Feature Selection Method Based on High-Resolution Remote Sensing Images and the Effect of Sensitive Features on Classification Accuracy
Abstract
:1. Introduction
2. Methodology
2.1. Data Sets
2.2. Related Theories
2.2.1. Multiresolution Segmentation Methods Based on High-Resolution Remote Sensing Images
2.2.2. Feature Extraction Structure
2.2.3. Feature Selection Based on ReliefF Algorithm and Coupled GA-SVM Models
Algorithm 1. Flow of the proposed feature selection method. |
Input S is an initial sample feature set and , , are the initial population, where f encodes the feature set, C and γ are the encoded SVM parameters. |
Output Extracted features based on the RFGASVM method |
Repeat
|
Until the termination test is met
|
2.3. Accuracy Assessment
3. Experimental Results and Discussion
3.1. Selection of Building Samples
3.2. Building Identification Results and Accuracy of the Proposed Method
3.3. Verification of Feature Selection Based on Kernel Density Estimation
3.4. Accuracy and Efficiency Assessment of Selected Features
4. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Moser, G.; Serpico, S.B.; Benediktsson, J.A. Land-Cover Mapping by Markov Modeling of Spatial-Contextual Information in Very-High-Resolution Remote Sensing Images. Proc. IEEE 2013, 101, 631–651. [Google Scholar] [CrossRef]
- Blaschke, T.; Hay, G.J.; Kelly, M.; Lang, S.; Hofmann, P.; Addink, E.; Feitosa, R.Q.; van der Meer, F.; van der Werff, H.; van Coillie, F.; et al. Geographic object-based image analysis—Towards a new paradigm. ISPRS J. Photogramm. Remote Sens. 2014, 87, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Laliberte, A.S.; Browning, D.M.; Rango, A. A comparison of three feature selection methods for object-based classification of subdecimeter resolution UltraCamL imagery. Int. J. Appl. Earth Observ. Geoinf. 2012, 15, 70–78. [Google Scholar] [CrossRef]
- Takayama, T.; Iwasaki, A. Optimal wavelength selection on hyperspectral data with fused lasso for biomass estimation of tropical rain forest. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 8, 101–108. [Google Scholar]
- Yu, X.; Zhan, F.; Liao, M.; Hu, J. Object-oriented feature selection algorithms based on improved SEaTH algorithms. Geomat. Inf. Sci. Wuhan Univ. 2012, 37, 921–924. [Google Scholar] [CrossRef]
- Ding, C.; Peng, H. Minimum redundancy feature selection from microarray gene expression data. Proc. Comput. Syst. Bioinf. 2003, 3, 523–528. [Google Scholar]
- El Akadi, A.; Amine, A.; El Ouardighi, A.; Aboutajdine, D. A two-stage gene selection scheme utilizing MRMR filter and GA wrapper. Knowl. Inf. Syst. 2011, 26, 487. [Google Scholar] [CrossRef]
- Rajesh, S.; Arivazhagan, S.; Moses, K.P.; Abisekaraj, R. Genetic Algorithm Based Feature Subset Selection for Land Cover/Land Use Mapping Using Wavelet Packet Transform. J. Indian Soc. Remote Sens. 2013, 41, 237–248. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Y.; Chen, Z.; Yang, H.; Sun, Y.; Kang, J.; Yang, Y.; Liang, X. Application of Relief algorithm to selection features sets for classification of high resolution remote sensing image. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 755–758. [Google Scholar] [CrossRef]
- Chang, X.; He, L. System Noise Removal for Gaofen-4 Area-Array Camera. Remote Sens. 2018, 10, 759. [Google Scholar] [CrossRef]
- Nussbaum, S.; Menz, G. Object-Based Image Analysis and Treaty Verification; Springer B.V.: Heidelberg, Germany, 2008. [Google Scholar]
- Hofmann, P.; Strobl, J.; Blaschke, T.; Kux, H. Detecting informal settlements from QuickBird data in Riode janeiro using an object-based approach. In Proceedings of the 1st International Conference on Object-based Image Analysis, Salzburg University, Salzburg, Austria, 4–5 July 2006. [Google Scholar]
- Vu, T.T.; Matsuoka, M.; Yamazaki, F. Shadow analysis in assisting damage detection due to earthquakes from Quickbird imagery. In Proceedings of the XXth ISPRS Congress, Istanbul, Turkey, 12–23 July 2004; pp. 607–610. [Google Scholar]
- Felzenszwalb, P.F. Efficient graph-based image segmentation. Int. J. Comput. Vis. 2004, 59, 167–181. [Google Scholar] [CrossRef]
- Hu, Z.; Li, Q.; Zou, Q.; Zhang, Q.; Wu, G. A Bilevel Scale-Sets Model for Hierarchical Representation of Large Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 12. [Google Scholar] [CrossRef]
- Huang, Y.; McCullagh, P.J.; Black, N.D. An optimization of ReliefF for classification in large datasets. Data Knowl. Eng. 2009, 68, 1348–1356. [Google Scholar] [CrossRef]
- Spolaor, N.; Cherman, E.A.; Monard, M.C.; Lee, H.D. ReliefF for multi-label feature selection. In Proceedings of the 2nd Brazilian Conference on Intelligent Systems, Fortaleza, Brazil, 20–24 October 2013; pp. 6–11. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn 1995, 20, 273–297. [Google Scholar] [CrossRef] [Green Version]
- Devroye, L.; Györfi, L.; Lugosi, G. Vapnik-Chervonenkis theory. In A Probabilistic Theory of Pattern Recognition; Springer: New York, NY, USA, 1996; pp. 187–213. [Google Scholar]
- Kalantar, B.; Pradhan, B.; Naghibi, S.A.; Motevalli, A.; Mansor, S. Assessment of the effects of training data selection on the landslide susceptibility mapping: A comparison between support vector machine (SVM), logistic regression (LR) and artificial neural networks (ANN). Geomat. Nat. Hazard. Risk 2017, 9, 49–69. [Google Scholar] [CrossRef]
- Zhang, R.; Ma, J.W. Feature selection for hyperspectral data based on recursive support vector machines. Int. J. Remote Sens. 2009, 30, 3669–3677. [Google Scholar] [CrossRef]
- Ye, F. Evolving the SVM model based on a hybrid method using swarm optimization techniques in combination with a genetic algorithm for medical diagnosis. Multimed. Tools Appl. 2018, 77, 3889–3918. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, S.; Qin, X.; Zhao, N.; Liang, L. Mapping of urban surface water bodies from Sentinel-2 MSI Imagery at 10 m resolution via NDWI-based image sharpening. Remote Sens. 2017, 9, 596. [Google Scholar] [CrossRef]
- Yang, X.; Qin, X.; Wang, J.; Wang, J.; Ye, X.; Qin, Q. Building façade recognition using oblique aerial images. Remote Sens. 2015, 7, 10562–10588. [Google Scholar] [CrossRef]
- Xu, X.Y.; Yan, Z.; Xu, S.L. Estimating wind speed probability distribution by diffusion-based kernel density method. Electr. Power Syst. Res. 2015, 121, 28–37. [Google Scholar] [CrossRef]
Feature Name | Feature Description |
---|---|
Spectral features | Mean L (R, G, B, NIR); brightness; SD L (R, G, B, NIR); ratio L (R, G, B, NIR); max.diff; MBI index (Huang Xin et al.); BAI:(B − NIR)/(B + NIR); NDBI: (MIR − NIR)/(MIR + NIR); NDVI: (NIR − R)/(NIR + R); DVI: NIR − R; RVI: NIR/R; SAVI: 1.5 × (NIR − R)/NIR + R + 0.5); OSAVI: (NIR − R)/(NIR + R + 0.16); SBI: (R2 + NIR2)0.5; NDWI:(G − NIR)/(G + NIR) |
Geometrical features | Area; length; width; length/width; boundary length; pixel number; shape index; density; main direction; asymmetry; compactness; rectangular fit; elliptic fit; differential of morphological profiles (DMP) |
Textural features | GLCM entropy; GLCM angular second moment; GLCM correlation; GLCM homogeneity; GLCM contrast; GLCM mean; GLCM SD; GLCM dissimilarity; GLDV angular second moment; GLDV entropy; GLDV contrast; GLDV mean |
Shadow indexs | SI:(R + G + B + NIR)/4; Index related to shadow: Chen1: 0.5 × (G + NIR)/R − 1; Chen2: (G − R)/(R + NIR); Chen3: (G + NIR − 2R)/(G + NIR + 2R); Chen4: (R + B)/(G − 2); Chen5: |R + G − 2B| |
Contextual features | Object numbers; object layers; image resolution; mean of image layers |
Geo-Auxiliary features | Digital elevation model(DEM); slope; aspect; building vectors |
Feature Name | Feature Description |
---|---|
Spectral features | Mean L (R, G, B, NIR); brightness; SD L (R, G, B, NIR); ratio L (R, G, B, NIR); max.diff; Green Index: GR = G/(R + G + B); Red-Green Vegetation Index: NGRDI = (G − R)/(G + R); GLI = (2G − R − B)/(2G + R + B) |
Geometrical features | Area; length; width; length/width; boundary length; pixel number; shape index; density; main direction; asymmetry; compactness; rectangular fit; elliptic fit; differential of morphological profiles (DMP); digital surface model(nDSM); height standard deviation |
Textural features | GLCM entropy; GLCM angular second moment; GLCM correlation; GLCM homogeneity; GLCM contrast; GLCM mean; GLCM SD; GLCM dissimilarity; GLDV angular second moment; GLDV entropy; GLDV contrast; GLDV mean |
Shadow indexs | Chen4: (R + B)/(G − 2); Chen5: |R + G − 2B| |
Contextual features | Object numbers; object layers; image resolution; mean of image layers |
Geo-Auxiliary features | Digital elevation model(DEM); slope; aspect; building vectors |
Data | Sample Category | Building | Road | Vegetation | Shadow | Water | Bare Land |
---|---|---|---|---|---|---|---|
GF-2 image | Training samples Testing samples | 95 106 | 75 92 | 85 113 | 68 72 | 70 85 | 92 110 |
BJ-2 image | Training samples Testing samples | 95 102 | 80 95 | 87 92 | 79 86 | -- -- | 91 95 |
UAV image | Training samples Testing samples | 105 112 | 110 115 | 95 102 | 90 98 | -- -- | 90 102 |
High-Resolution Imagery | GF-2 Satellite Image | BJ-2 Satellite Image | UAV Image |
---|---|---|---|
Overall accuracy (OA) | 88.52 | 89.75 | 91.3 |
Kappa coefficient | 0.8 | 0.83 | 0.85 |
Producer’s Accuracy (PA) | 91 | 93.12 | 96.21 |
User’s Accuracy (UA) | 89.65 | 89 | 90.38 |
Number of features | 8 | 6 | 10 |
Optimization time | 7.85 | 13.79 | 18 |
Experimental Data | Evaluation Index | RFGASVM | SVM (All Features) | RFSVM |
---|---|---|---|---|
GF-2 imagery | Overall accuracy (OA) Kappa coefficient Number of features | 88.52 0.90 8 | 86.46 0.88 85 | 83.02 0.85 13 |
BJ-2 imagery | Overall accuracy (OA) Kappa coefficient Number of features | 89.75 0.93 6 | 81.06 0.85 85 | 80 0.90 13 |
UAV imagery | Overall accuracy (OA) Kappa coefficient Number of features | 91.30 0.91 10 | 86 0.88 70 | 90.25 0.85 15 |
Experimental Data | Method | Precision | Recall | F1-Score |
---|---|---|---|---|
GF-2 imagery | RFGASVM SVM (all features) RFSVM | 85.50 83.25 81.0 | 86.81 82.53 80.0 | 86.15 82.89 80.50 |
BJ-2 imagery | RFGASVM SVM (all features) RFSVM | 89.51 78.67 80.10 | 88.12 77.50 79.1 | 88.81 78.08 79.60 |
UAV imagery | RFGASVM SVM (all features) RFSVM | 92.25 86.51 87.35 | 90.05 78.81 85.0 | 91.14 82.48 86.41 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Zhang, R.; Wang, S.; Wang, F. Feature Selection Method Based on High-Resolution Remote Sensing Images and the Effect of Sensitive Features on Classification Accuracy. Sensors 2018, 18, 2013. https://doi.org/10.3390/s18072013
Zhou Y, Zhang R, Wang S, Wang F. Feature Selection Method Based on High-Resolution Remote Sensing Images and the Effect of Sensitive Features on Classification Accuracy. Sensors. 2018; 18(7):2013. https://doi.org/10.3390/s18072013
Chicago/Turabian StyleZhou, Yi, Rui Zhang, Shixin Wang, and Futao Wang. 2018. "Feature Selection Method Based on High-Resolution Remote Sensing Images and the Effect of Sensitive Features on Classification Accuracy" Sensors 18, no. 7: 2013. https://doi.org/10.3390/s18072013
APA StyleZhou, Y., Zhang, R., Wang, S., & Wang, F. (2018). Feature Selection Method Based on High-Resolution Remote Sensing Images and the Effect of Sensitive Features on Classification Accuracy. Sensors, 18(7), 2013. https://doi.org/10.3390/s18072013