A Novel Approach for Mapping Wheat Areas Using High Resolution Sentinel-2 Images
Abstract
:1. Introduction
2. Study Area
3. Material and Methods
3.1. Datasets and Preprocessing
3.1.1. Satellite Data
3.1.2. Ground Data
3.1.3. Temporal Profile Analysis
3.2. SEWMA Generation
3.2.1. Identification of Wheat Candidate Segments: First Phase
3.2.2. Identification of Wheat Segments: Second Phase
3.2.3. Validation
4. Results
4.1. Crops’ Temporal Profiles
4.2. SEWMA First Phase Preliminary Results
4.3. SEWMA Accuracy Assesment
4.4. Wheat Spatial Distribution
5. Discussion
5.1. Crops’ Temporal Profiles
5.2. SEWMA First Phase Preliminary Results
5.3. SEWMA Accuracy Assessment
5.4. Wheat Spatial Distribution
5.5. Strengths, Limitations and Future Directions
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Qadir, M.; Sharma, B.R.; Bruggeman, A.; Choukr-Allah, R.; Karajeh, F. Non-conventional water resources and opportunities for water augmentation to achieve food security in water scarce countries. Agric. Water Manag. 2007, 87, 2–22. [Google Scholar] [CrossRef]
- MoA Resultats Globaux du Module de Base du Recensement de L’agriculture. 2010. Available online: http://www.agriculture.gov.lb/Arabic/DataAndAgriStatistics/OverallAgriStatistics/Pages/default.aspx (accessed on 3 April 2018).
- Kussul, N.; Lavreniuk, M.; Skakun, S.; Shelestov, A. Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data. IEEE Geosci. Remote Sens. Lett. 2017, 14, 778–782. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Wu, Z. An automated cropland classification algorithm (ACCA) for Tajikistan by combining landsat, MODIS, and secondary data. Remote Sens. 2012, 4, 2890–2918. [Google Scholar] [CrossRef]
- Beziat, P.; Rivalland, V.; Tallec, T.; Jarosz, N.; Boulet, G.; Gentine, P.; Ceschia, E. Evaluation of a simple approach for crop evapotranspiration partitioning and analysis of the water budget distribution for several crop species. Agric. For. Meteorol. 2013, 177, 46–56. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Mignolet, C.; Mari, J.F.; Benot, M. Modeling the spatial distribution of crop sequences at a large regional scale using land-cover survey data: A case from France. Comput. Electron. Agric. 2014, 102, 51–63. [Google Scholar] [CrossRef]
- Wardlow, B.D.; Egbert, S.L. Large-area crop mapping using time-series MODIS 250m NDVI data: An assessment for the U.S. Central Great Plains. Remote Sens. Environ. 2008, 112, 1096–1116. [Google Scholar] [CrossRef]
- Zhang, C.; Xie, Z. Object-based vegetation mapping in the kissimmee river watershed using hymap data and machine learning techniques. Wetlands 2013, 33, 233–244. [Google Scholar] [CrossRef]
- Do Bendini, H.N.; Sanches, I.D.; Krting, T.S.; Fonseca, L.M.G.; Luiz, A.J.B.; Formaggio, A.R. Using Landsat 8 image time series for crop mapping in a region of Cerrado, Brazil. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2016, 41, 845–850. [Google Scholar] [CrossRef]
- Lobell, D.B.; Asner, G.P. Cropland distributions from temporal unmixing of MODIS data. Remote Sens. Environ. 2004, 93, 412–422. [Google Scholar] [CrossRef]
- Chang, J.; Hansen, M.C.; Pittman, K.; Carroll, M.; DiMiceli, C. Corn and soybean mapping in the United States using MODIS time-series data sets. Agron. J. 2007, 99, 1654–1664. [Google Scholar] [CrossRef]
- Brown, J.C.; Kastens, J.H.; Coutinho, A.C.; de Victoria, D.C.; Bishop, C.R. Classifying multiyear agricultural land use data from Mato Grosso using time-series MODIS vegetation index data. Remote Sens. Environ. 2013, 130, 39–50. [Google Scholar] [CrossRef]
- Wardlow, B.D.; Egbert, S.L.; Kastens, J.H. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. Remote Sens. Environ. 2007, 108, 290–310. [Google Scholar] [CrossRef] [Green Version]
- Arvor, D.; Jonathan, M.; Meirelles, M.S.P.; Dubreuil, V.; Durieux, L. Classification of MODIS EVI time series for crop mapping in the state of Mato Grosso, Brazil. Int. J. Remote Sens. 2011, 32, 7847–7871. [Google Scholar] [CrossRef]
- Hao, P.; Wang, L.; Zhan, Y.; Niu, Z. Using Moderate-Resolution Temporal NDVI Profiles for High-Resolution Crop Mapping in Years of Absent Ground Reference Data: A Case Study of Bole and Manas Counties in Xinjiang, China. ISPRS Int. J. Geo-Inf. 2016, 5, 67. [Google Scholar] [CrossRef]
- Asgarian, A.; Soffianian, A.; Pourmanafi, S. Crop type mapping in a highly fragmented and heterogeneous agricultural landscape: A case of central Iran using multi-temporal Landsat 8 imagery. Comput. Electron. Agric. 2016, 127, 531–540. [Google Scholar] [CrossRef]
- Aggarwal, R.; Kumar, A.; Raju, P.L.N.; Murthy, Y.V.N.K. Gaussian kernel based classification approach for wheat identification. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences—ISPRS Archives, Hyderabad, India, 9–12 December 2014; Volume XL-8, pp. 671–676. [Google Scholar]
- Inglada, J.; Vincent, A.; Arias, M.; Marais-Sicre, C. Improved early crop type identification by joint use of high temporal resolution SAR and optical image time series. Remote Sens. 2016, 8, 362. [Google Scholar] [CrossRef]
- McNairn, H.; Champagne, C.; Shang, J.; Holmstrom, D.; Reichert, G. Integration of optical and Synthetic Aperture Radar (SAR) imagery for delivering operational annual crop inventories. ISPRS J. Photogramm. Remote Sens. 2009, 64, 434–449. [Google Scholar] [CrossRef]
- Immitzer, M.; Vuolo, F.; Atzberger, C. First experience with Sentinel-2 data for crop and tree species classifications in central Europe. Remote Sens. 2016, 8, 166. [Google Scholar] [CrossRef]
- Zhong, L.; Gong, P.; Biging, G.S. Efficient corn and soybean mapping with temporal extendability: A multi-year experiment using Landsat imagery. Remote Sens. Environ. 2014, 140, 1–13. [Google Scholar] [CrossRef]
- Vaudour, E.; Noirot-Cosson, P.E.; Membrive, O. Early-season mapping of crops and cultural operations using very high spatial resolution Pléiades images. Int. J. Appl. Earth Obs. Geoinf. 2015, 42, 128–141. [Google Scholar] [CrossRef]
- Skakun, S.; Franch, B.; Vermote, E.; Roger, J.C.; Becker-Reshef, I.; Justice, C.; Kussul, N. Early season large-area winter crop mapping using MODIS NDVI data, growing degree days information and a Gaussian mixture model. Remote Sens. Environ. 2017, 195, 244–258. [Google Scholar] [CrossRef]
- Darwish, T.M.; Jomaa, I.; Awad, M.; Boumetri, R. Preliminary contamination hazard assessment of land ressources in central bekaa plain of Lebanon. Leban. Sci. J. 2008, 9, 3–15. [Google Scholar]
- USAID Litani River Basin Management Support Program-Land Use Crop Classification Analysis for Upper Litani River Basin. Available online: http://www.databank.com.lb/docs/Land%20use%20and%20crop%20classification%20analysis%20for%20the%20upper%20Litani%20River%20Basin%2DFeb%202012%2Epdf (accessed on 3 May 2018).
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Europe’s Copernicus Website. Available online: https://scihub.copernicus.eu (accessed on 13 February 2018).
- Goswami, S.; Gamon, J.; Vargas, S.; Tweedie, C. Relationships of NDVI, Biomass, and Leaf Area Index (LAI) for six key plant species in Barrow, Alaska. PeerJ 2015, 1–17. [Google Scholar] [CrossRef]
- Gates, D.M.; Keegan, H.J.; Schleter, J.C.; Weidner, V.R. Spectral Properties of Plants. Appl. Opt. 1965, 4, 11. [Google Scholar] [CrossRef]
- Turner, D.P.; Cohen, W.B.; Kennedy, R.E.; Fassnacht, K.S.; Briggs, J.M. Relationships between leaf area index and Landsat TM spectral vegetation indices across three temperate zone sites. Remote Sens. Environ. 1999, 70, 52–68. [Google Scholar] [CrossRef]
- Law, B.; Waring, R. Remote sensing of leaf area index and radiation intercepted by understorey vegetation. Ecol. Appl. 1994, 4, 272–279. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Di, K.; Wang, J.; Ma, R.; Li, R. Automatic shoreline extraction from highresolution IKONOS satellite imagery. ASPRS Annu. Conf. Proc. 2003, 130, 1–4. [Google Scholar] [CrossRef]
- Tao, W.; Jin, H.; Zhang, Y. Color image segmentation based on mean shift and normalized cuts. IEEE Trans. Syst. Man. Cybern. B Cybern. 2007, 37, 1382–1389. [Google Scholar] [CrossRef] [PubMed]
- Fukunaga, K.; Hostetler, L.D. The Estimation of the Gradient of a Density Function, with Applications in Pattern Recognition. IEEE Trans. Inf. Theory 1975, 21, 32–40. [Google Scholar] [CrossRef]
- Development Team OTB the Orfeo ToolBox Cookbook, a Guide for Non-Developers Updated for OTB-4.0. 2014. Available online: https://www.orfeo-toolbox.org/packages/archives/Doc/CookBook-4.0.0.pdf (accessed on 3 May 2018).
- QGIS Development Team 2018. Available online: https://www.osgeo.org/projects/qgis/ (accessed on 25 June 2018).
- Optimising Irrigation Practices of Durum Wheat and Spring Barley to Cope with Climate Change Effects in Jordan. Available online: https://www.researchgate.net/publication/280489038_Optimising_irrigation_practices_of_durum_wheat_and_spring_barley_to_cope_with_climate_change_effects_in_Jordan (accessed on 3 May 2018).
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef] [Green Version]
- Knipling, E. Physical and Physiological Basis for the Reflectance of Visible and Near Infrared Radiation from Vegetation. Remote Sens. Environ. 1970, 1, 155–159. [Google Scholar] [CrossRef]
- Rabideau, G.S.; French, C.S.; Holt, A.S. The Absorption and Reflection Spectra of Leaves, Chloroplast Suspensions, and Chloroplast Fragments as Measured in an Ulbricht Sphere. Am. J. Bot. 1946, 33, 769. [Google Scholar] [CrossRef]
- Grime, J.P. The C-S-R model of primary plant strategies—Origins, implications and tests. In Plant Evolutionary Biology; Springer: Dordrecht, The Netherlands, 1988; pp. 371–393. [Google Scholar]
- Harris, D. The effects of manure, genotype, seed priming, depth and date of sowing on the emergence and early growth Sorghum bicolor (L.) Moench in semi-arid Botswana. Soil Tillage Res. 1996, 40, 73–88. [Google Scholar] [CrossRef]
- Dasberg, S.; Mendel, K. The Effect of Soil Water and Aeration on Seed Germination. J. Exp. Bot. 1971, 22, 992–998. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhang, S.; Shan, X.; Zhu, Y.G. Toxicity of arsenate and arsenite on germination, seedling growth and amylolytic activity of wheat. Chemosphere 2005, 61, 293–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vallavieille-Pope, C. De; Huber, L.; Leconte, M.; Goyeau, H. Comparative effects of temperature and interrupted wet periods on germination, penetration, and infection of Puccinia recondita f. sp. tritici and P. striiformis on. Phytopathology 1995, 85, 409–415. [Google Scholar] [CrossRef]
- Lunn, G.D.; Kettlewell, P.S.; Major, B.J.; Scott, R.K. Variation in dormancy duration of the U.K. wheat cultivar Hornet due to environmental conditions during grain development. Euphytica. 2002, 126, 89–97. [Google Scholar] [CrossRef]
- Zhong, L.; Gong, P.; Biging, G.S. Phenology-based Crop Classification Algorithm and its implications on Agricultural Water Use Assessments in California’s Central Valley. Photogramm. Eng. Remote Sens. 2012, 78, 799–813. [Google Scholar] [CrossRef]
- Jakubauskas, M.E.; Legates, D.R.; Kastens, J.H. Crop identification using harmonic analysis oftime-series AVHRR NDVI data. Comput. Electron. Agric. 2002, 37, 127–139. [Google Scholar] [CrossRef]
- Benedetti, R.; Rossini, P.; Taddei, R. Vegetation classification in the middle Mediterranean area by satellite data. Int. J. Remote Sens. 1994, 15, 517–520. [Google Scholar] [CrossRef]
- Atzberger, C.; Rembold, F. Mapping the spatial distribution of winter crops at sub-pixel level using AVHRR NDVI time series and neural nets. Remote Sens. 2013, 5, 1335–1354. [Google Scholar] [CrossRef] [Green Version]
- Hochheim, K.P.; Barber, D.G. Spring wheat yield estimation for western Canada using NOAA NDVI data. Can. J. Remote Sens. 1998, 24, 17–27. [Google Scholar] [CrossRef]
- Akram, M. Growth and Yield Components of Wheat Under Water. Bangladesh J. Agric. Res. 2011, 36, 455–468. [Google Scholar] [CrossRef]
- ESA Website. Available online: https://sentinel.esa.int/documents/247904/685211/Sentinel-2-Data-Quality-Report (accessed on 4 March 2018).
- Gascon, F.; Bouzinac, C.; Thépaut, O.; Jung, M.; Francesconi, B.; Louis, J.; Lonjou, V.; Lafrance, B.; Massera, S.; Gaudel-Vacaresse, A.; et al. Copernicus Sentinel-2A calibration and products validation status. Remote Sens. 2017, 9, 584. [Google Scholar] [CrossRef]
- Skakun, S.; Vermote, E.; Roger, J.C.; Justice, C. Multispectral Misregistration of Sentinel-2A Images: Analysis and Implications for Potential Applications. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2408–2412. [Google Scholar] [CrossRef] [PubMed]
- Skakun, S.; Roger, J.C.; Vermote, E.F.; Masek, J.G.; Justice, C.O. Automatic sub-pixel co-registration of Landsat-8 Operational Land Imager and Sentinel-2A Multi-Spectral Instrument images using phase correlation and machine learning based mapping. Int. J. Digit. Earth 2017, 10, 1253–1269. [Google Scholar] [CrossRef]
- Yan, L.; Roy, D.; Zhang, H.; Li, J.; Huang, H. An automated approach for sub-pixel registration of Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multi Spectral Instrument (MSI) imagery chyba tak DO PREZENTACJI. Remote Sens. 2016, 8, 520. [Google Scholar] [CrossRef]
- Scheffler, D.; Hollstein, A.; Diedrich, H.; Segl, K.; Hostert, P. AROSICS: An automated and robust open-source image co-registration software for multi-sensor satellite data. Remote Sens. 2017, 9, 676. [Google Scholar] [CrossRef]
- Abdallah, L.; Shimshoni, I. Mean Shift Clustering Algorithm for Data with Missing Values. In Proceedings of the International Conference on Data Warehousing and Knowledge, Munich, Germany, 2–4 September 2014; pp. 426–438. [Google Scholar]
Sentinel-2 Image Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
2016 DOY | 17 | 47 | 67 | 87 | 97 | 107 | 117 | 137 |
2017 DOY | 11 | 41 | 51 | 71 | 101 | 111 | 131 | 151 |
Crop | 2016 | 2017 |
---|---|---|
Wheat | 216 | 348 |
Barley | 59 | 13 |
Triticale | 64 | 17 |
Spring potato | 111 | 117 |
Spring vegetables | 14 | 20 |
Fruit trees | 157 | 190 |
Vineyards | 29 | 33 |
Alfalfa | 11 | 23 |
Bare soil | 7 | 8 |
Total | 668 | 769 |
Date Year | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
2016 | DOY 17 | DOY 47 a = 1.211 b = 0.111 | DOY 67 a = 0.670 b = 0.492 | DOY 87 a = 0.459 b = 0.516 | DOY 97 a = 0.673 b = 0.287 | DOY 107 a = 0.442 b = 0.566 | DOY 117 a = 1.055 b = 0.077 | DOY 137 a = 1.615 b = −0.773 |
2017 | DOY 11 | DOY 41 a = 0.724 b = 0.138 | DOY 51 a = 1.042 b = 0.008 | DOY 71 a = 0.893 b = 0.296 | DOY 101 a = 0.268 b = 0.464 | DOY 111 a = 0.759 b = 0.408 | DOY 131 a = 1.041 b = 0.012 | DOY 151 a = 1.426 b = −0.674 |
Threshold SEWMA | μ + 1σ | μ + 1.5σ | μ + 2σ |
---|---|---|---|
Trained by 2016 and validated by 2017 | 84.0% | 87.0% | 84.7% |
Trained by 2017 and validated by 2016 | 80.4% | 82.6% | 79.2% |
ClassValue | Not Wheat | Wheat | Total | User Accuracy |
---|---|---|---|---|
Not wheat | 331 | 104 | 435 | 0.761 |
Wheat | 17 | 244 | 261 | 0.935 |
Total | 348 | 348 | 696 | |
Producer Accuracy | 0.951 | 0.701 | 0.826 |
ClassValue | Not Wheat | Wheat | Total | User Accuracy |
---|---|---|---|---|
Not wheat | 189 | 29 | 218 | 0.867 |
Wheat | 27 | 187 | 214 | 0.874 |
Total | 216 | 216 | 432 | |
Producer Accuracy | 0.875 | 0.866 | 0.870 |
Year | Wheat Area Estimated from SEWMA (ha) (Error-Corrected Estimates) | Wheat Area by Lebanese Government (ha) |
---|---|---|
2016 | 11,063 ± 1309 | 9073.4 |
2017 | 7605 ± 1184 | 7877.8 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasrallah, A.; Baghdadi, N.; Mhawej, M.; Faour, G.; Darwish, T.; Belhouchette, H.; Darwich, S. A Novel Approach for Mapping Wheat Areas Using High Resolution Sentinel-2 Images. Sensors 2018, 18, 2089. https://doi.org/10.3390/s18072089
Nasrallah A, Baghdadi N, Mhawej M, Faour G, Darwish T, Belhouchette H, Darwich S. A Novel Approach for Mapping Wheat Areas Using High Resolution Sentinel-2 Images. Sensors. 2018; 18(7):2089. https://doi.org/10.3390/s18072089
Chicago/Turabian StyleNasrallah, Ali, Nicolas Baghdadi, Mario Mhawej, Ghaleb Faour, Talal Darwish, Hatem Belhouchette, and Salem Darwich. 2018. "A Novel Approach for Mapping Wheat Areas Using High Resolution Sentinel-2 Images" Sensors 18, no. 7: 2089. https://doi.org/10.3390/s18072089
APA StyleNasrallah, A., Baghdadi, N., Mhawej, M., Faour, G., Darwish, T., Belhouchette, H., & Darwich, S. (2018). A Novel Approach for Mapping Wheat Areas Using High Resolution Sentinel-2 Images. Sensors, 18(7), 2089. https://doi.org/10.3390/s18072089