Optical Fiber-Tip Sensors Based on In-Situ µ-Printed Polymer Suspended-Microbeams
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Optical 3D μ-Printing Processes
3. Results
3.1. Fabrication Results
3.2. Reflection Spectra
3.3. Refractive Index Sensing
3.4. Gas-Pressure Sensing
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yin, S.; Yu, F.T.S. Fiber Optic Sensors, 1st ed.; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Lee, B. Review of the present status of optical fiber sensors. Opt. Fiber Technol. 2003, 9, 57–79. [Google Scholar] [CrossRef]
- Kersey, A.D.; Dandridge, A. Applications of fiber-optic sensors. IEEE Trans. Compon. Hybrids Manuf. Technol. 1990, 13, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Vaiano, P.; Carotenuto, B.; Pisco, M.; Ricciardi, A.; Quero, G.; Consales, M.; Crescitelli, A.; Esposito, E.; Cusano, A. Lab on fiber technology for biological sensing applications. Laser Photonics Rev. 2016, 10, 922–961. [Google Scholar] [CrossRef]
- Kostovski, G.; Stoddart, P.R.; Mitchell, A. The optical fiber tip: An inherently light-coupled microscopic platform for micro-and nanotechnologies. Adv. Mater. 2014, 26, 3798–3820. [Google Scholar] [CrossRef] [PubMed]
- Caucheteur, C.; Guo, T.; Albert, J. Review of plasmonic fiber optic biochemical sensors: Improving the limit of detection. Anal. Bioanal. Chem. 2015, 407, 3883–3897. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Jin, W.; Ho, H.L.; Dai, J.Y. High-sensitivity fiber-tip pressure sensor with graphene diaphragm. Opt. Lett. 2012, 37, 2493–2495. [Google Scholar] [CrossRef] [PubMed]
- Pevec, S.; Donlagic, D. Miniature all-fiber fabry–perot sensor for simultaneous measurement of pressure and temperature. Appl. Opt. 2012, 51, 4536–4541. [Google Scholar] [CrossRef] [PubMed]
- Gruca, G.; Chavan, D.; Rector, J.; Heeck, K.; Iannuzzi, D. Demonstration of an optically actuated ferrule-top device for pressure and humidity sensing. Sens. Actuators A 2013, 190, 77–83. [Google Scholar] [CrossRef]
- Zhu, T.; Ke, T.; Rao, Y.; Chiang, K.S. Fabry–perot optical fiber tip sensor for high temperature measurement. Opt. Commun. 2010, 283, 3683–3685. [Google Scholar] [CrossRef]
- Xu, J.; Wang, X.; Cooper, K.L.; Wang, A. Miniature all-silica fiber optic pressure and acoustic sensors. Opt. Lett. 2005, 30, 3269–3271. [Google Scholar] [CrossRef] [PubMed]
- Alberts, C.; De Man, S.; Berenschot, J.W.; Gadgil, V.; Elwenspoek, M.C.; Iannuzzi, D. Fiber-top refractometer. Meas. Sci. Technol. 2009, 20, 034005. [Google Scholar] [CrossRef]
- Guggenheim, J.A.; Li, J.; Allen, T.J.; Colchester, R.J.; Noimark, S.; Ogunlade, O.; Parkin, I.P.; Papakonstantinou, I.; Desjardins, A.E.; Zhang, E.Z. Ultrasensitive plano-concave optical microresonators for ultrasound sensing. Nat. Photonics 2017, 11, 714. [Google Scholar] [CrossRef]
- Lin, Y.; Zou, Y.; Mo, Y.; Guo, J.; Lindquist, R.G. E-beam patterned gold nanodot arrays on optical fiber tips for localized surface plasmon resonance biochemical sensing. Sensors 2010, 10, 9397–9406. [Google Scholar] [CrossRef] [PubMed]
- Andrade, G.F.; Fan, M.; Brolo, A.G. Multilayer silver nanoparticles-modified optical fiber tip for high performance sers remote sensing. Biosens. Bioelectron. 2010, 25, 2270–2275. [Google Scholar] [CrossRef] [PubMed]
- Petrušis, A.; Rector, J.; Smith, K.; De Man, S.; Iannuzzi, D. The align-and-shine technique for series production of photolithography patterns on optical fibres. J. Micromech. Microeng. 2009, 19, 047001. [Google Scholar] [CrossRef]
- Kostovski, G.; White, D.; Mitchell, A.; Austin, M.; Stoddart, P. Nanoimprinted optical fibres: Biotemplated nanostructures for sers sensing. Biosens. Bioelectron. 2009, 24, 1531–1535. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Zhang, X.; Wang, H.; Xin, M.; Lu, Z. Fiber coupled waveguide grating structures. Appl. Phys. Lett. 2010, 96, 133101. [Google Scholar] [CrossRef]
- Lin, Y.; Zou, Y.; Lindquist, R.G. A reflection-based localized surface plasmon resonance fiber-optic probe for biochemical sensing. Biomed. Opt. Express 2011, 2, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Schiappelli, F.; Kumar, R.; Prasciolu, M.; Cojoc, D.; Cabrini, S.; De Vittorio, M.; Visimberga, G.; Gerardino, A.; Degiorgio, V.; Di Fabrizio, E. Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling. Microelectron. Eng. 2004, 73, 397–404. [Google Scholar] [CrossRef]
- Melissinaki, V.; Farsari, M.; Pissadakis, S. A fiber-endface, fabry–perot vapor microsensor fabricated by multiphoton polymerization. IEEE J. Sel. Top. Quantum Electron. 2015, 21, 344–353. [Google Scholar] [CrossRef]
- Melissinaki, V.; Konidakis, I.; Farsari, M.; Pissadakis, S. Fiber endface fabry–perot microsensor with distinct response to vapors of different chlorinated organic solvents. IEEE Sens. J. 2016, 16, 7094–7100. [Google Scholar] [CrossRef]
- Melissinaki, V.; Farsari, M.; Pissadakis, S. A fiber optic fabry–perot cavity sensor for the probing of oily samples. Fibers 2017, 5, 1. [Google Scholar] [CrossRef]
- Williams, H.E.; Freppon, D.J.; Kuebler, S.M.; Rumpf, R.C.; Melino, M.A. Fabrication of three-dimensional micro-photonic structures on the tip of optical fibers using SU-8. Opt. Express 2011, 19, 22910–22922. [Google Scholar] [CrossRef] [PubMed]
- Liberale, C.; Cojoc, G.; Candeloro, P.; Das, G.; Gentile, F.; De Angelis, F.; Di Fabrizio, E. Micro-optics fabrication on top of optical fibers using two-photon lithography. IEEE Photon. Technol. Lett. 2010, 22, 474–476. [Google Scholar] [CrossRef]
- Yao, M.; Wu, J.; Zhang, A.P.; Tam, H.-Y.; Wai, P. Optically 3d µ-printed ferrule-top polymer suspended-mirror devices. IEEE Sens. J. 2017, 17, 7257–7261. [Google Scholar] [CrossRef]
- Lindenmann, N.; Balthasar, G.; Hillerkuss, D.; Schmogrow, R.; Jordan, M.; Leuthold, J.; Freude, W.; Koos, C. Photonic wire bonding: A novel concept for chip-scale interconnects. Opt. Express 2012, 20, 17667–17677. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Guo, X.; Zhang, A.P.; Tam, H.-Y. Rapid 3d µ-printing of polymer optical whispering-gallery mode resonators. Opt. Express 2015, 23, 29708–29714. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Yin, M.-J.; Seefeldt, K.; Dani, A.; Guterman, R.; Yuan, J.; Zhang, A.P.; Tam, H.-Y. In situ μ-printed optical fiber-tip CO2 sensor using a photocrosslinkable poly (ionic liquid). Sens. Actuators B 2018, 259, 833–839. [Google Scholar] [CrossRef]
- Ouyang, X.; Zhang, K.; Wu, J.; Wong, D.S.-H.; Feng, Q.; Bian, L.; Zhang, A.P. Optical µ-printing of cellular-scale microscaffold arrays for 3d cell culture. Sci. Rep. 2017, 7, 8880. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.P.; Shao, L.-Y.; Ding, J.-F.; He, S. Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature. IEEE Photon. Technol. Lett. 2005, 17, 2397–2399. [Google Scholar] [CrossRef]
- Xia, T.-H.; Zhang, A.P.; Gu, B.; Zhu, J.-J. Fiber-optic refractive-index sensors based on transmissive and reflective thin-core fiber modal interferometers. Opt. Commun. 2010, 283, 2136–2139. [Google Scholar] [CrossRef]
- Birch, K.; Downs, M. An updated edlén equation for the refractive index of air. Metrologia 1993, 30, 155. [Google Scholar] [CrossRef]
- Mc Murtry, S.; Wright, J.D.; Jackson, D.A. Sensing applications of a low-coherence fibre-optic interferometer measuring the refractive index of air. Sens. Actuators B 2001, 72, 69–74. [Google Scholar] [CrossRef]
- Duan, D.-W.; Rao, Y.-J.; Zhu, T. High sensitivity gas refractometer based on all-fiber open-cavity fabry–perot interferometer formed by large lateral offset splicing. J. Opt. Soc. Am. B 2012, 29, 912–915. [Google Scholar] [CrossRef]
- Shrivastava, A.; Gupta, V. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Sci. 2011, 2, 21–25. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, M.; Ouyang, X.; Wu, J.; Zhang, A.P.; Tam, H.-Y.; Wai, P.K.A. Optical Fiber-Tip Sensors Based on In-Situ µ-Printed Polymer Suspended-Microbeams. Sensors 2018, 18, 1825. https://doi.org/10.3390/s18061825
Yao M, Ouyang X, Wu J, Zhang AP, Tam H-Y, Wai PKA. Optical Fiber-Tip Sensors Based on In-Situ µ-Printed Polymer Suspended-Microbeams. Sensors. 2018; 18(6):1825. https://doi.org/10.3390/s18061825
Chicago/Turabian StyleYao, Mian, Xia Ouyang, Jushuai Wu, A. Ping Zhang, Hwa-Yaw Tam, and P. K. A. Wai. 2018. "Optical Fiber-Tip Sensors Based on In-Situ µ-Printed Polymer Suspended-Microbeams" Sensors 18, no. 6: 1825. https://doi.org/10.3390/s18061825
APA StyleYao, M., Ouyang, X., Wu, J., Zhang, A. P., Tam, H. -Y., & Wai, P. K. A. (2018). Optical Fiber-Tip Sensors Based on In-Situ µ-Printed Polymer Suspended-Microbeams. Sensors, 18(6), 1825. https://doi.org/10.3390/s18061825