Next Article in Journal
Improving Classification Algorithms by Considering Score Series in Wireless Acoustic Sensor Networks
Next Article in Special Issue
A Novel and Safe Approach to Simulate Cutting Movements Using Ground Reaction Forces
Previous Article in Journal
Evaluation of Hydrocarbon Soil Pollution Using E-Nose
Previous Article in Special Issue
Using Temporal Covariance of Motion and Geometric Features via Boosting for Human Fall Detection
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Correction

Correction: Rucco, R.; et al. Type and Location of Wearable Sensors for Monitoring Falls during Static and Dynamic Tasks in Healthy Elderly: A Review. Sensors 2018, 18, 1613

by
Rosaria Rucco
1,2,*,
Antonietta Sorriso
3,
Marianna Liparoti
1,2,
Giampaolo Ferraioli
4,
Pierpaolo Sorrentino
2,3,
Michele Ambrosanio
3 and
Fabio Baselice
3
1
Department of Motor Sciences and Wellness, University of Naples “Parthenope”, 80133 Naples, Italy
2
IDC Hermitage Capodimonte, 80133 Naples, Italy
3
Department of Engineering, University of Naples “Parthenope”, 80133 Naples, Italy
4
Department of Science and Technologies, University of Naples “Parthenope”, 80133 Naples, Italy
*
Author to whom correspondence should be addressed.
Sensors 2018, 18(8), 2462; https://doi.org/10.3390/s18082462
Submission received: 23 July 2018 / Revised: 26 July 2018 / Accepted: 27 July 2018 / Published: 30 July 2018
(This article belongs to the Special Issue Sensors for Gait, Posture, and Health Monitoring)
The authors wish to make a correction to their paper [1]. The following Table 1 should be replaced with the table shown below it.
The authors would like to apologize for any inconvenience caused to the readers by these changes. The changes do not affect the scientific results. The manuscript will be updated and the original will remain online on the article webpage, with a reference to this Correction.

References

  1. Rucco, R.; Sorriso, A.; Liparoti, M.; Ferraioli, G.; Sorrentino, P.; Ambrosanio, M.; Baselice, F. Type and Location of Wearable Sensors for Monitoring Falls during Static and Dynamic Tasks in Healthy Elderly: A Review. Sensors 2018, 18, 1613. [Google Scholar] [CrossRef] [PubMed]
Table 1. Summary of the wearable sensor-based systems for stability control in elderly people for the considered bibliographic research. Task types include the main activities proposed in the articles both for the dynamic as well as static analyses and reported in Tables 2 and 3. In some cases, both methodologies have been adopted. The manuscripts have been classified according to the main identified aims, i.e. fall risk assessment (FRA), fall detection (FD) and fall prevention (FP). Acronyms for the Validation column: ACC = accuracy, Sens = sensitivity, Spec = specificity, PFA = Probability of false alarm, Pc = Probability of correct decision. Acronyms for the Analysis column: Dyn = Dynamic.
Table 1. Summary of the wearable sensor-based systems for stability control in elderly people for the considered bibliographic research. Task types include the main activities proposed in the articles both for the dynamic as well as static analyses and reported in Tables 2 and 3. In some cases, both methodologies have been adopted. The manuscripts have been classified according to the main identified aims, i.e. fall risk assessment (FRA), fall detection (FD) and fall prevention (FP). Acronyms for the Validation column: ACC = accuracy, Sens = sensitivity, Spec = specificity, PFA = Probability of false alarm, Pc = Probability of correct decision. Acronyms for the Analysis column: Dyn = Dynamic.
Author (Year)Participants
(Number/Age)
Number of
Sensors
Sensor TypeSensor PositionTask TypeGoalsValidationAnalysis
Aloqlah (2010) [63](3/n.a.)1AHDSTNFP, FRAACC ≈ 95%Both
Aminian (2011) [42](10/26.1 ± 2.8)&(10/71 ± 4.6)3A, P, GFTSWFPSens = 93%, Spec = 100%Dyn
Bertolotti (2016) [64](18/n.a.)4A, P, G, MTR, ARSU, SD, BFDn.a.Dyn
Bounyong (2016) [43](52/72 ± 6.1)2ALGSWFRAACC = 65%Dyn
Caldara (2015) [65](5/31 ± 6)&(4/70.8 ± 7)4A, P, G, MTRSWFD, FP, FRAn.a.Dyn
Chen (2010) [66](1/n.a.)1AFTSWFPPc = 86%Dyn
Cheng (2013) [67](10/24 ± 2)2A, EMGLGSW, SU, SDFDSens = 95.33%, Spec = 97.66%Dyn
Cola (2015) [68](30/32.9 ± 12.2)1ATRSWFD, FRAACC = 84%Dyn
Crispim-Junior (2013) [69](29/65)1CEXTSW, DAFDSens = 88.33%Dyn
Curone (2010) [70](6/29.5)1ATRSU, SD, SWFDPc ≥ 90%Both
De la Guia Solaz (2010) [71](10/23.7 ± 2.2)&(10/77.2 ± 4.3)2A, PTRSU, SD, SW, FFDACC = 100%, Pc = 93%, PFA = 29%Dyn
Deshmukh (2012) [40](4/n.a.)3A, G, MLGSTNFRAn.a.Static
Di Rosa (2017) [72](29/71.1 ± 6.9)2A, PFTDAFRAACC = 95%Dyn
Diraco (2014) [73](18/38 ± 6)1TEXTSTNFDPc > 83%Static
Fernandez-Luque (2010) [74](n.a./n.a.)4A, P, M, IREXTDAFD, FRAn.a.Dyn
Ganea (2012) [75](35/54.2 ± 5.7)2A, GTR, LGSU, SDFD, FP, FRAACC = 95%Dyn
Gopalai (2011) [76](12/23.45 ± 1.45)2A, GTRSTNFP, FRAn.a.n.a.
Greene (2011) [77](114/71 ± 6.6)2A, GLGSWFDn.a.Dyn
Hegde (2015) [78](n.a./n.a.)3A, P, GFTn.a.FD, FRAn.a.Dyn
Howcroft (2017) [79](100/75.5 ± 6.7)2A, PTR, HD, LG, FTSWFP, FRAACC = 78%, Sens = 26%, Spec = 95%Dyn
Howcroft (2017) [80](76/75.2 ± 6.6)2A, PTR, HD, LG, FTSW, DWFP, FRAACC = 57%, Sens = 43%, Spec = 65%Dyn
Howcroft (2016) [81](100/75.5 ± 6.7)2A, PTR, HD, LG, FTSW, DWFD, FP, FRAn.a.Dyn
Jian (2015) [82](8/33)2A, GTRFFDn.a.Dyn
Jiang (2011) [83](48/40)3A, P, Cn.a.SW, STNFP, FRAn.a.Dyn
Karel (2010) [84](41/24 ± 4)&(50/67 ± 5)1ATRSWFDSens = 98.4%, Spec = 99.9%Dyn
Micó-Amigo (2016) [85](20/73.7 ± 7.9)2A, GTR, LGSWFD, FP, FRASens = 92.6 ÷ 98.2%Dyn
Najafi (2002) [86](11/79 ± 6)1GTRSU, SDFRASens ≥ 95%, Spec ≥ 95%Dyn
Ozcan (2016) [87](n.a./n.a.)2A, GTRn.a.FDSens = 6.36%, Spec = 92.45%Static
Paoli (2011) [88](1/n.a.)>4A, P, M, IRTRDAFDn.a.Both
Qu (2016) [89](10/25)1ATRFFDROC curveDyn
Sazonov (2013) [90](1/n.a.)2A, PFTSTN, STT, SWFD, FRAn.a.Both
Simila (2017) [41](42/74.17 ± 5.57)1ATRSWFP, FRASens = 80%, Spec = 73%Dyn
Stone (2013) [91](15/67)1Kn.a.SWFDn.a.Dyn
Szurley (2009) [92](n.a./n.a.)1ATRn.a.FPn.a.Dyn
Tamura (2005) [93](6/66.3 ± 5)1ATRSU, SDFDPc = 86%Dyn
Tang (2016) [94](1/n.a.)1RLGSW, STRFD, FPn.a.Dyn
Turcato (2010) [39](5/26 ± 6)2A, WTRSTNFPACC = 55–70%Static
Van de Ven (2015) [95](1 /n.a.)2A, PFTSTN, STTFDn.a.Dyn
van Schooten (2016) [96](319/75.5 ± 6.9)1ATRDAFD, FP, FRAn.a.Dyn
Vincenzo (2016) [97](57/74.35 ± 6.53)1ATRSTNFDn.a.Static
Yao (2015) [98](9/25)3A, G, MTRSW, F, RFD, FP, FRAn.a.Dyn
Yuan (2015) [99](n.a./n.a.)2A, GTRF, STT, LFDn.a.Both
Table 1. Summary of the wearable sensor-based systems for stability control in elderly people for the considered bibliographic research. Task types include the main activities proposed in the articles both for the dynamic as well as static analyses and reported in Tables 2 and 3. In some cases, both methodologies have been adopted. The manuscripts have been classified according to the main identified aims, i.e. fall risk assessment (FRA), fall detection (FD) and fall prevention (FP). Acronyms for the Validation column: ACC = accuracy, Sens = sensitivity, Spec = specificity, PFA = Probability of false alarm, Pc = Probability of correct decision. Acronyms for the Analysis column: Dyn = Dynamic.
Table 1. Summary of the wearable sensor-based systems for stability control in elderly people for the considered bibliographic research. Task types include the main activities proposed in the articles both for the dynamic as well as static analyses and reported in Tables 2 and 3. In some cases, both methodologies have been adopted. The manuscripts have been classified according to the main identified aims, i.e. fall risk assessment (FRA), fall detection (FD) and fall prevention (FP). Acronyms for the Validation column: ACC = accuracy, Sens = sensitivity, Spec = specificity, PFA = Probability of false alarm, Pc = Probability of correct decision. Acronyms for the Analysis column: Dyn = Dynamic.
Author (Year)Participants
(Number/Age)
Number of
Sensors
Sensor TypeSensor PositionTask TypeGoalsValidationAnalysis
Aloqlah (2010) [63](3/n.a.)1AHDSTNFP, FRAACC ≈ 95%Both
Aminian (2011) [42](10/26.1 ± 2.8)&(10/71 ± 4.6)3A, P, GFTSWFPSens = 93%, Spec = 100%Dyn
Bertolotti (2016) [64](18/n.a.)4A, P, G, MTR, ARSU, SD, BFDn.a.Dyn
Bounyong (2016) [43](52/72 ± 6.1)2ALGSWFRAACC = 65%Dyn
Caldara (2015) [65](5/31 ± 6)&(4/70.8 ± 7)4A, P, G, MTRSWFD, FP, FRAn.a.Dyn
Chen (2010) [66](1/n.a.)1AFTSWFPPc = 86%Dyn
Cheng (2013) [67](10/24 ± 2)2A, EMGLGSW, SU, SDFDSens = 95.33%, Spec = 97.66%Dyn
Cola (2015) [68](30/32.9 ± 12.2)1ATRSWFD, FRAACC = 84%Dyn
Crispim-Junior (2013) [69](29/65)1CEXTSW, DAFDSens = 88.33%Dyn
Curone (2010) [70](6/29.5)1ATRSU, SD, SWFDPc ≥ 90%Both
De la Guia Solaz (2010) [71](10/23.7 ± 2.2)&(10/77.2 ± 4.3)2A, PTRSU, SD, SW, FFDACC 100%, Pc = 93%, PFA = 29%Dyn
Deshmukh (2012) [40](4/n.a.)3A, G, MLGSTNFRAn.a.Static
Di Rosa (2017) [72](29/71.1 ± 6.9)2A, PFTDAFRAACC = 95%Dyn
Diraco (2014) [73](18/38 ± 6)1TEXTSTNFDPc > 83%Static
Fernandez-Luque (2010) [74](n.a./n.a.)4A, P, M, IREXTDAFD, FRAn.a.Dyn
Ganea (2012) [75](35/54.2 ± 5.7)2A, GTR, LGSU, SDFD, FP, FRAACC = 95%Dyn
Gopalai (2011) [76](12/23.45 ± 1.45)2A, GTRSTNFP, FRAn.a.n.a.
Greene (2011) [77](114/71 ± 6.6)2A, GLGSWFDn.a.Dyn
Hegde (2015) [78](n.a./n.a.)3A, P, GFTn.a.FD, FRAn.a.Dyn
Howcroft (2017) [79](100/75.5 ± 6.7)2A, PTR, HD, LG, FTSWFP, FRAACC = 78%, Sens = 26%, Spec = 95%Dyn
Howcroft (2017) [80](76/75.2 ± 6.6)2A, PTR, HD, LG, FTSW, DWFP, FRAACC = 57%, Sens = 43%, Spec = 65%Dyn
Howcroft (2016) [81](100/75.5 ± 6.7)2A, PTR, HD, LG, FTSW, DWFD, FP, FRAn.a.Dyn
Jian (2015) [82](8/33)2A, GTRFFDn.a.Dyn
Jiang (2011) [83](48/40)3A, P, Cn.a.SW, STNFP, FRAn.a.Dyn
Karel (2010) [84](41/24 ± 4)&(50/67 ± 5)1ATRSWFDSens = 98.4%, Spec =99.9%Dyn
Micó-Amigo (2016) [85](20/73.7 ± 7.9)2A, GTR, LGSWFD, FP, FRAn.a.Dyn
Najafi (2002) [86](11/79 ± 6)1GTRSU, SDFRASens ≥ 95%, Spec ≥ 95%Dyn
Ozcan (2016) [87](n.a./n.a.)2A, GTRn.a.FDSens = 96.36%, Spec = 92.45%Static
Paoli (2011) [88](1/n.a.)>4A, P, M, IRTRDAFDn.a.Both
Qu (2016) [89](10/25)1ATRFFDROC curveDyn
Sazonov (2013) [90](1/n.a.)2A, PFTSTN, STT, SWFD, FRAn.a.Both
Simila (2017) [41](42/74.17 ± 5.57)1ATRSWFP, FRASens = 80%, Spec = 73%Dyn
Stone (2013) [91](15/67)1Kn.a.SWFDn.a.Dyn
Szurley (2009) [92](n.a./n.a.)1ATRn.a.FPn.a.Dyn
Tamura (2005) [93](6/66.3 ± 5)1ATRSU, SDFDPc = 86%Dyn
Tang (2016) [94](1/n.a.)1RLGSW, STRFD, FPn.a.Dyn
Turcato (2010) [39](5/26 ± 6)2A, WTRSTNFPACC = 55–70%Static
Van de Ven (2015) [95](1 /n.a.)2A, PFTSTN, STTFDn.a.Dyn
van Schooten (2016) [96](319/75.5 ± 6.9)1ATRDAFD, FP, FRAn.a.Dyn
Vincenzo (2016) [97](57/74.35 ± 6.53)1ATRSTNFDn.a.Static
Yao (2015) [98](9/25)3A, G, MTRSW, F, RFD, FP, FRAn.a.Dyn
Yuan (2015) [99](n.a./n.a.)2A, GTRF, STT, LFDn.a.Both

Share and Cite

MDPI and ACS Style

Rucco, R.; Sorriso, A.; Liparoti, M.; Ferraioli, G.; Sorrentino, P.; Ambrosanio, M.; Baselice, F. Correction: Rucco, R.; et al. Type and Location of Wearable Sensors for Monitoring Falls during Static and Dynamic Tasks in Healthy Elderly: A Review. Sensors 2018, 18, 1613. Sensors 2018, 18, 2462. https://doi.org/10.3390/s18082462

AMA Style

Rucco R, Sorriso A, Liparoti M, Ferraioli G, Sorrentino P, Ambrosanio M, Baselice F. Correction: Rucco, R.; et al. Type and Location of Wearable Sensors for Monitoring Falls during Static and Dynamic Tasks in Healthy Elderly: A Review. Sensors 2018, 18, 1613. Sensors. 2018; 18(8):2462. https://doi.org/10.3390/s18082462

Chicago/Turabian Style

Rucco, Rosaria, Antonietta Sorriso, Marianna Liparoti, Giampaolo Ferraioli, Pierpaolo Sorrentino, Michele Ambrosanio, and Fabio Baselice. 2018. "Correction: Rucco, R.; et al. Type and Location of Wearable Sensors for Monitoring Falls during Static and Dynamic Tasks in Healthy Elderly: A Review. Sensors 2018, 18, 1613" Sensors 18, no. 8: 2462. https://doi.org/10.3390/s18082462

APA Style

Rucco, R., Sorriso, A., Liparoti, M., Ferraioli, G., Sorrentino, P., Ambrosanio, M., & Baselice, F. (2018). Correction: Rucco, R.; et al. Type and Location of Wearable Sensors for Monitoring Falls during Static and Dynamic Tasks in Healthy Elderly: A Review. Sensors 2018, 18, 1613. Sensors, 18(8), 2462. https://doi.org/10.3390/s18082462

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop