Wearable Intrinsically Soft, Stretchable, Flexible Devices for Memories and Computing
Abstract
:1. Introduction
2. Flexible RSDs for WMC
3. Biobased/Biocompatible RSDs for WMC
4. Stretchable RSDs
5. Threaded RSDs
6. Towards Wearable RSDs
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Stoppa, M.; Chiolerio, A. Wearable Electronics and Smart Textiles: A Critical Review. Sensors 2014, 14, 11957–11992. [Google Scholar] [CrossRef] [PubMed]
- Cheng, T.; Zhang, Y.; Lai, W.Y.; Huang, W. Stretchable thin-film electrodes for flexible electronics with high deformability and stretchability. Adv. Mater. 2015, 27, 3349–3376. [Google Scholar] [CrossRef] [PubMed]
- Chiolerio, A.; Chiappalone, M.; Ariano, P.; Bocchini, S. Coupling resistive switching devices with neurons: State of the art and perspectives. Front. Neurosci. 2017, 11. [Google Scholar] [CrossRef] [PubMed]
- Carey, T.; Cacovich, S.; Divitini, G.; Ren, J.; Mansouri, A.; Kim, J.; Wang, C.; Ducati, C.; Sordan, R.; Torrisi, F. Fully inkjet-printed two-dimensional material field effect heterojunctions for wearable and textile electronics. Nat. Commun. 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Zeumault, A.; Ma, S.; Holbery, J. Fully inkjet-printed metal-oxide thin-film transistors on plastic. Phys. Status Solidi A 2016, 213, 2189–2195. [Google Scholar] [CrossRef]
- Sharma, B.K.; Ahn, J.H. Flexible and Stretchable Oxide Electronics. Adv. Electron. Mater. 2016, 2. [Google Scholar] [CrossRef]
- Jin, H.; Matsuhisa, N.; Lee, S.; Abbas, M.; Yokota, T.; Someya, T. Enhancing the performance of stretchable conductors for e-textiles by controlled ink permeation. Adv. Mater. 2017, 29. [Google Scholar] [CrossRef] [PubMed]
- Ryan, J.D.; Mengistie, D.A.; Gabrielsson, R.; Lund, L.; Müller, C. Machine-washable pedot: Pss dyed silk yarns for electronic textiles. ACS Appl. Mater. Interfaces 2017, 9, 9045–9050. [Google Scholar] [CrossRef] [PubMed]
- Merkel, C.; Kudithipudi, D. Neuromemristive systems: A circuit design perspective. In Advances in Neuromorphic Hardware Exploiting Emerging Nanoscale Devices; Suri, M., Ed.; Springer: New Delhi, India, 2017. [Google Scholar]
- Chua, L. Memristor, the missing circuit element. IEEE Trans. Circ. Theory 1971, 18, 507–519. [Google Scholar] [CrossRef]
- Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The missing memristor found. Nature 2008, 453, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Kozma, R.; Pino, R.E.; Pazienza, G.E. Are memristors the future of ai? In Advances in Neuromorphic Memristor Science and Applications; Kozma, R., Pino, R., Pazienza, G., Eds.; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Qian, K.; Nguyen, V.C.; Chen, T.; Lee, P.S. Novel concepts in functional resistive switching memories. J. Mater. Chem. C 2016, 4, 9637–9645. [Google Scholar] [CrossRef]
- Yang, Y.C.; Chen, C.; Zeng, F.; Pan, F. Multilevel resistance switching in Cu/TaOx/Pt structures induced by a coupled mechanism. J. Appl. Phys. 2010, 107, 093701. [Google Scholar] [CrossRef]
- Liu, M.; Abid, Z.; Wang, W.; He, X.L.; Liu, Q.; Guan, W.H. Multilevel resistive switching with ionic and metallic filaments. Appl. Phys. Lett. 2009, 94, 233106. [Google Scholar] [CrossRef]
- Pan, F.; Chen, C.; Wang, Z.S.; Yang, Y.C.; Yang, J.; Zeng, F. Nonvolatile resistive switching memories-characteristics, mechanisms and challenges. Prog. Natl. Acad. Sci. 2010, 20, 1–15. [Google Scholar] [CrossRef]
- Waser, R.; Aono, M. Nanoionics-based resistive switching memories. Nat. Mater. 2007, 6, 833–840. [Google Scholar] [CrossRef] [PubMed]
- Gale, E. TiO2-based memristors and reram: Materials, mechanisms and models (a review). Semicond. Sci. Technol. 2014, 29, 104004. [Google Scholar] [CrossRef]
- Kuang, Y.; Huang, R.; Tang, Y.; Ding, W.; Zhang, L.; Wang, Y. Flexible single component polymer resistive memory for ultrafast and highly compatible nonvolatile memory applications. IEEE Electron. Device Lett. 2010, 31, 758–760. [Google Scholar] [CrossRef]
- Lu, W.; Kim, K.H.; Chang, T.; Gaba, S. Two terminal resistive switches for memory and logic applications. In Proceedings of the 16th Asia and South Pacific Design Automation Conference, Yokohama, Japan, 25–28 January 2011. [Google Scholar]
- Xia, Q.; Robinett, W.; Cumbie, M.W.; Banerjee, N.; Cardinali, T.J.; Yang, J.J.; Wu, W.; Li, X.; Tong, W.M.; Strukov, D.B.; et al. Memristor-CMOS hybrid integrated circuits for reconfigurable logic. Nano Lett. 2009, 9, 3640–3645. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Gaba, S.; Wheeler, D.; Albrecht, J.M.C.; Hussain, T.; Srinivasa, N.; Lu, W. A functional hybrid memristor crossbar-array/CMOS sustem for data storage and neuromorphic applications. Nano Lett. 2012, 12, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Elshamy, M.; Mostafa, H.; Ghallab, Y.H.; Said, M.S. A novel non-destructive read/Write circuit for memristor-based memory arrays. IEEE Trans. VLSI Syst. 2015, 23, 2548–2656. [Google Scholar] [CrossRef]
- Ho, Y.; Huang, G.M.; Li, P. Nonvolatile memristor memory: Device characterestics and design implications. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design Digest of Technical Papers, San Jose, CA, USA, 2–5 November 2009. [Google Scholar]
- Nawrocki, R.A.; Voyles, R.M.; Shaheen, S.E. Advances in neuromorphic memristor science and applications springer series in cognitive and neural systems. In Series in Cognitive and Neural Systems; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Mohammad, B.; Jaoude, M.A.; Kumar, V.; Homouz, D.M.; NAhla, H.A.; Qutayri, M.; Christoforou, N. State of the art of metal oxide memristive devices. Nanotechnol. Rev. 2015, 5. [Google Scholar] [CrossRef]
- Hamdioui, S.; Xie, L.; Nguyen, H.A.; Taouil, M.; Bertels, K.; Corporaal, H.; Jiao, H.; Catthoor, F.; Wouters, D.; Eike, L.; et al. Memristor based computation in memory architecture for data intensive applications. In Proceedings of the 2015 design, Automation and Test in Europe conference and Exhibition, Grenoble, France, 9–13 March 2015. [Google Scholar]
- Wang, Z.; Joshi, S.; Savelev, S.E.; Jiang, H.; Midya, R.; Lin, P.; Hu, M.; Ge, N.; Strachan, J.P.; Li, Z.; et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 2017, 16, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S.; Amin, A.; Alexander, K.; Rajendran, B.; Jha, R. Novel synaptic memory device for neuromorphic computing. Sci. Rep. 2014, 4. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhong, Y.; Xu, L.; Zhang, J.; Xu, X.; Sun, H.; Miao, X. Ultrafast synaptic events in a chalcogenide memristors. Sci. Rep. 2013, 3. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.P.; Bennett, C.H.; Cabaret, T.; Vodenicarevic, D.; Chabi, D.; Querlioz, D.; Jousselme, B.; Derycke, V.; Lkein, J.O. Physical realization of a supervised learning system built with organic memristive synapses. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sungho, K.; ShinHyun, C.; Wei, L. Comprehensive physical model of dynamic resistive switching in an oxide memristor. ACS Nano 2014, 8, 2369–2376. [Google Scholar]
- Wang, Z.; Wang, L.; Nagai, M.; Xie, L.; Yi, M.; Huang, W. Nanoionics-enabled memristive devices: Strategies and materials for neuromorphic applications. Adv. Electr. Mater. 2017, 3. [Google Scholar] [CrossRef]
- Stoica, A.; Dente, E.; Iwashita, Y.; Chiolerio, A. UAVs you can’t see or hear—A survey of key technologies. In Proceedings of the Sixth International Conferenceon Emerging Security Technologies (EST), Braunschweig, Germany, 3–5 September 2015. [Google Scholar]
- Stoppa, M.; Chiolerio, A. Testing and evaluation of wearable electronic textiles and assessment thereof. In Performance Testing of Textiles—Methods, Technology and Applications; Wang, L., Ed.; Woodhead Publishing and the Textile Institute: Kidlington, UK, 2016. [Google Scholar]
- Firman Mangasa, S.; Debashis, P.; Kung-Hwa, W.; Tseung-Yuen, T. Status and prospects of ZnO-based resistive switching memory devices. Nanoscale Res. Lett. 2016, 11, 368. [Google Scholar] [CrossRef]
- Rajan, K.; Roppolo, I.; Chiappone, A.; Bocchini, S.; Perrone, D.; Chiolerio, A. Silver nanoparticle ink technology: State of the art. Nanotechnol. Sci. Appl. 2016, 9, 1–13. [Google Scholar] [PubMed]
- Rajan, K.; Bocchini, S.; Chiappone, A.; Roppolo, I.; Perrone, D.; Castellino, M.; Bejtka, K.; Lorusso, M.; Ricciardi, C.; Pirri, C.F.; et al. WORM and bipolar inkjet printed resistive switching devices based on silver nanocomposites. Flex. Print. Electron. 2017, 2, 024002. [Google Scholar] [CrossRef]
- Rajan, K.; Bocchini, S.; Chiappone, A.; Roppolo, I.; Perrone, D.; Bejtka, K.; Ricciardi, C.; Pirri, C.F.; Chiolerio, A. Spin-coated silver nanocomposite resistive switching devices. Microelectron. Eng. 2017, 168, 27–31. [Google Scholar] [CrossRef]
- Yeom, S.W.; Shin, S.C.; Kim, T.Y.; Ha, H.J.; Lee, Y.H.; Shim, J.W.; Ju, B.K. Transparent resistive switching memory using aluminium oxide on a flexible substrate. Nanotechnology 2016, 27, 07LT01. [Google Scholar] [CrossRef] [PubMed]
- Sze, S.M. Physics of Semiconductor Devices, 2nd ed.; Wiley: New York, NY, USA, 1981. [Google Scholar]
- Raeis-Hosseini, N.; Lee, J.-S. Resistive switching memory using biomaterials. J. Electroceramics 2017, 39, 223–238. [Google Scholar] [CrossRef]
- Chang, W.Y.; Lai, Y.C.; Wu, T.B.; Wang, S.F.; Chen, F.; Tsai, M.J. Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications. Appl. Phys. Lett. 2008, 92. [Google Scholar] [CrossRef]
- Hosseini, N.R.; Lee, J.S. Biocompatible and flexible chitosan-based resistive switching memory with magnesium electrodes. Adv. Funct. Mater. 2015, 25, 5586–5592. [Google Scholar] [CrossRef]
- Tan, M.J.; Owh, C.; Chee, P.L.; Kyaw, A.K.; Kai, D.; Loh, X.J. Biodegradable electronics: Cornerstone for sustainable electronics and transient applications. J. Mater. Chem. C 2016, 4, 5531–5558. [Google Scholar] [CrossRef]
- Chen, J.; Wise, K.D. A Multichannel Neural Probe for Selective Chemical Delivery at the Cellular Level. Solid-State Sensor and Actuator Workshop; The Foundation: Cleveland Heights, OH, USA, 1994. [Google Scholar]
- Muskovich, M.; Bettinger, C.J. Biomaterials-based electronics: Polymers and interfaces for biology and medicine. Adv. Healthcare Mater. 2012, 1, 248–266. [Google Scholar] [CrossRef] [PubMed]
- Ghovanloo, M.; Beach, K.; Wise, K.D.; Najafi, K. A BiCMOS wireless interface chip for micromachined stimulating microprobes. In Proceedings of the 2nd Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology, Madison, WI, USA, 2–4 May 2002. [Google Scholar]
- Richards Grayson, A.C.; Shawgo, R.S.; Li, Y.; Cima, M.J. Electronic MEMS for triggered delivery. Adv. Drug Deliv. Rev. 2004, 56, 173–184. [Google Scholar] [CrossRef] [PubMed]
- Yahya, M.; Arof, A.K. Effect of oleic acid plasticizer on chitosan–lithium acetate solid polymer electrolytes. Eur. Polym. J. 2003, 39, 897–902. [Google Scholar] [CrossRef]
- Boddohi, S.; Kipper, M.J. Engineering nanoassemblies of polysaccharides. Adv. Mater. 2010, 22, 2998–3016. [Google Scholar] [CrossRef] [PubMed]
- Rajan, K.; Chiappone, A.; Perrone, D.; Bocchini, S.; Roppolo, I.; Bejtka, K.; Castellino, M.; Pirri, C.F.; Ricciardi, C.; Chiolerio, A. Ionic liquid-enhanced soft resistive switching devices. RSC Adv. 2016, 6, 94128–94138. [Google Scholar] [CrossRef]
- Rajan, K.; Bejtka, K.; Bocchini, S.; Perrone, D.; Chiappone, A.; Roppolo, I.; Pirri, C.F.; Ricciardi, C.; Chiolerio, A. Highly performing Ionic Liquid enriched hybrid RSDs. J. Mater. Chem. C 2017, 5, 6144–6155. [Google Scholar] [CrossRef]
- Lin, T.H.; Pei, Z.; Chan, Y.J. Carrier transport mechanism in a nanoparticle-incorporated organic bistable memory device. IEEE Electron. Dev. Lett. 2007, 28, 569–571. [Google Scholar]
- Nagashima, K.; Koga, H.; Celano, U.; Zhuge, F.; Kanai, M.; Rahong, S.; Meng, G.; He, Y.; De Boeck, J.; Jurczak, M.; et al. Cellulose nanofiber paper as an ultra flexible nonvolatile memory. Sci. Rep. 2014, 4. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Zhang, J.; Wang, W.; Xuan, W.; Wang, X.; Zhang, Q.; Smith, C.G.; Luo, J. Transient resistive switching devices made from egg albumen dielectrics and dissolvable electrodes. ACS Appl. Mater. Interfaces 2016, 8, 10954–10960. [Google Scholar] [CrossRef] [PubMed]
- Lim, Z.X.; Sreenivasan, S.; Wong, Y.H.; Zhao, F.; Cheong, K.Y. Filamentary conduction in aloe vera film for memory application. Procedia Eng. 2017, 184, 655–662. [Google Scholar] [CrossRef]
- Wang, H.; Meng, F.; Cai, Y.; Zheng, L.; Li, Y.; Liu, Y.; Jiang, Y.; Wang, X.; Chen, X. Sericin for resistance switching device with multilevel nonvolatile memory. Adv. Mater. 2013, 25, 5498–5503. [Google Scholar] [CrossRef] [PubMed]
- Mo¨ller, S.; Perlov, C.; Jackson, W.; Taussig, C.; Forrest, S.R. A polymer/semiconductor write-once read-many-times memory. Nature 2003, 426, 166–169. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.C.; Huang, Y.C.; Lin, T.Y.; Wang, Y.X.; Chang, C.Y.; Li, Y.X.; Tzu, Y.L.; Bo, W.Y.; Hsieh, Y.P.; Su, W.F.; et al. Stretchable organic memory: Toward learnable and digitized stretchable digitised applications. NPG Asia Mater. 2014, 6. [Google Scholar] [CrossRef]
- Khiat, A.; Cortese, S.; Serb, A.; Prodromakis, T. Resistive switching of Pt/TiOx/Pt devices fabricated on flexible parylene-C substrates. Nanotechnology 2017, 28. [Google Scholar] [CrossRef] [PubMed]
- Han, J.W.; Meyyappan, M. Copper oxide resistive switching memory for e-textile. AIP Adv. 2011, 1. [Google Scholar] [CrossRef]
- Kang, T.K. Highly stretchable non-volatile nylon thread memory. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Jo, A.; Seo, Y.; Ko, M.; Kim, C.; Kim, H.; Nam, S.; Choi, H.; Hwang, C.S.; Lee, M.J. Textile resistance switching memory for fabric electronics. Adv. Funct. Mater. 2017, 27. [Google Scholar] [CrossRef]
- Cai, Y.; Tan, J.; Fan, L.Y.; Lin, M.; Huang, R. A flexible organic resistance memory device for wearable biomedical applications. Nanotechnology 2016, 27. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Sun, Y. WearETE: A scalable wearable e-textile triboelectric energy harvesting system for human motion scavenging. Sensors 2017, 17, 2649. [Google Scholar] [CrossRef] [PubMed]
- Baskan, H.; Acikgoz, H.; Atakan, R.; Eryuruk, H.; Akaln, N.; Kose, H.; Li, Y.; Kursun Bahadir, S.; Kalaoglu, F. Running functional sport vest and short for e-textile applications. IOP Conf. Ser. 2017, 254. [Google Scholar] [CrossRef]
- D’Addio, G.; Iuppariello, L.; Pagano, G.; Biancardi, A.; Lanzillo, B.; Pappone, N.; Cesarelli, M. New posturographic assessment by means of novel e-textile and wireless socks device. In Proceedings of the IEEE International Symposium on Medical Measurements and Applications (MeMeA), Benevento, Italy, 15–18 May 2016. [Google Scholar]
- Zheng, Y.L.; Yan, B.P.; Zhang, Y.T.; Poon, C.C.Y. An armband wearable device for overnight and cuff-less blood pressure measurement. IEEE Trans. Biomed. Eng. 2014, 61, 2179–2186. [Google Scholar] [CrossRef] [PubMed]
- Lou, Z.; Chen, S.; Wang, L.; Jiang, K.; Shen, G. An ultra-sensitive and rapid response speed graphene pressure sensor for electronic skin and health monitoring. Nano Energy 2016, 23, 7–14. [Google Scholar] [CrossRef]
- Wang, B.; Liu, C.; Xiao, Y.; Zhong, J.; Li, W.; Cheng, Y.; Hu, B.; Huang, L.; Zhou, J. Ultrasensitive cellular fluorocarbon piezo electret pressure sensor for self-powered human physiological monitoring. Nano Energy 2017, 32, 42–49. [Google Scholar] [CrossRef]
- Chen, S.; Liu, S.; Wang, P.; Liu, H.; Liu, L. Highly stretchable fiber-shaped e-textiles for strain/pressure sensing, full-range human motions detection, health monitoring, and 2D force mapping. Polymers 2018, 53, 2995–3005. [Google Scholar] [CrossRef]
- Lanatà, A.; Scilingo, E.P.; Nardini, E.; Loriga, G.; Paradiso, R.; De-Rossi, D. Comparative evaluation of susceptibility to motion artifact in different wearable systems for monitoring respiratory rate. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 378–386. [Google Scholar] [CrossRef] [PubMed]
- Valenza, G.; Lanatà, A.; Scilingo, E.P.; De-Rossi, D. Towards a smart glove: Arousal recognition based on textile electrodermal response. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010, 2010, 3598–3601. [Google Scholar] [PubMed]
- Li, H.; Yang, H.; Li, E.; Liu, Z.; Wei, K. Wearable sensors in intelligent clothing for measuring human body temperature based on optical fiber Bragg grating. Opt. Express 2012, 20, 11740–11752. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Song, A.Y.; Wu, P.; Hsu, P.C.; Peng, Y.; Chen, J.; Liu, C.; Cattryse, P.B.; Liu, Y.; Yang, A.; et al. Warming up human body by nanoporous metallized polyethylene textile. Nature Commun. 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Yun, Y.J.; Hong, W.G.; Kim, D.Y.; Kim, H.J.; Jun, Y.; Lee, H.K. E-textile gas sensors composed of molybdenum disulfide and reducedgraphene oxide for high response and reliability. Sens. Actuators B 2017, 248, 829–835. [Google Scholar] [CrossRef]
- Zhou, G.; Byun, J.H.; Oh, Y.; Jung, B.M.; Cha, H.J.; Seong, D.G.; Um, M.K.; Hyun, S.; Chou, T.W. Highly sensitive wearable textile-based humidity sensor made of high-strength, single-walled carbon nanotube/poly(vinyl alcohol) filaments. ACS Appl. Mater. Interfaces 2017, 9, 4788–4797. [Google Scholar] [CrossRef] [PubMed]
- Moradi, E.; Koshi, K.; Björninen, T.; Sydänheimo, L.; Rabaey, J.M.; Carmena, J.M.; Rahmat-Samii, Y.; Ukkonen, L. Miniature implantable and wearable on-body antennas: Towards the new era of wireless body-centric systems. IEEE Antennas Propag. Mag. 2014, 56, 271–291. [Google Scholar]
- Curone, D.; Lindo Secco, E.; Tognetti, A.; Loriga, G.; Dudnik, G.; Risatti, M.; Whyte, R.; Bonfiglio, A.; Magenes, G. Smart garments for emergency operators: The ProeTEX Project. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 694–701. [Google Scholar] [CrossRef] [PubMed]
- Harrop, P. Wearable Fabric Memristors. Available online: https://www.printedelectronicsworld.com/articles/4529/wearable-fabric-memristors (accessed on 11 November 2017).
- Valentine, A.D.; Busbee, T.A.; Boley, J.W.; Raney, J.R.; Chortos, A.; Kotikian, A.; Berrigan, J.D.; Durstock, M.F.; Lewis, J.A. Hybrid 3D printing of soft electronics. Adv. Mater. 2017, 29, 1703817. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajan, K.; Garofalo, E.; Chiolerio, A. Wearable Intrinsically Soft, Stretchable, Flexible Devices for Memories and Computing. Sensors 2018, 18, 367. https://doi.org/10.3390/s18020367
Rajan K, Garofalo E, Chiolerio A. Wearable Intrinsically Soft, Stretchable, Flexible Devices for Memories and Computing. Sensors. 2018; 18(2):367. https://doi.org/10.3390/s18020367
Chicago/Turabian StyleRajan, Krishna, Erik Garofalo, and Alessandro Chiolerio. 2018. "Wearable Intrinsically Soft, Stretchable, Flexible Devices for Memories and Computing" Sensors 18, no. 2: 367. https://doi.org/10.3390/s18020367
APA StyleRajan, K., Garofalo, E., & Chiolerio, A. (2018). Wearable Intrinsically Soft, Stretchable, Flexible Devices for Memories and Computing. Sensors, 18(2), 367. https://doi.org/10.3390/s18020367