Ship Segmentation in SAR Images by Improved Nonlocal Active Contour Model †
Abstract
:1. Introduction
- We introduce the ratio distance, similar to that proposed in [21], into the framework of the nonlocal ACM and apply the improved nonlocal ACM to SAR images. Probability density functions are utilized in nonlocal energy computation, and a prior distribution is not demanded; hence, the proposed model is an unsupervised segmentation method.
- To deal with the large computational cost caused by nonlocal comparisons between patches, we use the integral histogram of a grey image in the patch dissimilarity calculation and accelerate the convergence. In this way, the probability density function of a local patch can be conveniently calculated, with no need to traverse each pixel.
- The influence of parameters and on segmentation is analyzed. The robust ranges are recommended by means of experiments.
2. The Proposed Method
2.1. Nonlocal Active Contour Model
2.2. Patch Comparison in SAR Images
2.3. Acceleration by the Integral Histogram
2.4. Numerical Implementation
- Initialization: , .
- Repeat until :
- Computing the integral histogram of the image f.
- Computing the probability density functions of the image and each patch by the integral histogram.
- Computing the patch dissimilarities by the distribution metric of the ratio distance.
- Update with , according to (11).
- End
2.5. Computational Complexity
3. Experimental Results and Analysis
3.1. Segmentation of SAR Images
3.2. Segmentation of Target Chips
3.3. Discussion of Parameters
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ao, W.; Xu, F.; Li, Y.; Wang, H. Detection and Discrimination of Ship Targets in Complex Background from Spaceborne ALOS-2 SAR Images. IEEE J-STARS 2018, 11, 536–550. [Google Scholar] [CrossRef]
- Margarit, G.; TabascoShip, A. Classification in Single-Pol SAR Images Based on Fuzzy Logic. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3129–3138. [Google Scholar] [CrossRef]
- Huang, Y.; Pei, J.; Yang, J.; Wang, B.; Liu, X. Neighborhood Geometric Center Scaling Embedding for SAR ATR. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 180–192. [Google Scholar] [CrossRef]
- Gao, G. Statistical modeling of SAR images: A survey. Sensors 2010, 10, 775–795. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.; Ouyang, K.; Luo, Y.; Liang, S.; Zhou, S. Scheme of parameter estimation for generalized gamma distribution and its application to ship detection in SAR image. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1812–1832. [Google Scholar] [CrossRef]
- Wang, C.; Jiang, S.; Zhang, H.; Wu, F.; Zhang, B. Ship detection for high-resolution SAR images Based on feature analysis. IEEE Geosci. Remote Sens. Lett. 2014, 11, 119–123. [Google Scholar] [CrossRef]
- Kass, M.; Witkin, A.; Terzopoulos, D. Snake: Active contour models. Int. J. Comput. Vis. 1987, 1, 321–332. [Google Scholar] [CrossRef]
- Caselles, V.; Kimmel, R.; Sapiro, G. Geodesic active contours. Int. J. Comput. Vis. 1997, 22, 61–79. [Google Scholar] [CrossRef]
- Chan, T.F.; Vese, L.A. Active contours without edges. IEEE Trans. Image Process. 2001, 10, 266–277. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Kao, C.; Gore, J.C. Minimization of region-scalable fitting energy for image segmentation. IEEE Trans. Image Process. 2008, 17, 1940–1949. [Google Scholar]
- Wang, L.; Li, C.; Sun, Q.; Xia, D.; Kao, C. Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation. Comput. Med. Imaging Gr. 2009, 33, 520–531. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; He, L.; Mishra, A.; Li, C. Active contours driven by local Gaussian distribution fitting energy. Signal Process. 2009, 89, 2435–2447. [Google Scholar] [CrossRef]
- Thieu, Q.; Luong, M.; Rocchisani, J.; Sirakov, N.M.; Viennet, E. Efficient segmentation with the convex local-global fuzzy Gaussian distribution active contour for medical applications. Ann. Math. Artif. Intell. 2015, 75, 249–266. [Google Scholar] [CrossRef]
- Lankton, S.; Nain, D.; Yezzi, A.; Tannenbaum, A. Hybrid geodesic region-based curve evolutions for image segmentation. Proc. SPIE 2007, 6510, 2–10. [Google Scholar]
- Zhang, K.; Zhang, L.; Song, H.; Zhou, W. Active contours with selective local or global segmentation: A new formulation and level set method. Image Vis. Comput. 2010, 28, 668–676. [Google Scholar] [CrossRef]
- Malladi, R.; Sethian, J.A.; Vemuri, B.C. Shape Modeling with Front Propagation: A Level Set Approach. IEEE Trans. Pattern Anal. Mach. Intell. 1995, 17, 158–175. [Google Scholar] [CrossRef]
- Shuai, Y.; Sun, H.; Xu, G. SAR image segmentation based on level set with stationary global minimum. IEEE Geosci. Remote Sens. Lett. 2008, 5, 644–648. [Google Scholar] [CrossRef]
- Feng, J.; Cao, Z.; Pi, Y. Multiphase SAR image segmentation with G0 -statistical-model-based active contours. IEEE Trans. Geosci. Remote Sens. 2013, 7, 4190–4199. [Google Scholar] [CrossRef]
- Ayed, I.; Hennane, N.; Mitiche, A. Unsupervised variational image segmentation/classification using a Weibull observation model. IEEE Trans. Image Process. 2006, 15, 3431–3439. [Google Scholar] [CrossRef]
- Chan, T.F.; Esedoglu, S.; Nikolova, M. Algorithms for finding global minimizes of image segmentation and denoising models. SIAM J. Appl. Math. 2006, 966, 1632–1648. [Google Scholar] [CrossRef]
- Tu, S.; Su, Y.; Li, Y. Convex active contour model for target detection in synthetic aperture radar images. J. Appl. Remote Sens. 2015, 9, 1–24. [Google Scholar] [CrossRef]
- Buades, A.; Coll, B.; Morel, J.M. A review of image denoising algorithms, with a new one. Siam J. Multiscale Model. Simul. 2005, 4, 490–530. [Google Scholar] [CrossRef]
- Kindermann, S.; Osher, S.; Jones, P.W. Deblurring and denoising of images by nonlocal functionals. Siam J. Multiscale Model. Simul. 2005, 4, 1091–1115. [Google Scholar] [CrossRef]
- Peyre, G.; Bougleux, S.; Cohen, L. Non-local regularization of inverse problems. Inverse Probl. Imaging 2011, 5, 511–530. [Google Scholar] [Green Version]
- Jung, M.; Peyre, G.; Cohen, L.D. Non-local active contours. SIAM J. Imaging Sci. 2012, 5, 1022–1054. [Google Scholar] [CrossRef]
- Deledalle, C.A.; Denis, L.; Tupin, F. Iterative weighted maximum likelihood denoising with probabilistic patch-based weights. IEEE Trans. Image Process. 2009, 18, 2661–2672. [Google Scholar] [CrossRef] [PubMed]
- Porikli, F. Integral histogram: A fast way to extract histograms in Cartesian spaces. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2005, 1, 829–836. [Google Scholar]
- Grandhomme, J. Statistical Analysis of a High-Resolution Sea-Clutter Database. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2024–2037. [Google Scholar]
- Mikic, I.; Krucinski, S.; Thomas, J. Segmentation and tracking in echocardiographic sequences: Active contours guided by optical flow estimates. IEEE Trans. Med. Imaging 1998, 17, 274–284. [Google Scholar] [CrossRef] [PubMed]
- Ayed, I.; Chen, H.; Punithakumar, K.; Ross, I.; Li, S. Max-flow segmentation of the left ventricle by recovering subject-specific distributions via a bound of the Bhattacharyya measure. Med. Image Anal. 2012, 16, 87–100. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Xiong, B.; Dong, G.; Kuang, G. Ship Segmentation in SAR Images by Improved Nonlocal Active Contour Model. Sensors 2018, 18, 4220. https://doi.org/10.3390/s18124220
Zhang X, Xiong B, Dong G, Kuang G. Ship Segmentation in SAR Images by Improved Nonlocal Active Contour Model. Sensors. 2018; 18(12):4220. https://doi.org/10.3390/s18124220
Chicago/Turabian StyleZhang, Xiaoqiang, Boli Xiong, Ganggang Dong, and Gangyao Kuang. 2018. "Ship Segmentation in SAR Images by Improved Nonlocal Active Contour Model" Sensors 18, no. 12: 4220. https://doi.org/10.3390/s18124220
APA StyleZhang, X., Xiong, B., Dong, G., & Kuang, G. (2018). Ship Segmentation in SAR Images by Improved Nonlocal Active Contour Model. Sensors, 18(12), 4220. https://doi.org/10.3390/s18124220