Confined Concrete in Fiber-Reinforced Polymer Partially Wrapped Square Columns: Axial Compressive Behavior and Strain Distributions by a Particle Image Velocimetry Sensing Technique
Abstract
:1. Introduction
2. Experimental Study
2.1. Columnar Specimens
2.2. Material Properties
2.3. Test Setup
3. Results and Discussions
3.1. Failure Modes
3.2. Stress–Strain Responses
3.3. Ultimate Axial Stress and Strain
3.4. Strain Distributions
4. Design-Oriented Stress–Strain Models for Confined Concrete in FRP Partially Wrapped Square Columns
4.1. Actual FRP Confining Stress in Confined Concrete in FRP Partially Wrapped Square Columns
4.2. Existing Stress–Strain Models
4.3. Comparisons
4.4. Proposed Stress–Strain Model for Confined Concrete in FRP Partially Wrapped Square Columns
5. Conclusions
- (1)
- The stress–strain responses of confined concrete in FRP partially wrapped square columns exhibit a three-segment behavior with a linear first segment, a parabolic second transition segment and a linear third segment. However, the second transition segment is short, and the stress–strain responses can be approximately represented by the typical two-segment stress–strain curves.
- (2)
- The peak stresses and the slope of the second segment of the stress–strain curves increase with the increase in FRP strip thickness, while the FRP strip width is approximately independent to the ultimate axial stresses and strains of the concrete. The stress–strain response of confined concrete in FRP partially wrapped square columns is highly related to the FRP strip clear spacing rather than the FRP strip width. The FRP hoop rupture strains are independent to the thickness and width of FRP strips.
- (3)
- The difference between ultimate axial stresses of the specimens with an identical FRP confinement efficiency ratio is smaller than the difference between those of the specimens with an identical FRP volumetric ratio, indicating that the vertical confinement effectiveness factor plays a more significant role than the FRP volumetric ratio in influencing the behavior of confined concrete in FRP partially wrapped square columns.
- (4)
- The axial strains as well as hoop strains in the concrete between two adjacent FRP strips are larger than those in the FRP (i.e., at the mid-plane of each FRP strip) for the test columnar specimens and considerable variation is observed in hoop strain readings over the height of the specimens.
- (5)
- Lam and Teng’s (2003) [29] model is superior to the other three models in terms of the ultimate axial stresses. The model of Wei and Wu (2012) [33] and the model of Guo et al. (2019) [63] are slightly better than the other models in predicting the ultimate axial strains, while all four representative models are inaccurate in terms of ultimate axial strains. The proposed model is more accurate in terms of both ultimate axial stress and ultimate axial strains; nevertheless, a more robust and accurate stress–strain model based on adequate experimental results needs to be established.
Author Contributions
Funding
Conflicts of Interest
References
- Yuan, F.; Chen, M.C. Numerical sensing of plastic hinge regions in concrete beams with hybrid (FRP and steel) bars. Sensors 2018, 18, 3255. [Google Scholar] [CrossRef] [PubMed]
- Tobbi, H.; Farghaly, A.S.; Benmokrane, B.A. Strength model for concrete columns reinforced withfiber-reinforced polymer bars and ties. ACI Struct. J. 2014, 111, 789–797. [Google Scholar] [CrossRef]
- Hales, T.A.; Pantelides, C.P.; Sankholkar, P.; Reaveley, L.D. Analysis-oriented stress-strain model for concrete confined with fiber-reinforced polymer spirals. ACI Struct. J. 2017, 114, 1263–1272. [Google Scholar] [CrossRef]
- Lin, G.; Yu, T.; Teng, J.G. Design-oriented stress-strain model for concrete under combined FRP-steel confinement. J. Compos. Constr. 2015. [Google Scholar] [CrossRef]
- Wu, Y.F.; Jiang, C. Effect of load eccentricity on the stress–strain relationship of FRP-confined concrete columns. Compos. Struct. 2013, 98, 228–241. [Google Scholar] [CrossRef]
- Yan, L.B.; Chouw, N.; Jayaraman, K. Effect of column parameter on flax FRP confined coir fiber reinforced concrete. Constr. Build. Mater. 2014, 55, 299–312. [Google Scholar] [CrossRef]
- Luo, M.Z.; Li, W.J.; Hei, C.; Song, G.B. Concrete infill monitoring in concrete-filled FRP tubes using a PZT-based ultrasonic time-of-flight method. Sensors 2016, 16, 2083. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.C.; Xie, J.H.; Xie, Z.H.; Zhong, J. Experimental study on compressive behavior of damaged normal- and high-strength concrete confined with CFRP laminates. Constr. Build. Mater. 2016, 107, 411–425. [Google Scholar] [CrossRef]
- Jiang, C.; Wu, Y.F.; Jiang, J.F. Effect of aggregate size on stress-strain behavior of concrete confined by fiber composites. Compos. Struct. 2017, 168, 852–861. [Google Scholar] [CrossRef]
- Bai, Y.L.; Dai, J.G.; Teng, J.G. Buckling of steel reinforcing bars in FRP-confined RC columns: An experimental study. Constr. Build. Mater. 2017, 140, 403–415. [Google Scholar] [CrossRef]
- Cao, Y.G.; Wu, Y.F.; Jiang, C. Stress-strain relationship of FRP confined concrete columns under combined axial load and bending moment. Compos. Part B Eng. 2018, 134, 207–217. [Google Scholar] [CrossRef]
- Ouyang, L.J.; Gao, W.Y.; Zhen, B.; Lu, Z.D. Seismic retrofit of square reinforced concrete columns using basalt and carbon fiber-reinforced polymer sheets: A comparative study. Compos. Struct. 2017, 162, 294–307. [Google Scholar] [CrossRef]
- Yan, B.; Huang, L.; Yan, L.B.; Gao, C.; Kasal, B. Behavior of flax FRP tube encased recycled aggregate concrete with clay brick aggregate. Constr. Build. Mater. 2017, 136, 265–276. [Google Scholar] [CrossRef]
- Triantafyllou, G.G.; Rousakis, T.C.; Karabinis, A.I. Axially loaded reinforced concrete columns with a square section partially confined by light GFRP straps. J. Compos. Constr. 2015, 19, 1–15. [Google Scholar] [CrossRef]
- Saljoughian, A.; Mostofinejad, D. Axial-flexural interaction in square RC columns confined by intermittent CFRP wraps. Compos. Part B Eng. 2016, 89, 85–95. [Google Scholar] [CrossRef]
- Zeng, J.J.; Guo, Y.C.; Gao, W.Y.; Li, L.J.; Chen, W.P. Stress-strain behavior of circular concrete columns partially wrapped with FRP strips. Compos. Struct. 2018, 200, 810–828. [Google Scholar] [CrossRef]
- Barros, J.A.O.; Ferreira, D.R.S.M. Assessing the efficiency of CFRP discrete confinement systems for concrete cylinders. J. Compos. Constr. 2008, 12, 134–148. [Google Scholar] [CrossRef]
- Park, T.W.; Na, U.J.; Chung, L.; Feng, M.Q. Compressive behavior of concrete cylinders confined by narrow strips of CFRP with spacing. Compos. Part B Eng. 2008, 39, 1093–1103. [Google Scholar] [CrossRef]
- Wei, H.; Wu, Z.; Guo, X.; Yi, F. Experimental study on partially deteriorated strength concrete columns confined with CFRP. Eng. Struct. 2009, 31, 2495–2505. [Google Scholar] [CrossRef]
- Campione, G.; La Mendola, L.; Monaco, A.; Valenza, A.; Fiore, V. Behavior in compression of concrete cylinders externally wrapped with basalt fibers. Compos. Part B Eng. 2015, 69, 576–586. [Google Scholar] [CrossRef]
- Pham, T.M.; Hadi, M.N.S.; Youssef, J. Optimized FRP wrapping schemes for circular concrete columns under axial compression. J. Compos. Constr. 2015, 19. [Google Scholar] [CrossRef]
- Zeng, J.J.; Guo, Y.C.; Li, L.J.; Chen, W.P. Behavior and three-dimensional finite element modeling of circular concrete columns partially wrapped with FRP strips. Polymers 2018, 10, 253. [Google Scholar] [CrossRef]
- Mai, A.D.; Sheikh, M.N.; Hadi, M.N.S. Investigation on the behaviour of partial wrapping in comparison with full wrapping of square RC columns under different loading conditions. Constr. Build. Mater. 2018, 168, 153–168. [Google Scholar] [CrossRef]
- Mai, A.D.; Sheikh, M.N.; Hadi, M.N.S. Influence of the location of CFRP strips on the behaviour of partially wrapped square reinforced concrete columns under axial compression. Structures 2018, 15, 131–137. [Google Scholar] [CrossRef]
- Wang, D.Y.; Wang, Z.Y.; Smith, S.T.; Yu, T. Size effect on axial stress-strain behavior of CFRP-confined square concrete columns. Constr. Build. Mater. 2016, 118, 116–126. [Google Scholar] [CrossRef]
- Zeng, J.J.; Guo, Y.C.; Gao, W.Y.; Li, J.Z.; Xie, J.H. Behavior of partially and fully FRP-confined circularized square columns under axial compression. Constr. Build. Mater. 2017, 152, 319–332. [Google Scholar] [CrossRef]
- Sheikh, B.P.; Uzumeri, S.M. Strength and ductility of tied concrete columns. J. Struct. Div. 1980, 106, 1079–1102. [Google Scholar]
- Mander, J.B.; Priestley, M.J.; Park, R. Theoretical stress-strain model for confined concrete. J. Struct. Eng. 1988, 114, 1804–1826. [Google Scholar] [CrossRef]
- Lam, L.; Teng, J.G. Design-oriented stress-strain model for FRP-confined concrete in rectangular columns. J. Reinf. Plast. Compos. 2003, 22, 1149–1186. [Google Scholar] [CrossRef]
- Aiello, M.A.; Ascione, L.; Baratta, A.; Bastianini, F.; Battista, U.; Benedetti, A.; Berardi, V.P.; Bilotta, A.; Borri, A.; Briccoli, B.A.T.I.; et al. Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Existing Structures; Advisory Committee on Technical Recommendations For Construction, National Research Council: Rome, Italy, 2013. [Google Scholar]
- El Fattah, A.A. New axial Stress-Strain model of square concrete columns confined with lateral steel and FRP. Compos. Struct. 2018, 202, 731–751. [Google Scholar] [CrossRef]
- Zeng, J.J.; Lv, J.F.; Lin, G.; Guo, Y.C.; Li, L.J. Compressive behavior of double-tube concrete columns with an outer square FRP tube and an inner circular high-strength steel tube. Constr. Build. Mater. 2018, 184, 668–680. [Google Scholar] [CrossRef]
- Wei, Y.Y.; Wu, Y.F. Unified stress-strain model of concrete for FRP-confined columns. Constr. Build. Mater. 2012, 26, 381–392. [Google Scholar] [CrossRef]
- Lim, J.C.; Ozbakkaloglu, T. Design model for FRP-confined normal- and high-strength concrete square and rectangular columns. Mag. Concr. Res. 2014, 66, 1020–1035. [Google Scholar] [CrossRef]
- Externally Bonded FRP Reinforcement for RC Structures; Technical Report; The International Federation for Structural Concrete: Lausanne, Switzerland, 2001.
- China Planning Press. Technical Code for Infrastructure Application of FRP Composites; China Planning Press: Beijing, China, 2010. [Google Scholar]
- ASTM. Standard Test Method for Static Modulus of Elasticity and Poisson Ratio of Concrete in Compression; ASTM: West Conshohocken, PA, USA, 2002. [Google Scholar]
- Naser, M.; Hawileh, R.; Abdalla, J.A.; Al-Tamimi, A. Bond behavior of CFRP cured laminates: Experimental and numerical investigation. J. Eng. Mater. Technol. 2012, 134. [Google Scholar] [CrossRef]
- Perrone, M.; Barros, J.A.O.; Aprile, A. CFRP-based strengthening technique to increase the flexural and energy dissipation capacities of RC columns. J. Compos. Constr. 2009, 13, 372–383. [Google Scholar] [CrossRef]
- Zeng, J.J.; Gao, W.Y.; Liu, F. Interfacial Behavior and Debonding Failures of Full-Scale CFRP-Strengthened H-Section Steel Beams. Compos. Struct. 2018, 201, 540–552. [Google Scholar] [CrossRef]
- ASTM. Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials (D3039M); ASTM: West Conshohocken, PA, USA, 2015. [Google Scholar]
- White, D.J.; Take, W.A.; Bolton, M.D. Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry. Geotechnique 2003, 53, 619–631. [Google Scholar] [CrossRef]
- Smith, S.T.; Kim, S.J.; Zhang, H.W. Behavior and effectiveness of FRP wrap in the confinement of large concrete cylinders. J. Compos. Constr. 2010, 14, 573–582. [Google Scholar] [CrossRef]
- Teng, J.G.; Xiao, Q.G.; Yu, T.; Lam, L. Three-dimensional finite element analysis of reinforced concrete columns with FRP and/or steel confinement. Eng. Struct. 2015, 97, 15–28. [Google Scholar] [CrossRef]
- Vincent, T.; Ozbakkaloglu, T. Influence of fiber orientation and specimen end condition on axial compressive behavior of FRP-confined concrete. Constr. Build. Mater. 2013, 47, 814–826. [Google Scholar] [CrossRef]
- Zeng, J.J.; Lin, G.; Teng, J.G.; Li, L.J. Behavior of large-scale FRP-confined rectangular RC columns under axial compression. Eng. Struct. 2018, 174, 629–645. [Google Scholar] [CrossRef]
- Lam, L.; Teng, J.G. Design-oriented stress-strain model for FRP-confined concrete. Constr. Build. Mater. 2003, 17, 471–489. [Google Scholar] [CrossRef]
- Bisby, L.A.; Take, W.A. Strain localizations in FRP confined concrete: New insights. Struct. Build. 2009, 162, 1–9. [Google Scholar] [CrossRef]
- American Concrete Institute. Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures; American Concrete Institute: Farmington Hills, MI, USA, 2008. [Google Scholar]
- Spoelstra, M.R.; Monti, G. FRP-confined concrete model. J. Compos. Constr. 1999, 3, 143–150. [Google Scholar] [CrossRef]
- Faustino, P.; Chastre, C.; Paula, R. Design model for square RC columns under compression confined with CFRP. Compos. Part B Eng. 2014, 57, 187–198. [Google Scholar] [CrossRef]
- Ilki, A.; Kumbasar, N.; Koc, V. Low strength concrete members externally confined with FRP sheets. Struct. Eng. Mech. 2004, 18, 167–194. [Google Scholar] [CrossRef]
- Pantelides, C.P.; Yan, Z.H. Confinement model of concrete with externally bonded FRP jackets or posttensioned FRP shells. J. Struct. Eng. 2007, 133, 1288–1296. [Google Scholar] [CrossRef]
- Cao, Y.G.; Jiang, C.; Wu, Y.F. Cross-section unification on the stress-strain model of concrete subjected to high passive confinement by fiber-reinforced polymer. Polymers 2016, 8, 186. [Google Scholar] [CrossRef]
- Zhou, Y.W.; Wu, Y.F. General model for constitutive relationships of concrete and its composite structures. Compos. Struct. 2012, 94, 580–592. [Google Scholar] [CrossRef]
- Australian Standard. Bridge Design; Council of Standards Australia: Sydney, Australia, 2017. [Google Scholar]
- Concrete Society. Design Guidance for Strengthening Concrete Structures with Fibre Composite Materials, 3rd ed.; Concrete Society Technical Report No. 55; Crowthorne: Berkshire, UK, 2012. [Google Scholar]
- Youssef, M.N.; Feng, M.Q.; Mosallam, A.S. Stress-strain Model for Concrete Confiend by FRP Composites. Compos. Part B Eng. 2007, 38, 614–628. [Google Scholar] [CrossRef]
- Wu, G.; Wu, Z.S.; Lu, Z.G. Design-oriented stress–strain model for concrete prisms confined with FRP composites. Constr. Build. Mater. 2007, 21, 1107–1121. [Google Scholar] [CrossRef]
- Pham, T.M.; Hadi, M.N.S. Stress prediction model for FRP confined rectangular concrete columns with rounded corners. J. Compos. Constr. 2014, 18. [Google Scholar] [CrossRef]
- Li, X.; Lu, J.; Ding, D.D.; Wang, W. Axial strength of FRP-confined rectangular RC columns with different cross-sectional aspect ratios. Mag. Concr. Res. 2017, 69, 1011–1026. [Google Scholar] [CrossRef]
- Ozbakkaloglu, T.; Lim, J.C. Axial compressive behavior of FRP-confined concrete: Experimental test database and a new design-oriented model. Compos. Part B Eng. 2013, 55, 607–634. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.C.; Gao, W.Y.; Zeng, J.J.; Ni, X.Y.; Peng, K.D. Compressive Behavior of FRP Ring-Confined Concrete in Circular Columns: Effects of Specimen Size and New Design-Oriented Stress-Strain Model. Constr. Build. Mater. 2019. under review. [Google Scholar]
- Teng, J.G.; Jiang, T.; Lam, L.; Luo, Y.Z. Refinement of a design-oriented stress-strain model for FRP-confined concrete. J. Compos. Constr. 2009, 13, 269–278. [Google Scholar] [CrossRef]
Group | Specimen | PIV | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R-0 | — | — | — | / | N.A. | 34.74 | 0.0027 | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | |||
F-1 | N.A. | N.A. | 0.167 | 0.33 | 0.33 | 0.00 | √ | 34.74 | 0.0027 | 37.16 | 0.0037 | 29.70 | 0.0102 | 1.07 | 3.73 | −0.0101 | 0.53 | |
I | F-2 | N.A. | N.A. | 0.334 | 0.67 | 0.67 | 0.00 | √ | 34.74 | 0.0027 | 46.12 | 0.0124 | N.A. | 0.0124 | 1.33 | 4.55 | −0.0099 | 0.52 |
F-3 | N.A. | N.A. | 0.501 | 1.00 | 1.00 | 0.00 | √ | 34.74 | 0.0027 | 62.13 | 0.0245 | N.A. | 0.0245 | 1.79 | 8.98 | −0.0136 | 0.71 | |
P-1-80-40 | 80 | 40 | 0.167 | 0.22 | 0.18 | 0.20 | √ | 34.74 | 0.0027 | 34.79 | 0.0048 | 27.59 | 0.0089 | 1.01 | 3.25 | −0.0077 | 0.40 | |
II | P-2-80-40 | 80 | 40 | 0.334 | 0.45 | 0.36 | 0.20 | √ | 34.74 | 0.0027 | 41.49 | 0.0039 | 38.26 | 0.0105 | 1.19 | 3.84 | −0.0136 | 0.71 |
P-3-80-40 | 80 | 40 | 0.501 | 0.67 | 0.54 | 0.20 | √ | 34.74 | 0.0027 | 45.92 | 0.0201 | N.A. | 0.0201 | 1.32 | 7.36 | −0.0134 | 0.70 | |
P-1-100-40 | 100 | 40 | 0.167 | 0.24 | 0.19 | 0.20 | √ | 34.74 | 0.0027 | 36.25 | 0.0041 | 30.51 | 0.0160 | 1.04 | 5.87 | −0.0161 | 0.84 | |
III | P-2-100-40 | 100 | 40 | 0.334 | 0.48 | 0.39 | 0.20 | √ | 34.74 | 0.0027 | 40.28 | 0.0040 | 38.47 | 0.0095 | 1.16 | 3.46 | −0.0124 | 0.65 |
P-3-100-40 | 100 | 40 | 0.501 | 0.72 | 0.58 | 0.20 | √ | 34.74 | 0.0027 | 46.02 | 0.0210 | N.A. | 0.0210 | 1.32 | 7.68 | −0.0147 | 0.77 | |
P-1-120-40 | 120 | 40 | 0.167 | 0.25 | 0.20 | 0.20 | √ | 34.74 | 0.0027 | 37.06 | 0.0033 | 32.42 | 0.0082 | 1.07 | 3.00 | −0.0110 | 0.58 | |
IV | P-2-120-40 | 120 | 40 | 0.334 | 0.50 | 0.41 | 0.20 | √ | 34.74 | 0.0027 | 38.87 | 0.0056 | 38.37 | 0.0254 | 1.12 | 9.28 | −0.0151 | 0.79 |
P-3-120-40 | 120 | 40 | 0.501 | 0.75 | 0.61 | 0.20 | √ | 34.74 | 0.0027 | 47.53 | 0.0226 | N.A. | 0.0226 | 1.37 | 8.27 | −0.0161 | 0.84 | |
V | P-3-40-20 | 40 | 20 | 0.501 | 0.67 | 0.60 | 0.10 | √ | 34.74 | 0.0027 | 47.63 | 0.0154 | N.A. | 0.0154 | 1.37 | 5.64 | −0.0127 | 0.66 |
P-3-120-60 | 120 | 60 | 0.501 | 0.67 | 0.48 | 0.30 | √ | 34.74 | 0.0027 | 46.92 | 0.0057 | 44.10 | 0.0185 | 1.35 | 6.77 | −0.0138 | 0.72 | |
P-3-30-20 | 29.8 | 20 | 0.501 | 0.60 | 0.54 | 0.10 | √ | 34.74 | 0.0027 | 44.91 | 0.0128 | N.A. | 0.0128 | 1.29 | 4.68 | −0.0123 | 0.64 | |
P-3-178-60 | 177.5 | 60 | 0.501 | 0.75 | 0.54 | 0.30 | √ | 34.74 | 0.0027 | 46.52 | 0.0038 | 44.41 | 0.0217 | 1.34 | 7.94 | −0.0121 | 0.63 |
Cement (kg) | Fine aggregate (kg) | Coarse aggregate (kg) | Water (kg) | Sand ratio (%) |
---|---|---|---|---|
315.4 | 714.3 | 1165.4 | 205.0 | 38.0 |
Specimen | Tensile strength (MPa) | Ultimate strain (%) | Modulus of elasticity (GPa) | |||
---|---|---|---|---|---|---|
Average | Average | Average | ||||
C-1 | 4222.7 | 4308.6 | 1.85 | 1.91 | 226.3 | 227.3 |
C-2 | 4275.4 | 1.85 | 235.2 | |||
C-3 | 4419.5 | 1.98 | 217.2 | |||
C-4 | 4222.7 | 1.90 | 222.9 | |||
C-5 | 4402.4 | 1.97 | 235.0 |
Model | Ultimate Condition | Transition Point | Shape Factor | Diameter of Equivalent Circular Column | FRP Strain Efficiency Factor |
---|---|---|---|---|---|
Lam and Teng, 2003 [29] | Determined by the smooth connection condition | , | Obtained from accompanying compression tests of FRP-confined circular columns | ||
Wei and Wu, 2012 [33] | |||||
Cao et al., 2016 [54] | |||||
Guo et al., 2019 [63] | Determined by the smooth connection condition | , | Obtained from accompanying compression tests of FRP-confined circular columns |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.-C.; Xiao, S.-H.; Luo, J.-W.; Ye, Y.-Y.; Zeng, J.-J. Confined Concrete in Fiber-Reinforced Polymer Partially Wrapped Square Columns: Axial Compressive Behavior and Strain Distributions by a Particle Image Velocimetry Sensing Technique. Sensors 2018, 18, 4118. https://doi.org/10.3390/s18124118
Guo Y-C, Xiao S-H, Luo J-W, Ye Y-Y, Zeng J-J. Confined Concrete in Fiber-Reinforced Polymer Partially Wrapped Square Columns: Axial Compressive Behavior and Strain Distributions by a Particle Image Velocimetry Sensing Technique. Sensors. 2018; 18(12):4118. https://doi.org/10.3390/s18124118
Chicago/Turabian StyleGuo, Yong-Chang, Shu-Hua Xiao, Jun-Wei Luo, Yu-Yi Ye, and Jun-Jie Zeng. 2018. "Confined Concrete in Fiber-Reinforced Polymer Partially Wrapped Square Columns: Axial Compressive Behavior and Strain Distributions by a Particle Image Velocimetry Sensing Technique" Sensors 18, no. 12: 4118. https://doi.org/10.3390/s18124118
APA StyleGuo, Y.-C., Xiao, S.-H., Luo, J.-W., Ye, Y.-Y., & Zeng, J.-J. (2018). Confined Concrete in Fiber-Reinforced Polymer Partially Wrapped Square Columns: Axial Compressive Behavior and Strain Distributions by a Particle Image Velocimetry Sensing Technique. Sensors, 18(12), 4118. https://doi.org/10.3390/s18124118