Remote Sensing Assessment of Safety Risk of Iron Tailings Pond Based on Runoff Coefficient
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Used
2.3. Retrieval of Influencing Factors of Runoff Coefficient Using Remote Sensing
2.3.1. Fractional Vegetation Coverage (FVC)
2.3.2. Vegetation Types
2.3.3. Slope
2.4. Calculation of Runoff Coefficient Based on AHP Model
2.5. Extraction of Catchment Area of Tailings Pond and Risk Assessing
3. Results
3.1. Runoff Coefficient Calculated Based on Three Factors
3.2. Risk Analysis of Tailings Ponds
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Corder, G.D.; McLellan, B.C.; Green, S. Incorporating sustainable development principles into minerals processing design and operation: SUSOP®. Miner. Eng. 2010, 23, 175–181. [Google Scholar] [CrossRef]
- Norgate, T.; Jahanshahi, S. Low grade ores—Smelt, leach or concentrate? Miner. Eng. 2010, 23, 65–73. [Google Scholar] [CrossRef]
- Martínez-Martínez, S.; Acosta, J.A.; Cano, A.F.; Carmona, D.M.; Zornoza, R.; Cerda, C. Assessment of the lead and zinc contents in natural soils and tailing ponds from the Cartagena-La Unión mining district, SE Spain. J. Geochem. Explor. 2013, 124, 166–175. [Google Scholar] [CrossRef]
- He, X.; Zheng, C.; Sui, X.; Jing, Q.; Wu, X.; Wang, J.; Si, W.; Zhang, X. Biological damage to Sprague-Dawley rats by excessive anions contaminated groundwater from rare earth metals tailings pond seepage. J. Clean. Prod. 2018, 185, 523–532. [Google Scholar] [CrossRef]
- Ma, B.; Pu, R.; Wu, L.; Zhang, S. Vegetation Index Differencing for Estimating Foliar Dust in an Ultra-Low-Grade Magnetite Mining Area Using Landsat Imagery. IEEE Access 2017, 5, 8825–8834. [Google Scholar] [CrossRef]
- Wang, T.; Hou, K.; Guo, Z.; Zhang, C. Application of analytic hierarchy process to tailings pond safety operation analysis. Rock Soil Mech. 2008, 29, 680–686. (In Chinese) [Google Scholar]
- Li, Q.; Tian, W.; Wang, Y. Study on displacement analysis methods of tailing ponds on-line monitoring system. J. Saf. Sci. Technol. 2011, 7, 47–52. (In Chinese) [Google Scholar]
- Li, Q.-M.; Yuan, H.-N.; Zhong, M.-H. Safety assessment of waste rock dump built on existing tailings ponds. J. Cent. South Univ. 2015, 22, 2707–2718. [Google Scholar] [CrossRef]
- Jin, J.X.; Song, C.G.; Liang, B.; Chen, Y.J.; Su, M.L. Dynamic characteristics of tailings reservoir under seismic load. Environ. Earth Sci. 2018, 77, 11. [Google Scholar] [CrossRef]
- Li, X.; Zhao, J. Dam-break of mixtures consisting of non-Newtonian liquids and granular particles. Powder Technol. 2018, 338, 493–505. [Google Scholar] [CrossRef]
- Arnaud, P.; Bouvier, C.; Cisneros, L.; Dominguez, R. Influence of rainfall spatial variability on flood prediction. J. Hydrol. 2002, 260, 216–230. [Google Scholar] [CrossRef]
- Lemma, T.M.; Gessesse, G.D.; Kassa, A.K.; Edossa, D.C. Effect of spatial scale on runoff coefficient: Evidence from the Ethiopian highlands. Int. Soil Water Conserv. Res. 2018, 6, 289–296. [Google Scholar] [CrossRef]
- Mosquera, G.M.; Lazo, P.X.; Célleri, R.; Wilcox, B.P.; Crespo, P. Runoff from tropical alpine grasslands increases with areal extent of wetlands. CATENA 2015, 125, 120–128. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Mena, M.; Albaladejo, J.; Castillo, V.M. Factors influencing surface runoff generation in a Mediterranean semi-arid environment: Chicamo watershed, SE Spain. Hydrol. Process. 1998, 12, 741–754. [Google Scholar] [CrossRef]
- Fassman-Beck, E.; Hunt, W.; Berghage, R.; Carpenter, D.; Kurtz, T.; Stovin, V.; Wadzuk, B. Curve Number and Runoff Coefficients for Extensive Living Roofs. J. Hydrol. Eng. 2016, 21, 04015073. [Google Scholar] [CrossRef]
- Sen, Z.; Altunkaynak, A. A comparative fuzzy logic approach to runoff coefficient and runoff estimation. Hydrol. Process. 2006, 20, 1993–2009. [Google Scholar] [CrossRef]
- Al-Hasan, A.A.S.; Mattar, Y.E.-S. Mean runoff coefficient estimation for ungauged streams in the Kingdom of Saudi Arabia. Arab. J. Geosci. 2014, 7, 2019–2029. [Google Scholar] [CrossRef]
- Ghiglieri, G.; Carletti, A.; Pittalis, D. Runoff coefficient and average yearly natural aquifer recharge assessment by physiography-based indirect methods for the island of Sardinia (Italy) and its NW area (Nurra). J. Hydrol. 2014, 519, 1779–1791. [Google Scholar] [CrossRef]
- Ghodsypour, S.H.; O’Brien, C. A decision support system for supplier selection using an integrated analytic hierarchy process and linear programming. Int. J. Prod. Econ. 1998, 56–57, 199–212. [Google Scholar] [CrossRef]
- Ishizaka, A.; Labib, A. Review of the main developments in the analytic hierarchy process. Expert Syst. Appl. 2011, 38, 14336–14345. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Moradi, H.R.; Aghda, S.M.F. Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances. Nat. Hazards 2013, 69, 749–779. [Google Scholar] [CrossRef]
- Raviv, G.; Shapira, A.; Fishbain, B. AHP-based analysis of the risk potential of safety incidents: Case study of cranes in the construction industry. Saf. Sci. 2017, 91, 298–309. [Google Scholar] [CrossRef]
- Mojaddadi, H.; Pradhan, B.; Nampak, H.; Ahmad, N.; bin Ghazali, A.H. Ensemble machine-learning-based geospatial approach for flood risk assessment using multi-sensor remote-sensing data and GIS. Geomat. Nat. Hazards Risk 2017, 8, 1080–1102. [Google Scholar] [CrossRef]
- Kaab, A. Combination of SRTM3 and repeat ASTER data for deriving alpine glacier flow velocities in the Bhutan Himalaya. Remote Sens. Environ. 2005, 94, 463–474. [Google Scholar] [CrossRef]
- Ferrier, G. Application of Imaging Spectrometer Data in Identifying Environmental Pollution Caused by Mining at Rodaquilar, Spain. Remote Sens. Environ. 1999, 68, 125–137. [Google Scholar]
- John C, M.; James K, C. Mapping mine wastes and analyzing areas affected by selenium-rich water runoff in southeast Idaho using AVIRIS imagery and digital elevation data. Remote Sens. Environ. 2003, 84, 422–436. [Google Scholar]
- Liang, Y. Study on the Factors of Rainfall-Runoff Coefficient. Master’s Thesis, Hunan University, Changsha, China, 2014. (In Chinese). [Google Scholar]
- Qiao, G.; Cheng, S. Experimental Study on Influence of Watershed Vegetation on Runoff. J. China Hydrol. 2011, 31, 50–54. (In Chinese) [Google Scholar]
- Zhou, Z.C.; Shangguan, Z.P.; Zhao, D. Modeling vegetation coverage and soil erosion in the Loess Plateau Area of China. Ecol. Model. 2006, 198, 263–268. [Google Scholar] [CrossRef]
- Evans, J.; Geerken, R. Classifying rangeland vegetation type and coverage using a Fourier component based similarity measure. Remote Sens. Environ. 2006, 105, 1–8. [Google Scholar] [CrossRef]
- Zhang, X.; Cao, W.; Yu, X.; Wu, S. Effect of LUCC on runoff regulation in watershed in loess gullied-hilly region of China. Shuili Xuebao 2011, 40, 641–650. (In Chinese) [Google Scholar]
- Gutman, G.; Ignatov, A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sens. 1998, 19, 1533–1543. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; Zema, D.A.; Hinojosa Guzman, M.D.; Yang, Y.; Hernández, A.C.; Xiangzhou, X.; Carrà, B.G.; Nichols, M.; Cerdá, A. Exploring the influence of vegetation cover, sediment storage capacity and channel dimensions on stone check dam conditions and effectiveness in a large regulated river in México. Ecol. Eng. 2018, 122, 39–47. [Google Scholar] [CrossRef]
- Houthuys, L.; Langone, R.; Suykens, J.A.K. Multi-View Least Squares Support Vector Machines Classification. Neurocomputing 2018, 282, 78–88. [Google Scholar] [CrossRef]
- Wang, L.; Dalabay, N.; Lu, P.; Wu, F. Effects of tillage practices and slope on runoff and erosion of soil from the Loess Plateau, China, subjected to simulated rainfall. Soil Tillage Res. 2017, 166, 147–156. [Google Scholar] [CrossRef]
- Mentes, G. Investigation of Dynamic and Kinematic Landslide Processes by Borehole Tiltmeters and Extensometers. Procedia Earth Planetary Sci. 2015, 15, 421–427. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimi, H.; Sadeghi, M.; Amanpour, F.; Vahedi, H. Evaluation of empowerment model on indicators of metabolic control in patients with type 2 diabetes, a randomized clinical trial study. Prim Care Diabetes 2016, 10, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Oliva, G.; Setola, R.; Scala, A. Sparse and distributed Analytic Hierarchy Process. Automatica 2017, 85, 211–220. [Google Scholar] [CrossRef]
- Cao, W.; Omran, B.A.; Lei, Y.; Zhao, X.; Yang, X.; Chen, Q.; Tian, G. Studying early stage slope protection effects of vegetation communities for Xinnan Highway in China. Ecol. Eng. 2018, 110, 87–98. [Google Scholar] [CrossRef]
- Yan, Y.; Dai, Q.; Yuan, Y.; Peng, X.; Zhao, L.; Yang, J. Effects of rainfall intensity on runoff and sediment yields on bare slopes in a karst area, SW China. Geoderma 2018, 330, 30–40. [Google Scholar] [CrossRef]
- Norbiato, D.; Borga, M.; Merz, R.; Blöschl, G.; Carton, A. Controls on event runoff coefficients in the eastern Italian Alps. J. Hydrol. 2009, 375, 312–325. [Google Scholar] [CrossRef]
- Case, B.S.; Meng, F.R.; Arp, P.A. Digital elevation modelling of soil type and drainage within small forested catchments. Can. J. Soil Sci. 2005, 85, 127–137. [Google Scholar] [CrossRef] [Green Version]
- Sriwongsitanon, N.; Taesombat, W. Effects of land cover on runoff coefficient. J. Hydrol. 2011, 410, 226–238. [Google Scholar] [CrossRef]
- Liu, X.; Liu, C.; Yang, S.; Jin, S.; Gao, Y.; Gao, Y. Influences of shrubs-herbs-arbor vegetation coverage on the runoff based on the remote sensing data in Loess Plateau. Acta Geogr. Sin. 2014, 69, 9. [Google Scholar]
- Cerdan, O.; Le Bissonnais, Y.; Govers, G.; Lecomte, V.; van Oost, K.; Couturier, A.; King, C.; Dubreuil, N. Scale effect on runoff from experimental plots to catchments in agricultural areas in Normandy. J. Hydrol. 2004, 299, 4–14. [Google Scholar] [CrossRef]
- Ma, B.; Liang, S.; Liang, C.; Li, Y.J. Experimental Research on an Improved Slope Protection Structure in the Plunge Pool of a High Dam. Water 2017, 9, 671. [Google Scholar] [CrossRef]
- Kossoff, D.; Dubbin, W.E.; Alfredsson, M.; Edwards, S.J.; Macklin, M.G.; Hudson-Edwards, K.A. Mine tailings dams: Characteristics, failure, environmental impacts, and remediation. Appl. Geochem. 2014, 51, 229–245. [Google Scholar] [CrossRef]
- Di, B.F.; Stamatopoulos, C.A.; Dandoulaki, M.; Stavrogiannopoulou, E.; Zhang, M.; Bampina, P. A method predicting the earthquake-induced landslide risk by back analyses of past landslides and its application in the region of the Wenchuan 12/5/2008 earthquake. Nat. Hazards 2017, 85, 903–927. [Google Scholar] [CrossRef]
- Crosta, G.B.; Imposimato, S.; Roddeman, D.G. Numerical modelling of large landslides stability and runout. Nat. Hazards Earth Syst. Sci. 2003, 3, 523–538. [Google Scholar] [CrossRef] [Green Version]
- McDougall, S.; Hungr, O. A model for the analysis of rapid landslide motion across three-dimensional terrain. Can. Geotech. J. 2004, 41, 1084–1097. [Google Scholar] [CrossRef]
- Pastor, M.; Haddad, B.; Sorbino, G.; Cuomo, S.; Drempetic, V. A depth-integrated, coupled SPH model for flow-like landslides and related phenomena. Int. J. Numer. Anal. Methods Geomech. 2009, 33, 143–172. [Google Scholar] [CrossRef]
- Stamatopoulos, C.A.; Di, B.F. Analytical and approximate expressions predicting post-failure landslide displacement using the multi-block model and energy methods. Landslides 2015, 12, 1207–1213. [Google Scholar] [CrossRef]
Level | Slope | FVC | Vegetation Types |
---|---|---|---|
First level | 0.02 | 0.16 | 0.27 |
Second level | 0.14 | 0.08 | 0.19 |
Third level | 0.24 | 0.04 | 0.04 |
Tailings Pond Number | Runoff Coefficient | Catchment Area/km2 | Risk Index |
---|---|---|---|
1 | 0.156 | 9.360 | 1.460 |
2 | 0.147 | 5.184 | 0.762 |
3 | 0.120 | 5.598 | 0.672 |
4 | 0.142 | 4.086 | 0.580 |
5 | 0.129 | 12.744 | 1.644 |
… | … | … | … |
142 | 0.141 | 7.263 | 1.024 |
143 | 0.118 | 2.133 | 0.252 |
144 | 0.163 | 5.985 | 0.976 |
Quantity of Tailings Ponds | Risk Assessment |
---|---|
124 | Low-risk zone |
16 | Moderate-risk zone |
4 | High-risk zone |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Che, D.; Liang, A.; Li, X.; Ma, B. Remote Sensing Assessment of Safety Risk of Iron Tailings Pond Based on Runoff Coefficient. Sensors 2018, 18, 4373. https://doi.org/10.3390/s18124373
Che D, Liang A, Li X, Ma B. Remote Sensing Assessment of Safety Risk of Iron Tailings Pond Based on Runoff Coefficient. Sensors. 2018; 18(12):4373. https://doi.org/10.3390/s18124373
Chicago/Turabian StyleChe, Defu, Aiman Liang, Xuexin Li, and Baodong Ma. 2018. "Remote Sensing Assessment of Safety Risk of Iron Tailings Pond Based on Runoff Coefficient" Sensors 18, no. 12: 4373. https://doi.org/10.3390/s18124373
APA StyleChe, D., Liang, A., Li, X., & Ma, B. (2018). Remote Sensing Assessment of Safety Risk of Iron Tailings Pond Based on Runoff Coefficient. Sensors, 18(12), 4373. https://doi.org/10.3390/s18124373