A.; Penhaker, M.; Conforto, S.; Schmid, M. Nanogenerators for Human Body Energy Harvesting. Trends Biotechnol. 2017, 35, 610–624. [Google Scholar] [CrossRef] [PubMed]
- Janak, L.; Ancik, Z.; Vetiska, J.; Hadas, Z. Thermoelectric Generator Based on MEMS Module as an Electric Power Backup in Aerospace Applications. Mater. Today Proc. 2015, 2, 865–870. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, Y.; Wang, S.; Yang, Y. Ocean thermal energy harvesting with phase change material for underwater glider. Appl. Energy 2016, 178, 557–566. [Google Scholar] [CrossRef]
- Dilhac, J.-M.; Monthéard, R.; Bafleur, M.; Boitier, V.; Durand-Estèbe, P.; Tounsi, P. Implementation of Thermoelectric Generators in Airliners for Powering Battery-Free Wireless Sensor Networks. J. Electron. Mater. 2014, 43, 2444–2451. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhao, L.-D. Thermoelectric materials: Energy conversion between heat and electricity. J. Mater. 2015, 1, 92–105. [Google Scholar] [CrossRef]
- Cuadras, A.; Gasulla, M.; Ferrari, V. Thermal energy harvesting through pyroelectricity. Sens. Actuators A Phys. 2010, 158, 132–139. [Google Scholar] [CrossRef]
- Lee, F.Y.; Navid, A.; Pilon, L. Pyroelectric waste heat energy harvesting using heat conduction. Appl. Therm. Eng. 2012, 37, 30–37. [Google Scholar] [CrossRef]
- El Fatnani, F.Z.; Guyomar, D.; Mazroui, M.; Belhora, F.; Boughaleb, Y. Optimization and improvement of thermal energy harvesting by using pyroelectric materials. Opt. Mater. 2016, 56, 22–26. [Google Scholar] [CrossRef]
- Sultana, A.; Alam, M.M.; Middya, T.R.; Mandal, D. A pyroelectric generator as a self-powered temperature sensor for sustainable thermal energy harvesting from waste heat and human body heat. Appl. Energy 2018, 221, 299–307. [Google Scholar] [CrossRef]
- Kakekhani, A.; Ismail-Beigi, S. Ferroelectric oxide surface chemistry: Water splitting via pyroelectricity. J. Mater. Chem. A 2016, 4, 5235–5246. [Google Scholar] [CrossRef]
- Xie, M.; Dunn, S.; Boulbar, E.L.; Bowen, C.R. Pyroelectric energy harvesting for water splitting. Int. J. Hydrogen Energy 2017, 42, 23437–23445. [Google Scholar] [CrossRef] [Green Version]
- Zhao, T.; Jiang, W.; Niu, D.; Liu, H.; Chen, B.; Shi, Y.; Yin, L.; Lu, B. Flexible pyroelectric device for scavenging thermal energy from chemical process and as self-powered temperature monitor. Appl. Energy 2017, 195, 754–760. [Google Scholar] [CrossRef]
- Hunter, S.R.; Lavrik, N.V.; Mostafa, S.; Rajic, S.; Datskos, P.G. Review of pyroelectric thermal energy harvesting and new MEMS-based resonant energy conversion techniques. Proc. SPIE 2012, 83770D. [Google Scholar] [CrossRef]
- Cha, G.; Ju, Y.S. Pyroelectric energy harvesting using liquid-based switchable thermal interfaces. Sens. Actuators A Phys. 2013, 189, 100–107. [Google Scholar] [CrossRef]
- Zhang, H.; Xie, Y.; Li, X.; Huang, Z.; Zhang, S.; Su, Y.; Wu, B.; He, L.; Yang, W.; Lin, Y. Flexible pyroelectric generators for scavenging ambient thermal energy and as self-powered thermosensors. Energy 2016, 101, 202–210. [Google Scholar] [CrossRef]
- Lingam, D.; Parikh, A.R.; Huang, J.; Jain, A.; Minary-Jolandan, M. Nano/microscale pyroelectric energy harvesting: Challenges and opportunities. Int. J. Smart Nano Mater. 2013, 4, 229–245. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, W.; Pradel, K.C.; Zhu, G.; Zhou, Y.; Zhang, Y.; Hu, Y.; Lin, L.; Wang, Z.L. Pyroelectric Nanogenerators for Harvesting Thermoelectric Energy. Nano Lett. 2012, 12, 2833–2838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Wang, S.; Zhang, Y.; Wang, Z.L. Pyroelectric Nanogenerators for Driving Wireless Sensors. Nano Lett. 2012, 12, 6408–6413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Zhou, Y.; Wu, J.M.; Wang, Z.L. Single Micro/Nanowire Pyroelectric Nanogenerators as Self-Powered Temperature Sensors. ACS Nano 2012, 6, 8456–8461. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.; Bowen, C.; Zabek, D.A. A novel pyroelectric generator utilising naturally driven temperature fluctuations from oscillating heat pipes for waste heat recovery and thermal energy harvesting. J. Appl. Phys. 2016, 120, 024505. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Tadesse, Y.; Priya, S. Piezoelectric Energy Harvesting. In Energy Harvesting Technologies; Springer: Boston, MA, USA, 2009; pp. 3–39. ISBN 978-0-387-76463-4. [Google Scholar]
- Kim, H.S.; Kim, J.-H.; Kim, J. A review of piezoelectric energy harvesting based on vibration. Int. J. Precis. Eng. Manuf. 2011, 12, 1129–1141. [Google Scholar] [CrossRef]
- Turkmen, A.C.; Celik, C. Energy harvesting with the piezoelectric material integrated shoe. Energy 2018, 150, 556–564. [Google Scholar] [CrossRef]
- Petrini, F.; Gkoumas, K. Piezoelectric energy harvesting from vortex shedding and galloping induced vibrations inside HVAC ducts. Energy Build. 2018, 158, 371–383. [Google Scholar] [CrossRef]
- Mutsuda, H.; Tanaka, Y.; Patel, R.; Doi, Y.; Moriyama, Y.; Umino, Y. A painting type of flexible piezoelectric device for ocean energy harvesting. Appl. Ocean Res. 2017, 68, 182–193. [Google Scholar] [CrossRef]
- Mutsuda, H.; Miyagi, J.; Doi, Y.; Tanaka, Y.; Takao, H.; Sone, Y. Flexible piezoelectric sheet for wind energy harvesting. Int. J. Energy Eng. 2014, 4, 67. [Google Scholar]
- Almusallam, A.; Luo, Z.; Komolafe, A.; Yang, K.; Robinson, A.; Torah, R.; Beeby, S. Flexible piezoelectric nano-composite films for kinetic energy harvesting from textiles. Nano Energy 2017, 33, 146–156. [Google Scholar] [CrossRef]
- Hong, Y.; Sui, L.; Zhang, M.; Shi, G. Theoretical analysis and experimental study of the effect of the neutral plane of a composite piezoelectric cantilever. Energy Convers. Manag. 2018, 171, 1020–1029. [Google Scholar] [CrossRef]
- Lu, Q.; Liu, L.; Scarpa, F.; Leng, J.; Liu, Y. A novel composite multi-layer piezoelectric energy harvester. Compos. Struct. 2018, 201, 121–130. [Google Scholar] [CrossRef]
- Wang, D.W.; Mo, J.L.; Wang, X.F.; Ouyang, H.; Zhou, Z.R. Experimental and numerical investigations of the piezoelectric energy harvesting via friction-induced vibration. Energy Convers. Manag. 2018, 171, 1134–1149. [Google Scholar] [CrossRef]
- Todaro, M.T.; Guido, F.; Mastronardi, V.; Desmaele, D.; Epifani, G.; Algieri, L.; De Vittorio, M. Piezoelectric MEMS vibrational energy harvesters: Advances and outlook. Microelectron. Eng. 2017, 183–184, 23–36. [Google Scholar] [CrossRef]
- Ramalingam, U.; Gandhi, U.; Mangalanathan, U.; Choi, S.-B. A new piezoelectric energy harvester using two beams with tapered cavity for high power and wide broadband. Int. J. Mech. Sci. 2018, 142–143, 224–234. [Google Scholar] [CrossRef]
- Orrego, S.; Shoele, K.; Ruas, A.; Doran, K.; Caggiano, B.; Mittal, R.; Kang, S.H. Harvesting ambient wind energy with an inverted piezoelectric flag. Appl. Energy 2017, 194, 212–222. [Google Scholar] [CrossRef]
- Briscoe, J.; Dunn, S. Piezoelectric nanogenerators—A review of nanostructured piezoelectric energy harvesters. Nano Energy 2015, 14, 15–29. [Google Scholar] [CrossRef]
- Song, M.; Zhang, Y.; Peng, M.; Zhai, J. Low frequency wideband nano generators for energy harvesting from natural environment. Nano Energy 2014, 6, 66–72. [Google Scholar] [CrossRef]
- Nesser, H.; Debéda, H.; Yuan, J.; Colin, A.; Poulin, P.; Dufour, I.; Ayela, C. All-organic microelectromechanical systems integrating electrostrictive nanocomposite for mechanical energy harvesting. Nano Energy 2018, 44, 1–6. [Google Scholar] [CrossRef]
- Avila Bernal, A.G.; Linares García, L.E. The modelling of an electromagnetic energy harvesting architecture. Appl. Math. Model. 2012, 36, 4728–4741. [Google Scholar] [CrossRef]
- Cooley, C.G. Vibration properties of and power harvested by a system of electromagnetic vibration energy harvesters that have electrical dynamics. Mech. Syst. Signal Process. 2017, 94, 237–252. [Google Scholar] [CrossRef]
- Naifar, S.; Bradai, S.; Viehweger, C.; Kanoun, O. Survey of electromagnetic and magnetoelectric vibration energy harvesters for low frequency excitation. Measurement 2017, 106, 251–263. [Google Scholar] [CrossRef]
- Wang, D.-A.; Chang, K.-H. Electromagnetic energy harvesting from flow induced vibration. Microelectron. J. 2010, 41, 356–364. [Google Scholar] [CrossRef]
- Liu, H.; Qian, Y.; Lee, C. A multi-frequency vibration-based MEMS electromagnetic energy harvesting device. Sens. Actuators A Phys. 2013, 204, 37–43. [Google Scholar] [CrossRef]
- Haroun, A.; Yamada, I.; Warisawa, S. Study of electromagnetic vibration energy harvesting with free/impact motion for low frequency operation. J. Sound Vib. 2015, 349, 389–402. [Google Scholar] [CrossRef]
- Samad, F.A.; Karim, M.F.; Paulose, V.; Ong, L.C. A Curved Electromagnetic Energy Harvesting System for Wearable Electronics. IEEE Sens. J. 2016, 16, 1969–1974. [Google Scholar] [CrossRef]
- Chamanian, S.; Uluşan, H.; Zorlu, Ö.; Baghaee, S.; Uysal-Biyikoglu, E.; Külah, H. Wearable battery-less wireless sensor network with electromagnetic energy harvesting system. Sens. Actuators A Phys. 2016, 249, 77–84. [Google Scholar] [CrossRef]
- Luo, Q.; He, X.; Jiang, S.; Wang, X. Impact-Based Electromagnetic Energy Harvester with High Output Voltage under Low-Level Excitations. Energies 2017, 10, 1848. [Google Scholar] [CrossRef]
- Ren, H.; Wang, T. Development and modeling of an electromagnetic energy harvester from pressure fluctuations. Mechatronics 2018, 49, 36–45. [Google Scholar] [CrossRef]
- Anjum, M.U.; Fida, A.; Ahmad, I.; Iftikhar, A. A broadband electromagnetic type energy harvester for smart sensor devices in biomedical applications. Sens. Actuators A Phys. 2018, 277, 52–59. [Google Scholar] [CrossRef]
- Halim, M.A.; Rantz, R.; Zhang, Q.; Gu, L.; Yang, K.; Roundy, S. An electromagnetic rotational energy harvester using sprung eccentric rotor, driven by pseudo-walking motion. Appl. Energy 2018, 217, 66–74. [Google Scholar] [CrossRef]
- Dhakar, L. Overview of Energy Harvesting Technologies. In Triboelectric Devices for Power Generation and Self-Powered Sensing Applications; Springer: Singapore, 2017; pp. 9–37. ISBN 978-981-10-3814-3. [Google Scholar]
- Wang, Z.L. Triboelectric Nanogenerators as New Energy Technology for Self-Powered Systems and as Active Mechanical and Chemical Sensors. ACS Nano 2013, 7, 9533–9557. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Mu, X.; Yang, Y.; Sun, C.; Gu, A.Y.; Wang, Z.L. Flow-Driven Triboelectric Generator for Directly Powering a Wireless Sensor Node. Adv. Mater. 2015, 27, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhu, G.; Zhang, H.; Chen, J.; Zhong, X.; Lin, Z.-H.; Su, Y.; Bai, P.; Wen, X.; Wang, Z.L. Triboelectric Nanogenerator for Harvesting Wind Energy and as Self-Powered Wind Vector Sensor System. ACS Nano 2013, 7, 9461–9468. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Hu, Y.; Huang, Z.; Lee, C.; Wang, F. Electret-material enhanced triboelectric energy harvesting from air flow for self-powered wireless temperature sensor network. Sens. Actuators A Phys. 2018, 271, 364–372. [Google Scholar] [CrossRef]
- Cheng, X.; Meng, B.; Zhang, X.; Han, M.; Su, Z.; Zhang, H. Wearable electrode-free triboelectric generator for harvesting biomechanical energy. Nano Energy 2015, 12, 19–25. [Google Scholar] [CrossRef]
- Xing, F.; Jie, Y.; Cao, X.; Li, T.; Wang, N. Natural triboelectric nanogenerator based on soles for harvesting low-frequency walking energy. Nano Energy 2017, 42, 138–142. [Google Scholar] [CrossRef]
- Fan, F.-R.; Tian, Z.-Q.; Lin Wang, Z. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334. [Google Scholar] [CrossRef]
- Wang, S.; Lin, L.; Wang, Z.L. Nanoscale Triboelectric-Effect-Enabled Energy Conversion for Sustainably Powering Portable Electronics. Nano Lett. 2012, 12, 6339–6346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, B.; Tang, W.; Zhang, X.; Han, M.; Liu, W.; Zhang, H. Self-powered flexible printed circuit board with integrated triboelectric generator. Nano Energy 2013, 2, 1101–1106. [Google Scholar] [CrossRef]
- Xia, K.; Zhu, Z.; Zhang, H.; Du, C.; Xu, Z.; Wang, R. Painting a high-output triboelectric nanogenerator on paper for harvesting energy from human body motion. Nano Energy 2018, 50, 571–580. [Google Scholar] [CrossRef]
- Wu, C.; Kima, T.W.; Sung, S.; Park, J.H.; Li, F. Ultrasoft and cuttable paper-based triboelectric nanogenerators for mechanical energy harvesting. Nano Energy 2018, 44, 279–287. [Google Scholar] [CrossRef]
- Guo, T.; Liu, G.; Pang, Y.; Wu, B.; Xi, F.; Zhao, J.; Bu, T.; Fu, X.; Li, X.; Zhang, C.; et al. Compressible hexagonal-structured triboelectric nanogenerators for harvesting tire rotation energy. Extreme Mech. Lett. 2018, 18, 1–8. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, S.; Lin, L.; Jing, Q.; Lin, Z.-H.; Niu, S.; Wu, Z.; Wang, Z.L. Rotary Triboelectric Nanogenerator Based on a Hybridized Mechanism for Harvesting Wind Energy. ACS Nano 2013, 7, 7119–7125. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Chen, J.; Zhang, T.; Jing, Q.; Wang, Z.L. Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 2014, 5, 3426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, A.; Hassan, I.; Hedaya, M.; Abo El-Yazid, T.; Zu, J.; Wang, Z.L. Farms of triboelectric nanogenerators for harvesting wind energy: A potential approach towards green energy. Nano Energy 2017, 36, 21–29. [Google Scholar] [CrossRef]
- Zhu, G.; Chen, J.; Liu, Y.; Bai, P.; Zhou, Y.S.; Jing, Q.; Pan, C.; Wang, Z.L. Linear-Grating Triboelectric Generator Based on Sliding Electrification. Nano Lett. 2013, 13, 2282–2289. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Liu, W.; Xi, Y.; Lai, M.; Guo, H.; Liu, G.; Wang, M.; Li, T.; Ji, X.; Li, X. Rolling friction contact-separation mode hybrid triboelectric nanogenerator for mechanical energy harvesting and self-powered multifunctional sensors. Nano Energy 2018, 47, 539–546. [Google Scholar] [CrossRef]
- Liang, Q.; Zhanga, Z.; Yan, X.; Gu, Y.; Zhao, Y.; Zhang, G.; Lu, S.; Liao, Q.; Zhang, Y. Functional triboelectric generator as self-powered vibration sensor with contact mode and non-contact mode. Nano Energy 2015, 14, 209–216. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, T.; Luo, A.; Hu, Y.; Li, X.; Wang, F. Micro electrostatic energy harvester with both broad bandwidth and high normalized power density. Appl. Energy 2018, 212, 362–371. [Google Scholar] [CrossRef]
- Lallart, M.; Pruvost, S.; Guyomar, D. Electrostatic energy harvesting enhancement using variable equivalent permittivity. Phys. Lett. A 2011, 375, 3921–3924. [Google Scholar] [CrossRef]
- Wang, F.; Hansen, O. Electrostatic energy harvesting device with out-of-the-plane gap closing scheme. Sens. Actuators A Phys. 2014, 211, 131–137. [Google Scholar] [CrossRef]
- Wada, N.; Horiuchi, N.; Mukougawa, K.; Nozaki, K.; Nakamura, M.; Nagai, A.; Okura, T.; Yamashita, K. Electrostatic induction power generator using hydroxyapatite ceramic electrets. Mater. Res. Bull. 2016, 74, 50–56. [Google Scholar] [CrossRef]
- Miyazaki, M.; Tanaka, H.; Ono, G.; Nagano, T.; Ohkubo, N.; Kawahara, T.; Yano, K. Electric-energy generation using variable-capacitive resonator for power-free LSI: Efficiency analysis and fundamental experiment. In Proceedings of the 2003 ACM International Symposium on Low Power Electronics and Design, Seoul, Korea, 25–27 August 2003; pp. 193–198. [Google Scholar]
- Yen, B.C.; Lang, J.H. A variable-capacitance vibration-to-electric energy harvester. IEEE Trans. Circuits Syst. I Regul. Pap. 2006, 53, 288–295. [Google Scholar] [CrossRef]
- De Queiroz, A.C.M. Electrostatic energy harvesting using capacitive generators without control circuits. Analog Integr. Circuits Signal Process. 2015, 85, 57–64. [Google Scholar] [CrossRef]
- De Queiroz, A.C.M.; Domingues, M. The doubler of electricity used as battery charger. IEEE Trans. Circuits Syst. II Express Briefs 2011, 58, 797–801. [Google Scholar] [CrossRef]
- De Queiroz, A.C.M. Electrostatic vibrational energy harvesting using a variation of Bennet’s doubler. In Proceedings of the 2010 53rd IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), Seattle, WA, USA, 1–4 August 2010; pp. 404–407. [Google Scholar]
- Bito, J.; Bahr, R.; Hester, J.G.; Nauroze, S.A.; Georgiadis, A.; Tentzeris, M.M. A Novel Solar and Electromagnetic Energy Harvesting System With a 3-D Printed Package for Energy Efficient Internet-of-Things Wireless Sensors. IEEE Trans. Microw. Theory Tech. 2017, 65, 1831–1842. [Google Scholar] [CrossRef]
- Guo, H.; Wen, Z.; Zi, Y.; Yeh, M.-H.; Wang, J.; Zhu, L.; Hu, C.; Wang, Z.L. A Water-Proof Triboelectric–Electromagnetic Hybrid Generator for Energy Harvesting in Harsh Environments. Adv. Energy Mater. 2015, 6, 1501593. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, A.; Hu, H.; Zhu, H. Hybrid Electromagnetic and Triboelectric Nanogenerators with Multi-Impact for Wideband Frequency Energy Harvesting. Energies 2017, 10, 2024. [Google Scholar] [CrossRef]
- Bao Han, C.; Du, W.; Zhang, C.; Tang, W.; Zhang, L.; Lin Wang, Z. Harvesting energy from automobile brake in contact and non-contact mode by conjunction of triboelectrication and electrostatic-induction processes. Nano Energy 2014, 6, 59–65. [Google Scholar] [CrossRef]
- Iqbal, M.; Khan, F.U. Hybrid vibration and wind energy harvesting using combined piezoelectric and electromagnetic conversion for bridge health monitoring applications. Energy Convers. Manag. 2018, 172, 611–618. [Google Scholar] [CrossRef]
- Introduction to Energy Harvesting Technology. Available online: https://training.ti.com/jp/introduction-energy-harvesting-technology (accessed on 5 November 2018).
- Yang, F.; Du, L.; Chen, W.; Li, J.; Wang, Y.; Wang, D. Hybrid energy harvesting for condition monitoring sensors in power grids. Energy 2017, 118, 435–445. [Google Scholar] [CrossRef]
- Harb, A. Energy harvesting: State-of-the-art. Renew. Energy 2011, 36, 2641–2654. [Google Scholar] [CrossRef]
- Dini, M.; Romani, A.; Filippi, M.; Bottarel, V.; Ricotti, G.; Tartagni, M. A Nanocurrent Power Management IC for Multiple Heterogeneous Energy Harvesting Sources. IEEE Trans. Power Electron. 2015, 30, 5665–5680. [Google Scholar] [CrossRef]
- Kong, N.; Cochran, T.; Ha, D.S.; Lin, H.; Inman, D.J. A self-powered power management circuit for energy harvested by a piezoelectric cantilever. In Proceedings of the 2010 Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Palm Springs, CA, USA, 21–25 February 2010; pp. 2154–2160. [Google Scholar]
- Tan, Y.K.; Panda, S.K. Energy Harvesting From Hybrid Indoor Ambient Light and Thermal Energy Sources for Enhanced Performance of Wireless Sensor Nodes. IEEE Trans. Ind. Electron. 2011, 58, 4424–4435. [Google Scholar] [CrossRef]
- Alhawari, M.; Tekeste, T.; Mohammad, B.; Saleh, H.; Ismail, M. Power management unit for multi-source energy harvesting in wearable electronics. In Proceedings of the 2016 IEEE 59th International Midwest Symposium on Circuits and Systems (MWSCAS), Abu Dhabi, UAE, 16–19 October 2016; pp. 1–4. [Google Scholar]
- Fang, J.; Niu, H.; Wang, H.; Wang, X.; Lin, T. Enhanced mechanical energy harvesting using needleless electrospun poly (vinylidene fluoride) nanofibre webs. Energy Environ. Sci. 2013, 6, 2196–2202. [Google Scholar] [CrossRef]
- Wang, B.; Liu, Y.; Zhou, Y.; Wen, Z. Emerging nanogenerator technology in China: A review and forecast using integrating bibliometrics, patent analysis and technology roadmapping methods. Nano Energy 2018, 46, 322–330. [Google Scholar] [CrossRef]
- Chen, X.; Song, Y.; Su, Z.; Chen, H.; Cheng, X.; Zhang, J.; Han, M.; Zhang, H. Flexible fiber-based hybrid nanogenerator for biomechanical energy harvesting and physiological monitoring. Nano Energy 2017, 38, 43–50. [Google Scholar] [CrossRef]
- Tung, T.V.; Yang, B.-S. Machine Fault Diagnosis and Prognosis: The State of The Art. Int. J. Fluid Mach. Syst. 2009, 2, 61–71. [Google Scholar] [CrossRef]
- Mobley, R.K. An Introduction to Predictive Maintenance; Elsevier: Amsterdam, The Netherlands, 2002; ISBN 978-0-08-047869-2. [Google Scholar]
- Tian, X. Enhanced Information Extraction from Noisy Vibration Data for Machinery Fault Detection and Diagnosis. Ph.D. Thesis, University of Huddersfield, Huddersfield, UK, 2017. [Google Scholar]
- Bingamil, A.; Alsyouf, I.; Cheaitou, A. Condition monitoring technologies, parameters and data processing techniques for fault detection of internal combustion engines: A literature review. In Proceedings of the 2017 International Conference on Electrical and Computing Technologies and Applications (ICECTA), Ras Al Khaimah, UAE, 21–23 November 2017; pp. 1–5. [Google Scholar]
- Machine Learning Methods for Solar Radiation Forecasting: A Review. Available online: https://reader.elsevier.com/reader/sd/pii/S0960148116311648?token=053F03B8564040769F6C0849ECB261A6D1DB4DB1F2C029A123C6DA93D34587E12AF1A944A344457F9B9DAFAC9A3334F3 (accessed on 3 November 2018).
- Multi-Source Energy Harvesting Powered Acoustic Emission Sensing System for Rotating Machinery Condition Monitoring Applications. Available online: https://www.researchgate.net/publication/289423171_Multi-source_energy_harvesting_powered_acoustic_emission_sensing_system_for_rotating_machinery_condition_monitoring_applications (accessed on 5 November 2018).
- Sergiou, C.; Vassiliou, V.; Christou, K. RF energy harvesting in wireless sensor networks for critical aircraft systems—An experimental approach. In Proceedings of the 2016 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE), Aachen, Germany, 26–28 September 2016; pp. 178–183. [Google Scholar]
- Wu, Y.; Zhang, H.; Zuo, L. Thermoelectric energy harvesting for the gas turbine sensing and monitoring system. Energy Convers. Manag. 2018, 157, 215–223. [Google Scholar] [CrossRef]
- Plessis, A.J.d.; Huigsloot, M.J.; Discenzo, F.D. Resonant packaged piezoelectric power harvester for machinery health monitoring. In Proceedings of the Smart Structures and Materials 2005: Industrial and Commercial Applications of Smart Structures Technologies, San Diego, CA, USA, 7–10 March 2005; Volume 5762, pp. 224–236. [Google Scholar]
- Discenzo, F.M.; Chung, D.; Automation, R.; Heights, M.; Loparo, K.A. Pump Condition Monitoring Using Self-Powered Wireless Sensors. Sound Vib. 2006, 40, 12–15. [Google Scholar]
- Pękosławski, B.; Pietrzak, P.; Makowski, M.; Szafoni, Ł.; Napieralski, A. Study on Application of Piezoelectric Vibration Energy Harvesters for Powering of Wireless Sensor Nodes in Large Rotary Machine Diagnostic Systems. In Proceedings of the 2009 NSTI Nanotechnology Conference and Expo, Houston, TX, USA, 3–7 May 2009; Volume 1, pp. 530–533. [Google Scholar]
- Waterbury, A.C.; Wright, P.K. Vibration energy harvesting to power condition monitoring sensors for industrial and manufacturing equipment. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2013, 227, 1187–1202. [Google Scholar] [CrossRef]
- Chung, T.-K.; Yeh, P.-C.; Lee, H.; Lin, C.-M.; Tseng, C.-Y.; Lo, W.-T.; Wang, C.-M.; Wang, W.-C.; Tu, C.-J.; Tasi, P.-Y.; et al. An Attachable Electromagnetic Energy Harvester Driven Wireless Sensing System Demonstrating Milling-Processes and Cutter-Wear/Breakage-Condition Monitoring. Sensors 2016, 16, 269. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Wang, P.; Cao, Y.; Chen, R.; Cai, D. Design and Verification of a Rail-Borne Energy Harvester for Powering Wireless Sensor Networks in the Railway Industry. IEEE Trans. Intell. Transp. Syst. 2017, 18, 1596–1609. [Google Scholar] [CrossRef]
- Gao, M.; Lu, J.; Wang, Y.; Wang, P.; Wang, L. Smart monitoring of underground railway by local energy generation. Undergr. Space 2017, 2, 210–219. [Google Scholar] [CrossRef]
- Doolan Fernandes, J.; Carvalho Souza, F.E.; Cipriano Maniçoba, G.G.; Salazar, A.O.; de Paiva, J.A. Wireless Monitoring of Induction Machine Rotor Physical Variables. Sensors 2017, 17, 2660. [Google Scholar] [CrossRef] [PubMed]
- Gilani, S.F.-H.; Khir, M.H.b.M.; Ibrahim, R.; Kirmani, E.u.H.; Gilani, S.I.-H. Modelling and development of a vibration-based electromagnetic energy harvester for industrial centrifugal pump application. Microelectron. J. 2017, 66, 103–111. [Google Scholar] [CrossRef]
- Wei, C.; Zhang, K.; Hu, C.; Wang, Y.; Taghavifar, H.; Jing, X. A tunable nonlinear vibrational energy harvesting system with scissor-like structure. Mech. Syst. Signal Process. 2018. [Google Scholar] [CrossRef]
- Fan, F.-R.; Tang, W.; Yao, Y.; Luo, J.; Zhang, C.; Wang, Z.L. Complementary power output characteristics of electromagnetic generators and triboelectric generators. Nanotechnology 2014, 25, 135402. [Google Scholar] [CrossRef] [PubMed]
Technology | Transmission Rate (bps) | Transmission Distance | Power Consumption | Features | ||
---|---|---|---|---|---|---|
Sleep (μW) | Transmit (mW) | Receive (mW) | ||||
Low power Wi-Fi (802.11g) [31] | 54 M | 1 km | 300 | 350 | 270 | High speed, high power consumption and high reliability. |
BLE 5.0 | 2 M | Up to 300 m in theory | - | - | - | High speed, long distance, wide bandwidth, ultra-low power consumption and high compatibility. |
BLE 4.2 [32,33,34,35] | 1 M | Up to 100 m, Normally operate within 10 m | 8 | 60 | 53 | Low power consumption, low cost, high security and low latency. |
ZigBee [31,32,33,34,35] | 250 k | 10 to 100 m | 4 | 72 | 84 | Low power consumption, low cost, low complexity and self-organization. |
EnOcean [36] | 125 k | Up to 30 m | 0.60 | 99.0 | 72.0 | Energy harvesting based and ultra-low power consumption. |
Z-wave [33,36] | 40 k | Indoor: 30 m or 40 m Outdoor: 100 m | 3 | 70 | 65 | RF-based, low cost, low power consumption, low radiation, anti-interference and high reliability. |
ANT [33,34] | 60 k | 30 m at 0 dBm | 3 | 110 | 75 | Utra-low power consumption, high flexibility and proprietary. |
Wireless Transmit | Module | Microcontroller Unit (MCU) | Data Rate (bps) | Power Consumption | ||
---|---|---|---|---|---|---|
Sleep (mW) | Transmit (mW) | Receive (mW) | ||||
Wi-Fi (802.11g) | ESP8266 | 32-bit Tensilica L106 @ 80 MHz or 160 MHz | 72.2 M | 45 | 420 | 168 |
CC3200 Wi-Fi Subsystem | 32-bit ARM Cortex-M4 @ 80 MHz | 54 M | 43.92 | 990 | 201.6.4 | |
SPWF01SA | 32-bit STM32 ARM Cortex-M3 @ 120MHz | 54 M | 49.5 | 1115.4 | 346.5 | |
BLE 5 | nRF52840 | 32-bit ARM Cortex-M4F @ 64MHz | 2 M | 2.1 × 10−3 | 40.8 | 19.2 |
CC2640R2F | 32-bit ARM Cortex-M0 @ 32 MHz | 2 M | 9 × 10−3 | 27.3 | 18.3 | |
CC2650 RF Core | 32-bit ARM Cortex-M0 @ 32 MHz | 1 M | 8.1 × 10−3 | 27.3 | 18.3 | |
BLE 4.2 | RN4871 | 8-bit Microchip 8051 @ 16 MHz | 10 k | - | 39 | 39 |
PAN1760A | 32-bit ARM Cortex-M0 @ 32 MHz | 115.2 k | 1.65 × 10−4 | 10.89 | 10.89 | |
ZigBee | XB24-AUI-001 | - | 250 k | - | 148.5 | 165 |
ATSAMR21B18 | 32-bit ATSAMR21 ARM Cortex-M0+ @ 48 MHz | - | 8.1 × 10−3 | 41.4 | 35.4 | |
Z-Wave | ZM5304 | 8-bit Microchip 8051 @ 16 MHz | 9.6/40/100k | 5.61 × 10−3 | 140.91 | 107.91 |
Microprocessor | Data Bus (bit) | Flash (KB) | RAM (KB) | Active Consumption (μW) | Sleep Consumption (μW) |
---|---|---|---|---|---|
ATmega2560 | 8 | 256 | 8 | 900 | 0.18 (Power down) |
MSP430F5529 | 16 | 128 | 8 | 6960 | 6.3 (Standby) |
ATSAMD21G18 @ 48MHz | 32 | 256 | 32 | 12210 | 15.18 (Standby) |
STM32F7xx | 32 | 1024 | 64 | 12600 | 180 |
Sensor Type | Sensor | Resolution | Dara Rate (Hz) | Power Consumption | |
---|---|---|---|---|---|
Measurement (μW) | Standby (μW) | ||||
Accelerometer | ADXL345 | 10 bits | Max. 3200 | 100 | 0.25 |
MPU-6050 | 16 bits | Max. 1000 | 1650 | 16.5 | |
LIS2DS12TR | 16 bits | Max. 6400 | 270 | 1.26 | |
Temperature | TMP006 | 0.03125 °C | 1000 | 792 | - |
D6T-44L-06 | 0.14 °C | - | 25 | - | |
Pressure | BMP280 | 0.18 Pa | 1 | 9.042 | 0.33 |
Humidity | HDC1000 | 14 bits | 1 | 2.46 | 1 |
Light | OPT3001 | 0.01 lux | 1 | 4.5 | - |
Year | Frequency (Hz) | Acceleration (g) | Internal Resistance (Ω) | Power Density (μW/cm3) | Device Volume (cm3) | Features |
---|---|---|---|---|---|---|
2010 [135] | 30 | - | 25 | 0.008 | 50.26 | Harvest from flow-induced vibration |
2013 [136] | 840/1070/1490 | 1.0 | 626 | 0.157/0.014/0.117 | 0.035 | With three modes and multiple frequencies; Integrated with MEMS. |
2015 [137] | 10 | - | 1.19 | 2187.5 max. | 160 | Work at low frequencies; Generate much more power than a traditional one. |
2016 [138] | 2 to 5 | 0.08 to 0.19 | - | 0.123 | 42.2 | A curved electromagnetic generator with lightweight designed for wearable electronics. |
2016 [139] | 2.65 | 0.15 | 106 | 4.24 max. | 29.5 | Suit for low resonance-frequency vibrations; Provide sufficient energy for WSNs. |
2017 [140] | 8.5 | 0.3 | 800 | 256 | 97.0 | Work at low frequencies; Harvest enough power for measurement and transmission the temperature and humidity every 20 s. |
2018 [141] | 20 | - | 86.9 | 145.08 max. | 13.854 | Absorb gas pressure fluctuations; With a higher power density. |
2018 [142] | 10 to 80 | 3 | - | 8.75 | 215.98 | A wide bandwidth of 70 Hz; Potential for biomedical use. |
2018 [143] | 1 | - | 240 | 3.05 max. | 20.11 | With a sprung eccentric rotor; Suit for the low-frequency excitations. |
Energy Sources | Source Characteristic [177] | Conversion Efficiency [177] | Harvested Power [177] | Technologies/Device | Advantages | Disadvantages |
---|---|---|---|---|---|---|
Light energy | Indoor: 0.1 mW/cm2 | 10–24% | 10 μW/cm2 | Photovoltaic EH/generators | Green, renewable, inexhaustible energy source; With relatively high conversion efficiency and low noise. | Bulky electronics, like solar panels; Affected by weather, regions, locations (inside or outside buildings); With high cost and pollution. |
Outdoor: 100 mW/cm2 | 10 mW/cm2 | |||||
RF energy | 900 MHz: 0.3 μW/cm2 | 50% | 0.1 μW/cm2 | RF EH/generators | Green and efficient source of energy; Long effective energy transfer distance; Prolong the lifetime of electronics and WSNs. | Ultra-low output power and often varies in time due to the decrease of the circuit performance. |
1800MHz: 0.1 μW/cm2 | ||||||
Thermal energy | Machine: 100 mW/cm2 | 3% | 1–10 mW/cm2 | Thermoelectric EH/(nano)generators | With high durability, precision, small volume; Collecting residual thermal energy; Safety and reliability. | Difficult to integrate with MEMS; With relative low conversion efficiency. |
Pyroelectric EH/(nano)generators | With relative higher conversion efficiency; Can be fabricated as micro/nanoscale. | Require high-frequency temperature fluctuations and high efficiency of energy extraction cycles. |
Energy Sources | Source Characteristic [177] | Conversion Efficiency [177] | Harvested Power [177] | Technologies/Device | Advantages | Disadvantages |
---|---|---|---|---|---|---|
Mechanical energy | Machine: 1 m @ 5 Hz 10/s2 @ 1 kHz | Source dependant | 100 μW/cm2 | Piezoelectric EH/(nano)generators | With higher power density, and high output voltage; With compact and simple architectures; Can be fabricated and directly integrated into MEMS; Easy to scale down to nanoscale. | Energy harvesting devices are easy to fatigue and crack; Work at a low and narrow frequency band; Limitation on the types of optional materials and complexity of fabrication techniques. |
Electromagnetic EH/generators | With high efficiency and high output current; With low cost; Easy to scale up; High output for large-scale devices. | With inevitable coil losses; Difficulty to fabricate microscale devices and integrate with MEMS; May be interfered by the electromagnetic waves. | ||||
Triboelectric EH/(nano)generators | Simple, low weight, cost-efficient, scalable, robust and reliable; With high efficiency. | With inevitable wear of materials; Heat generated by the wear may cause catastrophic accidents. | ||||
Electrostatic EH/(nano)generators | With high output voltage; With low cost; Easy to fabricate with MEMS and integrate with other devices. | Most require separate voltage sources or electret materials or doublers; Quite small energy density and low output; Work at a low and narrow frequency range. |
Condition Monitoring Methods | Techniques |
---|---|
Feature extraction [189] | Time domain—mean value, variance, root mean square (RMS), kurtosis, skewness, entropy, time synchronous average (TSA) etc.; Frequency domain—fast Fourier transform (FFT), envelope, bispectrum, modulation signal bispectrum (MSB), etc.; Time-Frequency—short-time Fourier transform (STFT), Wigner-Ville distribution (WVD), wavelet, etc.; Other methods—spectral kurtosis (SK), principal component analysis (PCA), independent component analysis (ICA), empirical mode decomposition (EMD), Local mean decomposition (LMD), etc. |
Modelling [190] | Numerical modelling; Data modelling. |
Machine learning [191] | Neural network, deep learning, expert system, fuzzy logic, support vector machine (SVM), etc. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, X.; Wang, X.; Cattley, R.; Gu, F.; Ball, A.D. Energy Harvesting Technologies for Achieving Self-Powered Wireless Sensor Networks in Machine Condition Monitoring: A Review. Sensors 2018, 18, 4113. https://doi.org/10.3390/s18124113
Tang X, Wang X, Cattley R, Gu F, Ball AD. Energy Harvesting Technologies for Achieving Self-Powered Wireless Sensor Networks in Machine Condition Monitoring: A Review. Sensors. 2018; 18(12):4113. https://doi.org/10.3390/s18124113
Chicago/Turabian StyleTang, Xiaoli, Xianghong Wang, Robert Cattley, Fengshou Gu, and Andrew D. Ball. 2018. "Energy Harvesting Technologies for Achieving Self-Powered Wireless Sensor Networks in Machine Condition Monitoring: A Review" Sensors 18, no. 12: 4113. https://doi.org/10.3390/s18124113