Development of Noninvasive Classification Methods for Different Roasting Degrees of Coffee Beans Using Hyperspectral Imaging
Abstract
:1. Introduction
- (1)
- The establishment of a near-infrared (NIR) HSI system in the spectral range of 874–1734 nm to acquire the HSI images of coffee beans during the roasting process;
- (2)
- The extraction of spectral information and selection of effective wavelengths based on chemometric methods for discriminating between the roasting degrees of coffee beans during the roasting process; and
- (3)
- The development of an optimal calibration model for identifying the roasting degree of coffee beans.
2. Materials and Methods
2.1. Coffee Bean Samples
2.2. Qualitative Properties Analysis of the Coffee Bean Samples
2.2.1. Moisture Content Analysis
2.2.2. Crude Fat Content Analysis
2.2.3. Chlorogenic Acid, Trigonelline, and Caffeine (CF) Content Analysis
2.2.4. Statistical Analysis
2.3. HSI Measurement and Analysis
2.3.1. HSI Device
2.3.2. Hyperspectral Images Acquisition and Calibration
2.3.3. Extraction of Spectra
2.3.4. Spectral Data Analytical Methods
3. Results and Discussion
3.1. Changes in Moisture, Crude Fat, TG, CA, and CF Contents of the Seven Roasting Degrees of the Coffee Beans
3.2. Spectral Features of the Seven Roasting Degrees of the Coffee Beans
3.3. Principal Component Analysis of Spectral Data
3.4. Selection of Effective Wavelengths
3.5. Multivariate Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Franca, A.S.; Oliveira, L.S.; Oliveira, R.C.S.; Agresti, P.C.M.; Augusti, R. A preliminary evaluation of the effect of processing temperature on coffee roasting degree assessment. J. Food Eng. 2009, 92, 345–352. [Google Scholar] [CrossRef]
- Mendes, L.C.; de Menezes, H.C.; Aparecida, M.; Da Silva, A.P. Optimization of the roasting of robusta coffee (C. canephora conillon) using acceptability tests and RSM. Food Qual. Prefer. 2001, 12, 153–162. [Google Scholar] [CrossRef]
- Baggenstoss, J.; Poisson, L.; Kaegi, R.; Perren, R.; Escher, F. Coffee roasting and aroma formation: Application of different time-temperature conditions. J. Agric. Food Chem. 2008, 56, 5836–5846. [Google Scholar] [CrossRef] [PubMed]
- Liberto, E.; Ruosi, M.R.; Cordero, C.; Rubiolo, P.; Bicchi, C.; Sgorbini, B. Non-separative headspace solid phase microextraction-mass spectrometry profile as a marker to monitor coffee roasting degree. J. Agric. Food Chem. 2013, 61, 1652–1660. [Google Scholar] [CrossRef] [PubMed]
- Catelani, T.A.; Páscoa, R.N.; Santos, J.R.; Pezza, L.; Pezza, H.R.; Lima, J.L.; Lopes, J.A. A non-invasive real-time methodology for the quantification of antioxidant properties in coffee during the roasting process based on near-infrared spectroscopy. Food Bioprocess Technol. 2017, 10, 630–638. [Google Scholar] [CrossRef]
- Casal, S.; Mendes, E.; Oliveira, M.B.; Ferreira, M.A. Roast effects on coffee amino acid enantiomers. Food Chem. 2005, 89, 333–340. [Google Scholar] [CrossRef]
- Santos, J.R.; Viegas, O.; Páscoa, R.N.; Ferreira, I.M.; Rangel, A.O.; Lopes, J.A. In-line monitoring of the coffee roasting process with near infrared spectroscopy: Measurement of sucrose and color. Food Chem. 2016, 208, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.S.; Bae, H.J.; Cho, B.K.; Moon, K.D. Qualitative properties of roasting defect beans and development of its classification methods by hyperspectral imaging technology. Food Chem. 2017, 220, 505–509. [Google Scholar] [CrossRef] [PubMed]
- Alessandrini, L.A.; Romani, S.; Pinnavaia, G.; Rosa, M.D. Near infrared spectroscopy: An analytical tool to predict coffee roasting degree. Anal. Chim. Acta 2008, 625, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Hečimović, I.; Belščak-Cvitanović, A.; Horžić, D.; Komes, D. Comparative study of polyphenols and caffeine in different coffee varieties affected by the degree of roasting. Food Chem. 2011, 129, 991–1000. [Google Scholar] [CrossRef] [PubMed]
- Dutra, E.R.; Oliveira, L.S.; Franca, A.S.; Ferraz, V.P.; Afonso, R.J. A preliminary study on the feasibility of using composition of coffee roasting exhaust gas for the determination of the degree of roast. J. Food Eng. 2001, 47, 241–246. [Google Scholar] [CrossRef]
- Wu, D.; Wang, S.J.; Wang, N.F.; Nie, P.C.; He, Y.; Sun, D.W. Application of time series hyperspectral imaging (TS-HSI) for determining water distribution within beef and spectral kinetic analysis during dehydration. Food Bioprocess Technol. 2013, 6, 2943–2958. [Google Scholar] [CrossRef]
- Qiu, Z.J.; Chen, J.; Zhao, Y.Y.; Zhu, S.S.; He, Y.; Zhang, C. Variety identification of single rice seed using hyperspectral imaging combined with convolutional neural network. Appl. Sci. 2018, 8, 212. [Google Scholar] [CrossRef]
- Ravikanth, L.; Jayas, D.S.; White, N.D.G.; Fields, P.G.; Sun, D.W. Extraction of spectral information from hyperspectral data and application of hyperspectral imaging for food and agricultural products. Food Bioprocess Technol. 2017, 10, 1–33. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Elmasry, G.; Sun, D.W.; Allen, P. Non-destructive prediction and visualization of chemical composition in lamb meat using NIR hyperspectral imaging and multivariate regression. Innov. Food Sci. Emerg. 2012, 16, 218–226. [Google Scholar] [CrossRef]
- Caporaso, N.; Whitworth, M.B.; Grebby, S.; Fisk, I.D. Non-destructive analysis of sucrose, caffeine and trigonelline on single green coffee beans by hyperspectral imaging. Food Res. Int. 2018, 106, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Jiang, H.; Liu, F.; He, Y. Application of near-infrared hyperspectral imaging with variable selection methods to determine and visualize caffeine content of coffee beans. Food Bioprocess Technol. 2017, 10, 213–221. [Google Scholar] [CrossRef]
- Nansen, C.; Singh, K.; Mian, A.; Allison, B.J.; Simmons, C.W. Using hyperspectral imaging to characterize consistency of coffee brands and their respective roasting classes. J. Food Eng. 2016, 190, 34–39. [Google Scholar] [CrossRef]
- Kennard, R.W.; Stone, L.A. Computer aided design of experiments. Technometrics 1969, 11, 137–148. [Google Scholar] [CrossRef]
- Shao, J.J.; Yang, D.S.; Fan, J.L.; Liu, X.Y.; Du, L.J.; Wang, L.; Liu, H.C.; Wang, L.X. Simultaneous determination of 10 polyphenolic and alkaloidal components in coffee and coffee-based products by HPLC-double wavelength UV detection. Food Sci. 2016, 37, 128–133. (In Chinese) [Google Scholar]
- Yu, K.Q.; Zhao, Y.R.; Zhu, F.L.; Li, X.L.; He, Y. Mapping of chlorophyll and SPAD distribution in pepper leaves during leaf senescence using visible and near-infrared hyperspectral imaging. Trans. ASABE 2016, 59, 13–24. [Google Scholar]
- Kamruzzaman, M.; Sun, D.W.; Elmasry, G.; Allen, P. Fast detection and visualization of minced lamb meat adulteration using NIR hyperspectral imaging and multivariate image analysis. Talanta 2013, 103, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.L.; Zhang, D.R.; He, Y.; Liu, F. Application of visible and near infrared hyperspectral imaging to differentiate between fresh and frozen-thawed fish fillets. Food Bioprocess Technol. 2013, 6, 2931–2937. [Google Scholar] [CrossRef]
- Chang, C.I.; Plaza, A. A fast iterative algorithm for implementation of pixel purity index. IEEE Geosci. Remote Sens. Lett. 2006, 3, 63–67. [Google Scholar] [CrossRef]
- Bakshi, B.R. Multiscale PCA with application to multivariate statistical process monitoring. AIChE J. 1998, 44, 1596–1610. [Google Scholar] [CrossRef]
- Li, H.D.; Xu, Q.S.; Liang, Y.Z. Random frog: An efficient reversible jump Markov Chain Monte Carlo-like approach for variable selection with applications to gene selection and disease classification. Anal. Chim. Acta 2012, 740, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Araujo, M.C.U.; Saldanha, T.C.B.; Galvao, R.K.H.; Yoneyama, T.; Chame, H.C.; Visani, V. The successive projections algorithm for variable selection in spectroscopic multicomponent analysis. Chemom. Intell. Lab. Syst. 2001, 57, 65–73. [Google Scholar] [CrossRef]
- Chauchard, F.; Cogdill, R.; Roussel, S.; Roger, J.M.; Bellon-Maurel, V. Application of LS-SVM to non-linear phenomena in NIR spectroscopy: Development of a robust and portable sensor for acidity prediction in grapes. Chemom. Intell. Lab. Syst. 2004, 71, 141–150. [Google Scholar] [CrossRef]
- Balabin, R.M.; Lomakina, E.I. Support vector machine regression (SVR/LS-SVM)-an alternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data. Analyst 2011, 136, 1703–1712. [Google Scholar] [CrossRef] [PubMed]
- Yu, J. Sensory and Evaluation of Coffee in Different Roasting Degrees and Analysis of the Main Effecting Chemicals. Ph.D. Thesis, Jiangnan University, Wuxi, China, 2014. (In Chinese). [Google Scholar]
- Ky, C.L.; Louarn, J.; Dussert, S.; Guyot, B.; Hamon, S.; Noirot, M. Caffeine, trigonelline, chlorogenic acids and sucrose diversity in wild Coffea arabica L. and C. canephora P. accessions. Food Chem. 2001, 75, 223–230. [Google Scholar] [CrossRef]
- Almoosawi, S.; Tsang, C.; Davidson, I.; Fyfe, L.; Al-Dujaili, E.A. The effect of green-coffee-bean extract rich in chlorogenic acid on antioxidant status of healthy human volunteers. Proc. Nutr. Soc. 2009, 69, E30. [Google Scholar] [CrossRef]
- Fujioka, K.; Shibamoto, T. Chlorogenic acid and caffeine contents in various commercial brewed coffees. Food Chem. 2008, 106, 217–221. [Google Scholar] [CrossRef]
- Hu, S.F.; Wei, Y.X.; Xing, J.J.; Tong, S.S.; Niu, Y.X.; Liu, P. Correlation analysis between chemical components and sensory quality of coffee. Sci. Technol. Food Ind. 2013, 34, 125–134. (In Chinese) [Google Scholar]
- Caporaso, N.; Whitworth, M.B.; Grebby, S.; Fisk, I.D. Rapid prediction of single green coffee bean moisture and lipid content by hyperspectral imaging. J. Food Eng. 2018, 227, 18–29. [Google Scholar] [CrossRef]
- Gowen, A.A.; Amigo, J.M.; Tsenkova, R. Characterisation of hydrogen bond perturbations in aqueous systems using aquaphotomics and multivariate curve resolution-alternating least squares. Anal. Chim. Acta 2013, 759, 8–20. [Google Scholar] [CrossRef] [PubMed]
- Trong, N.N.D.; Tsuta, M.; Nicolaï, B.M.; Baerdemaeker, J.D.; Saeys, W. Prediction of optimal cooking time for boiled potatoes by hyperspectral imaging. J. Food Eng. 2011, 105, 617–624. [Google Scholar] [CrossRef]
- Pholpho, T.; Pathaveerat, S.; Sirisomboon, P. Classification of longan fruit bruising using visible spectroscopy. J. Food Eng. 2011, 104, 169–172. [Google Scholar] [CrossRef]
- Liu, D.; Sun, D.W.; Zeng, X.A. Recent advances in wavelength selection techniques for hyperspectral image processing in the food industry. Food Bioprocess Technol. 2014, 7, 307–323. [Google Scholar] [CrossRef]
Groups | Roasting Degrees | Disk Scores | Roasting Time (min) | Final Temperature (°C) |
---|---|---|---|---|
RD-U | Unroasted | 100 | 0 | 25.4 |
RD-L | Light | 85 | 6 | 168.7 |
1 RD-ML | Moderately Light | 75 | 9.5 | 202.3 |
RD-LM | Light Medium | 65 | 10.5 | 219.7 |
RD-M | Medium | 55 | 11.5 | 226.7 |
RD-MD | Moderately Dark | 45 | 12.5 | 230.5 |
RD-D | Dark | 35 | 13.5 | 233.1 |
Methods | Effective Wavelengths (nm) |
---|---|
X-loading | 948, 1116, 1217, 1247, 1328, 1442, 1663 |
SPA | 931, 1217, 1453, 1666, 1690 |
RF | 931, 945, 1018, 1183, 1224, 1261, 1507, 1656 |
Methods and Selected EWs | Roasting Degrees | RD-U | RD-L | RD-ML | RD-LM | RD-M | RD-MD | RD-D | Overall Accuracy |
---|---|---|---|---|---|---|---|---|---|
X-loading | RD-U | 5 | 3 | 0 | 0 | 0 | 0 | 0 | 89.80% |
RD-L | 2 | 15 | 0 | 0 | 0 | 0 | 0 | ||
RD-ML | 0 | 0 | 20 | 5 | 0 | 0 | 0 | ||
RD-LM | 0 | 0 | 0 | 28 | 0 | 0 | 0 | ||
RD-M | 0 | 0 | 0 | 1 | 24 | 4 | 0 | ||
RD-MD | 0 | 0 | 0 | 0 | 2 | 32 | 1 | ||
RD-D | 0 | 0 | 0 | 0 | 0 | 0 | 33 | ||
SPA | RD-U | 7 | 1 | 0 | 0 | 0 | 0 | 0 | 88.70% |
RD-L | 2 | 15 | 0 | 0 | 0 | 0 | 0 | ||
RD-ML | 0 | 0 | 16 | 9 | 0 | 0 | 0 | ||
RD-LM | 0 | 1 | 0 | 27 | 0 | 0 | 0 | ||
RD-M | 0 | 0 | 0 | 0 | 24 | 5 | 0 | ||
RD-MD | 0 | 0 | 0 | 1 | 1 | 33 | 0 | ||
RD-D | 0 | 0 | 0 | 0 | 0 | 0 | 33 | ||
RF | RD-U | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 90.30% |
RD-L | 0 | 17 | 0 | 0 | 0 | 0 | 0 | ||
RD-ML | 0 | 0 | 17 | 8 | 0 | 0 | 0 | ||
RD-LM | 0 | 0 | 0 | 28 | 0 | 0 | 0 | ||
RD-M | 0 | 0 | 0 | 0 | 22 | 7 | 0 | ||
RD-MD | 0 | 0 | 0 | 1 | 1 | 33 | 0 | ||
RD-D | 0 | 0 | 0 | 0 | 0 | 0 | 33 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, B.; Yu, K.; Zhao, Y.; He, Y. Development of Noninvasive Classification Methods for Different Roasting Degrees of Coffee Beans Using Hyperspectral Imaging. Sensors 2018, 18, 1259. https://doi.org/10.3390/s18041259
Chu B, Yu K, Zhao Y, He Y. Development of Noninvasive Classification Methods for Different Roasting Degrees of Coffee Beans Using Hyperspectral Imaging. Sensors. 2018; 18(4):1259. https://doi.org/10.3390/s18041259
Chicago/Turabian StyleChu, Bingquan, Keqiang Yu, Yanru Zhao, and Yong He. 2018. "Development of Noninvasive Classification Methods for Different Roasting Degrees of Coffee Beans Using Hyperspectral Imaging" Sensors 18, no. 4: 1259. https://doi.org/10.3390/s18041259
APA StyleChu, B., Yu, K., Zhao, Y., & He, Y. (2018). Development of Noninvasive Classification Methods for Different Roasting Degrees of Coffee Beans Using Hyperspectral Imaging. Sensors, 18(4), 1259. https://doi.org/10.3390/s18041259