Sensors for Fetal Hypoxia and Metabolic Acidosis: A Review
Abstract
:1. Introduction and Clinical Motivation
2. Fetus-Mother Physiology
2.1. Metabolic Pathways During Blood Oxygenation and Deoxygenation
2.2. Physiological Effects of Lack of Oxygenation in the Fetus
- Metabolic acidosis occurs when the fetus receives inadequate oxygen to maintain normal metabolism, which forces a switch to anaerobic metabolism. This results in the formation of lactic acid and, when the buffering capacity of the tissues is exhausted, a decrease in pH. Since a lack of oxygen eventually leads to cell death, prolonged exposure to this situation can lead to postnatal neurological complications such as short-term hypoxic-ischemic encephalopathy or long-term disabilities such as spastic quadriplegia [28]. Profound intrapartum asphyxia can result in stillbirth [31] or neonatal death [4,32].
3. Measurands for the Detection of Fetal Hypoxia
3.1. pH
3.2. Base Deficit (BD)
3.3. Lactate
4. Clinical Device Requirements for Ideal Fetal Hypoxia Monitoring Sensor
4.1. Accuracy of Measurement
4.2. Frequency of Monitoring
4.3. Biocompatibility
4.3.1. Risk to the Mother
4.3.2. Risk to the Fetus
4.4. Regulatory Device Considerations
5. Enzyme-Based Lactate Sensors
5.1. Enzymes
5.1.1. Lactate Oxidase (LOx)
5.1.2. Lactate Dehydrogenase
5.2. Immobilization Methods
5.2.1. Adsorption
5.2.2. Entrapment and Encapsulation
5.2.3. Cross-Linking
5.2.4. Immobilization for FBS Lactate Sensors
6. Lactate Sensor Transduction Mechanisms
6.1. Optical Sensing
6.2. Electrochemical Sensing
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ayres-de-Campos, D.; Spong, C.Y.; Chandraharan, E.; Arulkumaran, S. FIGO consensus guidelines on intrapartum fetal monitoring: Physiology of fetal oxygenation and the main goals of intrapartum fetal monitoring. Int. J. Gynecol. Obstet. 2015, 131, 5–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hon, E.H. Instrumentation of fetal heart rate and fetal electrocardiography. II. A vaginal electrode. Am. J. Obstet. Gynecol. 1963, 86, 772–784. [Google Scholar] [CrossRef]
- Hon, E.H. The Classification of Fetal Heart Rate. 1. A Working Classification. Obstet. Gynecol. 1963, 22, 137–146. [Google Scholar] [PubMed]
- NICE. Intrapartum Care: Care of Healthy Women and Their Babies During Childbirth; NICE: London, UK, 2017; ISBN 9781904752363. [Google Scholar]
- Pinas, A.; Chandraharan, E. Continuous cardiotocography during labour: Analysis, classification and management. Best Pract. Res. Clin. Obstet. Gynaecol. 2016, 30, 33–47. [Google Scholar] [CrossRef] [PubMed]
- Stout, M.J.; Cahill, A.G. Electronic Fetal Monitoring: Past, Present, and Future. Clin. Perinatol. 2011, 38, 127–142. [Google Scholar] [CrossRef] [PubMed]
- Donker, D.K.; van Geijn, H.P.; Hasman, A. Interobserver variation in the assessment of fetal heart rate recordings. Eur. J. Obstet. Gynecol. Reprod. Biol. 1993, 52, 21–28. [Google Scholar] [CrossRef]
- Alfirevic, Z.; Devane, D.; Gyte, G.M.L.; Cuthbert, A. Continuous cardiotocography (CTG) as a form of electronic fetal monitoring (EFM) for fetal assessment during labour. Cochrane Database Syst. Rev. 2017, 2017. [Google Scholar] [CrossRef] [PubMed]
- Kawakita, T.; Reddy, U.; Landy, H.; Iqbal, S.; Huang, C.-C.; Grantz, K. Neonatal complications associated with use of fetal scalp electrode: A retrospective study. BJOG An Int. J. Obstet. Gynaecol. 2016, 123, 1797–1803. [Google Scholar] [CrossRef] [PubMed]
- Kanayama, N.; Niwayama, M. Examiner’s finger-mounted fetal tissue oximetry. J. Biomed. Opt. 2014, 19, 067008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uchida, T.; Kanayama, N.; Mukai, M.; Furuta, N.; Itoh, H.; Suzuki, H.; Niwayama, M. Examiner’s finger-mounted fetal tissue oximetry: A preliminary report on 30 cases. J. Perinat. Med. 2015, 2015. [Google Scholar] [CrossRef] [PubMed]
- Nijland, M.J.M.; Shankar, U.; Iyer, V.; Ross, M.G. Assessment of fetal scalp oxygen saturation determination in the sheep by transmission pulse oximetry. Am. J. Obstet. Gynecol. 2000, 183, 1549–1553. [Google Scholar] [CrossRef] [PubMed]
- East, C.E.; Begg, L.; Colditz, P.B.; Lau, R. Fetal pulse oximetry for fetal assessment in labour. Cochrane Database Syst. Rev. 2014, 10. [Google Scholar] [CrossRef] [PubMed]
- Amer-Wåhlin, I.; Hellsten, C.; Norén, H.; Hagberg, H.; Herbst, A.; Kjellmer, I.; Lilja, H.; Lindoff, C.; Månsson, M.; Mårtensson, L.; et al. Cardiotocography only versus cardiotocography plus ST analysis of fetal electrocardiogram for intrapartum fetal monitoring: A Swedish randomised controlled trial. Lancet 2001, 358, 534–538. [Google Scholar] [CrossRef]
- Westgate, J.; Harris, M.; Curnow, J.S.H.; Greene, K.R. Randomised trial of cardiotocography alone or with ST waveform analysis for intrapartum monitoring. Lancet 1992, 340, 194–198. [Google Scholar] [CrossRef]
- Ojala, K.; Vaarasmaki, M.; Makikallio, K.; Valkama, M.; Tekay, A. A comparison of intrapartum automated fetal electrocardiography and conventional cardiotocography-a randomised controlled study. BJOG An Int. J. Obstet. Gynaecol. 2006, 113, 419–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vayssière, C.; David, E.; Meyer, N.; Haberstich, R.; Sebahoun, V.; Roth, E.; Favre, R.; Nisand, I.; Langer, B. A French randomized controlled trial of ST-segment analysis in a population with abnormal cardiotocograms during labor. Am. J. Obstet. Gynecol. 2007, 197. [Google Scholar] [CrossRef] [PubMed]
- Belfort, M.A.; Saade, G.R.; Thom, E.; Blackwell, S.C.; Reddy, U.M.; Thorp, J.M.; Tita, A.T.N.; Miller, R.S.; Peaceman, A.M.; McKenna, D.S.; et al. A Randomized Trial of Intrapartum Fetal ECG ST-Segment Analysis. N. Engl. J. Med. 2015, 373, 632–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saling, E. [Technic for the Endoscopic Micro-Sampling of Blood from the Fetus]. Geburtshilfe Frauenheilkd. 1964, 24, 464–469. [Google Scholar] [PubMed]
- Bretscher, J.; Saling, E. pH values in the human fetus during labor. Am. J. Obstet. Gynecol. 1967, 97, 906–911. [Google Scholar] [CrossRef]
- Fetal Monitoring in Practice, 4th ed.; Gibb, D.; Arulkumaran, S. (Eds.) Churchill Livingstone: London, UK, 2017; ISBN 9780702043482. [Google Scholar]
- Tuffnell, D.; Haw, W.; Wilkinson, K. How long does a fetal scalp blood sample take? BJOG An Int. J. Obstet. Gynaecol. 2006, 113, 332–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westgren, M.; Kruger, K.; Ek, S.; Grunevald, C.; Kublickas, M.; Naka, K.; Wolff, K.; Persson, B. Lactate compared with pH analysis at fetal scalp blood sampling: A prospective randomised study. Br. J. Obstet. Gynaecol. 1998, 105, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Lösch, A.; Kainz, C.; Kohlberger, P.; Heinze, G.; Hefler, L.; Lahodny, J.; Tempfer, C. Influence on fetal blood pH when adding amniotic fluid: An in vitro model. BJOG An Int. J. Obstet. Gynaecol. 2003, 110, 453–456. [Google Scholar] [CrossRef]
- Ridenour, R.V.; Gada, R.P.; Brost, B.C.; Karon, B.S. Comparison and validation of point of care lactate meters as a replacement for fetal pH measurement. Clin. Biochem. 2008, 41, 1461–1465. [Google Scholar] [CrossRef] [PubMed]
- Mowbray, D.; Nordström, L.; Ofunne, W.; Akhtar, S. Is it Time for UK Obstetricians to Accept Fetal Scalp Lactate as an Alternative to Scalp pH? R. Coll. Obstet. Gynaecol. 2015, 1–6. [Google Scholar]
- Kruger, K.; Hallberg, B.; Blennow, M.; Kublickas, M.; Westgren, M. Predictive value of fetal scalp blood lactate concentration and pH as markers of neurologic disability. Am. J. Obstet. Gynecol. 1999, 181, 1072–1078. [Google Scholar] [CrossRef]
- Ayres-De-Campos, D.; Spong, C.Y.; Chandraharan, E. FIGO consensus guidelines on intrapartum fetal monitoring: Cardiotocography. Int. J. Gynecol. Obstet. 2015, 131, 13–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fry, M. Essential Biochemistry for Medicine, 1st ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2010. [Google Scholar]
- Carbonne, B.; Pons, K.; Maisonneuve, E. Foetal scalp blood sampling during labour for pH and lactate measurements. Best Pract. Res. Clin. Obstet. Gynaecol. 2016, 30, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Office for National Statistics Office for National Statistics. Birth characteristics. Available online: https://www.ons.gov.uk/peoplepopulationandcommunity/%0Abirthsdeathsandmarriages/livebirths/datasets/%0Abirthcharacteristicsinenglandandwales (accessed on 21 January 2018).
- Office for National Statistics Office for National Statistics. Live births, neonatal and post neonatal deaths by selected causes mentioned on death certificate, England and Wales, 2001 to 2015. Available online: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/adhocs/006955livebirthsneonatalandpostneonataldeathsbyselectedcausesmentionedondeathcertificateenglandandwales2001to2015 (accessed on 21 January 2018).
- Saling, E.; Schneider, D. Biochemical supervision of the foetus during labour. J. Obstet. Gynaecol. Br. Commonw. 1967, 74, 799–811. [Google Scholar] [CrossRef] [PubMed]
- Yeh, P.; Emary, K.; Impey, L. The relationship between umbilical cord arterial pH and serious adverse neonatal outcome: Analysis of 51,519 consecutive validated samples. BJOG 2012, 119, 824–831. [Google Scholar] [CrossRef] [PubMed]
- Mittendorf, R.; Won, S.Y.; Gianopoulos, J.G.; Pryde, P.G.; Roizen, N. Relationships between umbilical cord arterial blood pH levels at delivery and Bayley Psychomotor Development Index scores in early childhood. J. Perinat. Med. 2008, 36, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Olofsson, P. Determination of base excess in umbilical cord blood at birth: Accessory or excess? Am. J. Obstet. Gynecol. 2015, 213, 259–261. [Google Scholar] [CrossRef] [PubMed]
- Olofsson, P. Current status of intrapartum fetal monitoring: Cardiotocography versus cardiotocography + ST analysis of the fetal ECG. Eur. J. Obstet. Gynecol. Reprod. Biol. 2003, 110 (Suppl. 1), S113–S118. [Google Scholar] [CrossRef]
- Low, J.A.; Lindsay, B.G.; Derrick, E.J. Threshold of metabolic acidosis associated with newborn complications. Am. J. Obstet. Gynecol. 1997, 177, 1391–1394. [Google Scholar] [CrossRef]
- MacLennan, A. A template for defining a causal relation between acute intrapartum events and cerebral palsy: International consensus statement. BMJ 1999, 319, 1054–1059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liston, R.; Sawchuck, D.; Young, D. No. 197a-Fetal Health Surveillance: Antepartum Consensus Guideline. J. Obstet. Gynaecol. Can. 2018, 40, e251–e271. [Google Scholar] [CrossRef] [PubMed]
- Hannah, M.E.; Hannah, W.J.; Hewson, S.A.; Hodnett, E.D.; Saigal, S.; Willan, A.R. Planned caesarean section versus planned vaginal birth for breech presentation at term: A randomised multicentre trial. Term Breech Trial Collaborative Group. Lancet 2000, 356, 1375–1383. [Google Scholar] [CrossRef]
- Engidawork, E.; Chen, Y.; Dell’Anna, E.; Goiny, M.; Lubec, G.; Ungerstedt, U.; Andersson, K.; Herrera-Marschitz, M. Effect of perinatal asphyxia on systemic and intracerebral pH and glycolysis metabolism in the rat. Exp. Neurol. 1997, 145, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Wiberg-Itzel, E.; Lipponer, C.; Norman, M.; Herbst, A.; Prebensen, D.; Hansson, A.; Bryngelsson, A.L.; Christoffersson, M.; Sennström, M.; Wennerholm, U.B.; et al. Determination of pH or lactate in fetal scalp blood in management of intrapartum fetal distress: Randomised controlled multicentre trial. BMJ 2008, 336, 1284–1287. [Google Scholar] [CrossRef] [PubMed]
- Visser, G.H.; Ayres-De-Campos, D. FIGO consensus guidelines on intrapartum fetal monitoring: Adjunctive technologies. Int. J. Gynecol. Obstet. 2015, 131, 25–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frost, M.C.; Meyerhoff, M.E. Real-Time Monitoring of Critical Care Analytes in the Bloodstream with Chemical Sensors: Progress and Challenges. Annu. Rev. Anal. Chem. 2015, 8, 171–192. [Google Scholar] [CrossRef] [PubMed]
- Ranamukhaarachchi, S.A.; Padeste, C.; Hafeli, U.O.; Stoeber, B.; Cadarso, V.J. Design considerations of a hollow microneedle-optofluidic biosensing platform incorporating enzyme-linked assays. J. Micromech. Microeng. 2018. [Google Scholar] [CrossRef]
- Corrie, S.R.; Fernando, G.J.P.; Crichton, M.L.; Brunck, M.E.G.; Anderson, C.D.; Kendall, M.A.F. Surface-modified microprojection arrays for intradermal biomarker capture, with low non-specific protein binding. Lab Chip 2010, 10, 2655. [Google Scholar] [CrossRef] [PubMed]
- Frost, M.C.; Rudich, S.M.; Zhang, H.; Maraschio, M.A.; Meyerhoff, M.E. In Vivo Biocompatibility and Analytical Performance of Intravascular Amperometric Oxygen Sensors Prepared with Improved Nitric Oxide-Releasing Silicone Rubber Coating. Anal. Chem. 2002, 74, 5942–5947. [Google Scholar] [CrossRef] [PubMed]
- Windmiller, J.R.; Zhou, N.; Chuang, M.-C.C.; Valdés-Ramírez, G.; Santhosh, P.; Miller, P.R.; Narayan, R.; Wang, J. Microneedle array-based carbon paste amperometric sensors and biosensors. Analyst 2011, 136, 1846. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Takagi, E.; Cass, T.; Tsugawa, W.; Sode, K. Minimally Invasive Microneedle Array Electrodes Employing Direct Electron Transfer Type Glucose Dehydrogenase for the Development of Continuous Glucose Monitoring Sensors. Procedia Technol. 2017, 27, 208–209. [Google Scholar] [CrossRef]
- Kimmel, D.W.; Leblanc, G.; Meschievitz, M.E.; Cliffel, D.E. Electrochemical sensors and biosensors. Anal. Chem. 2012, 84, 685–707. [Google Scholar] [CrossRef] [PubMed]
- Anastasova, S.; Spehar-Délèze, A.M.; Bickham, D.; Uebel, P.; Schmidt, M.; Russell, P.; Vadgama, P. Stabilised Biosensing Using Needle-Based Recess Electrodes. Electroanalysis 2012, 24, 529–538. [Google Scholar] [CrossRef]
- Ventrelli, L.; Marsilio Strambini, L.; Barillaro, G. Microneedles for Transdermal Biosensing: Current Picture and Future Direction. Adv. Healthc. Mater. 2015, 4, 2606–2640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuranuki, S.; Sato, T.; Okada, S.; Hosoya, S.; Seko, A.; Sugihara, K.; Nakamura, T. Evaluation of Postprandial Glucose Excursion Using a Novel Minimally Invasive Glucose Area-Under-the-Curve Monitoring System. J. Healthc. Eng. 2013, 4, 529–540. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; El-Laboudi, A.; Reddy, M.; Jugnee, N.; Sivasubramaniyam, S.; El Sharkawy, M.; Georgiou, P.; Johnston, D.; Oliver, N.; Cass, A.E.G. A pilot study in humans of microneedle sensor arrays for continuous glucose monitoring. Anal. Methods 2018, 10, 2088–2095. [Google Scholar] [CrossRef]
- Jina, A.; Tierney, M.J.; Tamada, J.A.; McGill, S.; Desai, S.; Chua, B.; Chang, A.; Christiansen, M. Design, development, and evaluation of a novel microneedle array-based continuous glucose monitor. J. Diabetes Sci. Technol. 2014, 8, 483–487. [Google Scholar] [CrossRef] [PubMed]
- Kopterides, P.; Theodorakopoulou, M.; Ilias, I.; Nikitas, N.; Frantzeskaki, F.; Vassiliadi, D.A.; Armaganidis, A.; Dimopoulou, I. Interrelationship between blood and tissue lactate in a general intensive care unit: A subcutaneous adipose tissue microdialysis study on 162 critically ill patients. J. Crit. Care 2012, 27. [Google Scholar] [CrossRef] [PubMed]
- Hibi, K.; Hatanaka, K.; Takase, M.; Ren, H.; Endo, H. Wireless biosensor system for Real-Time L-lactic acid monitoring in fish. Sensors 2012, 12, 6269–6281. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Dube, S.; Slama, M.; Errazuriz, I.; Amezcua, J.C.; Kudva, Y.C.; Peyser, T.; Carter, R.E.; Cobelli, C.; Basu, R. Time Lag of Glucose From Intravascular to Interstitial Compartment in Humans. Diabetes 2013, 62, 4083–4087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuruoka, N.; Ishii, K.; Matsunaga, T.; Nagatomi, R.; Haga, Y. Lactate and glucose measurement in subepidermal tissue using minimally invasive microperfusion needle. Biomed. Microdevices 2016, 18, 19. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.M.; Rodriguez, A.; Chang, D.T. Foreign body reaction to biomaterials. Semin. Immunol. 2008, 20, 86–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nichols, S.P.; Koh, A.; Storm, W.L.; Shin, J.H.; Schoenfisch, M.H. Biocompatible Materials for Continuous Glucose Monitoring Devices. Chem. Rev. 2013, 113, 2528–2549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madani, S.Y.; Mandel, A.; Seifalian, A.M. A concise review of carbon nanotube’s toxicology. Nano Rev. 2013. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Bandodkar, A.J.; Valdés-Ramírez, G.; Windmiller, J.R.; Yang, Z.; Ramírez, J.; Chan, G.; Wang, J. Electrochemical Tattoo Biosensors for Real-Time Noninvasive Lactate Monitoring in Human Perspiration. Anal. Chem. 2013, 85, 6553–6560. [Google Scholar] [CrossRef] [PubMed]
- Andrus, L.P.; Unruh, R.; Wisniewski, N.A.; McShane, M.J. Characterization of lactate sensors based on lactate oxidase and palladium benzoporphyrin immobilized in hydrogels. Biosensors 2015, 5, 398–416. [Google Scholar] [CrossRef] [PubMed]
- Rocchitta, G.; Spanu, A.; Babudieri, S.; Latte, G.; Madeddu, G.; Galleri, G.; Nuvoli, S.; Bagella, P.; Demartis, M.I.; Fiore, V.; et al. Enzyme biosensors for biomedical applications: Strategies for safeguarding analytical performances in biological fluids. Sensors 2016, 16, 780. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Yan, J.; Chu, H.; Wu, M.; Tu, Y. An exercise degree monitoring biosensor based on electrochemiluminescent detection of lactate in sweat. Sens. Actuators B Chem. 2010, 143, 655–659. [Google Scholar] [CrossRef]
- Ma, S.; Zhang, X.; Liao, Q.; Liu, H.; Huang, Y.; Song, Y.; Zhao, Y.; Zhang, Y. Enzymatic lactic acid sensing by In-doped ZnO nanowires functionalized AlGaAs/GaAs high electron mobility transistor. Sens. Actuators B Chem. 2015, 212, 41–46. [Google Scholar] [CrossRef]
- Teymourian, H.; Salimi, A.; Hallaj, R. Low potential detection of NADH based on Fe3O4 nanoparticles/multiwalled carbon nanotubes composite: Fabrication of integrated dehydrogenase-based lactate biosensor. Biosens. Bioelectron. 2012, 33, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Marquette, C.A.; Degiuli, A.; Blum, L.J. Electrochemiluminescent biosensors array for the concomitant detection of choline, glucose, glutamate, lactate, lysine and urate. Biosens. Bioelectron. 2003, 19, 433–439. [Google Scholar] [CrossRef]
- Goran, J.M.; Lyon, J.L.; Stevenson, K.J. Amperometric detection of l-lactate using nitrogen-doped carbon nanotubes modified with lactate oxidase. Anal. Chem. 2011, 83, 8123–8129. [Google Scholar] [CrossRef] [PubMed]
- Loaiza, O.A.; Lamas-Ardisana, P.J.; Añorga, L.; Jubete, E.; Ruiz, V.; Borghei, M.; Cabañero, G.; Grande, H.J. Graphitized carbon nanofiber-Pt nanoparticle hybrids as sensitive tool for preparation of screen printing biosensors. Detection of lactate in wines and ciders. Bioelectrochemistry 2015, 101, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Sardesai, N.P.; Ganesana, M.; Karimi, A.; Leiter, J.C.; Andreescu, S. Platinum-doped ceria based biosensor for in vitro and in vivo monitoring of lactate during hypoxia. Anal. Chem. 2015, 87, 2996–3003. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.T.; Yang, H.B.; Li, C.M. Optical detection of single cell lactate release for cancer metabolic analysis. Anal. Chem. 2010, 82, 5082–5087. [Google Scholar] [CrossRef] [PubMed]
- Guiseppi-Elie, A.; Brahim, S.; Slaughter, G.; Ward, K.R. Design of a subcutaneous implantable biochip for monitoring of glucose and lactate. IEEE Sens. J. 2005, 5, 345–355. [Google Scholar] [CrossRef]
- Azzouzi, S.; Rotariu, L.; Benito, A.M.; Maser, W.K.; Ben Ali, M.; Bala, C. A novel amperometric biosensor based on gold nanoparticles anchored on reduced graphene oxide for sensitive detection of l-lactate tumor biomarker. Biosens. Bioelectron. 2015, 69, 280–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.; Li, J.; Yang, Y.; Wang, X.; Wu, B.; Anzai, J.; Osa, T.; Chen, Q. Development of an amperometric l-lactate biosensor based on l-lactate oxidase immobilized through silica sol–gel film on multi-walled carbon nanotubes/platinum nanoparticle modified glassy carbon electrode. Mater. Sci. Eng. C 2008, 28, 1070–1075. [Google Scholar] [CrossRef]
- Cui, X.; Li, C.M.; Zang, J.; Yu, S. Highly sensitive lactate biosensor by engineering chitosan/PVI-Os/CNT/LOD network nanocomposite. Biosens. Bioelectron. 2007, 22, 3288–3292. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Ibáñez, N.; García-Cruz, L.; Montiel, V.; Foster, C.W.; Banks, C.E.; Iniesta, J. Electrochemical lactate biosensor based upon chitosan/carbon nanotubes modified screen-printed graphite electrodes for the determination of lactate in embryonic cell cultures. Biosens. Bioelectron. 2016, 77, 1168–1174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, T. Sol-gel based amperometric biosensor incorporating an osmium redox polymer as mediator for detection of l-lactate. Talanta 1997, 44, 973–978. [Google Scholar] [CrossRef]
- Jobst, G.; Moser, I.; Varahram, M.; Svasek, P.; Aschauer, E.; Trajanoski, Z.; Wach, P.; Kotanko, P.; Skrabal, F.; Urban, G. Thin-Film Microbiosensors for Glucose−Lactate Monitoring. Anal. Chem. 1996, 68, 3173–3179. [Google Scholar] [CrossRef] [PubMed]
- Petrou, P.S.; Moser, I.; Jobst, G. Microdevice with integrated dialysis probe and biosensor array for continuous multi-analyte monitoring. Biosens. Bioelectron. 2003, 18, 613–619. [Google Scholar] [CrossRef]
- Yashina, E.I.; Borisova, A.V.; Karyakina, E.E.; Shchegolikhina, O.I.; Vagin, M.Y.; Sakharov, D.A.; Tonevitsky, A.G.; Karyakin, A.A. Sol-Gel immobilization of lactate oxidase from organic solvent: Toward the advanced lactate biosensor. Anal. Chem. 2010, 82, 1601–1604. [Google Scholar] [CrossRef] [PubMed]
- Li, C.I.; Lin, Y.H.; Shih, C.L.; Tsaur, J.P.; Chau, L.K. Sol-gel encapsulation of lactate dehydrogenase for optical sensing of L-lactate. Biosens. Bioelectron. 2002, 17, 323–330. [Google Scholar] [CrossRef]
- Shkotova, L.V.; Piechniakova, N.Y.; Kukla, O.L.; Dzyadevych, S.V. Thin-film amperometric multibiosensor for simultaneous determination of lactate and glucose in wine. Food Chem. 2016, 197, 972–978. [Google Scholar] [CrossRef] [PubMed]
- Minami, T.; Sato, T.; Minamiki, T.; Fukuda, K.; Kumaki, D.; Tokito, S. A novel OFET-based biosensor for the selective and sensitive detection of lactate levels. Biosens. Bioelectron. 2015, 74, 45–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibupoto, Z.H.; Shah, S.M.U.A.; Khun, K.; Willander, M. Electrochemical L-lactic acid sensor based on immobilized ZnO nanorods with lactate oxidase. Sensors 2012, 12, 2456–2466. [Google Scholar] [CrossRef] [PubMed]
- Romero, M.R.; Ahumada, F.; Garay, F.; Baruzzi, A.M. Amperometric biosensor for direct blood lactate detection. Anal. Chem. 2010, 82, 5568–5572. [Google Scholar] [CrossRef] [PubMed]
- Kurita, R.; Hayashi, K.; Fan, X.; Yamamoto, K.; Kato, T.; Niwa, O. Microfluidic device integrated with pre-reactor and dual enzyme-modified microelectrodes for monitoring in vivo glucose and lactate. Sens. Actuators B Chem. 2002, 87, 296–303. [Google Scholar] [CrossRef]
- Goriushkina, T.B.; Soldatkin, A.P.; Dzyadevych, S.V. Application of Amperometric Enzyme Biosensors for Wine and Must Analysis. Procedia Chem. 2009, 1, 277–280. [Google Scholar] [CrossRef]
- Jiang, D.; Chu, Z.; Peng, J.; Jin, W. Screen-printed biosensor chips with Prussian blue nanocubes for the detection of physiological analytes. Sens. Actuators B Chem. 2016, 228, 679–687. [Google Scholar] [CrossRef]
- Rong, Z.; Leitao, E.; Popplewell, J.; Alp, B.; Vadgama, P. Needle enzyme electrode for lactate measurement in vivo. IEEE Sens. J. 2008, 8, 113–120. [Google Scholar] [CrossRef]
- Wu, M.H.; Wang, J.; Taha, T.; Cui, Z.; Urban, J.P.G.; Cui, Z. Study of on-line monitoring of lactate based on optical fibre sensor and in-channel mixing mechanism. Biomed. Microdevices 2007, 9, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Farzin, L.; Shamsipur, M.; Samandari, L.; Sheibani, S. Advances in the design of nanomaterial-based electrochemical affinity and enzymatic biosensors for metabolic biomarkers: A review. Microchim. Acta 2018, 185, 276. [Google Scholar] [CrossRef] [PubMed]
- Campàs, M.; Prieto-Simón, B.; Marty, J.-L. A review of the use of genetically engineered enzymes in electrochemical biosensors. Semin. Cell Dev. Biol. 2009, 20, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Rassaei, L.; Olthuis, W.; Tsujimura, S.; Sudhölter, E.J.R.; Van Den Berg, A. Lactate biosensors: Current status and outlook. Anal. Bioanal. Chem. 2014, 406, 123–137. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, D.; Möller, B.; Klimes, N.; Szeponik, J.; Fischer, S. Amperometric lactate oxidase catheter for real-time lactate monitoring based on thin film technology. Biosens. Bioelectron. 1997, 12, 539–550. [Google Scholar] [CrossRef]
- Rathee, K.; Dhull, V.; Dhull, R.; Singh, S. Biosensors based on electrochemical lactate detection: A comprehensive review. Biochem. Biophys. Rep. 2016, 5, 35–54. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zhang, Y.; Wilson, G.S. A needle-type enzyme-based lactate sensor for in vivo monitoring. Anal. Chim. Acta 1993, 281, 503–511. [Google Scholar] [CrossRef]
- Yang, Q.; Atanasov, P.; Wilkins, E. Needle-type lactate biosensor. Biosens. Bioelectron. 1999, 14, 203–210. [Google Scholar] [CrossRef]
- Shimomura, T.; Sumiya, T.; Ono, M.; Ito, T.; Hanaoka, T.-A. Amperometric l-lactate biosensor based on screen-printed carbon electrode containing cobalt phthalocyanine, coated with lactate oxidase-mesoporous silica conjugate layer. Anal. Chim. Acta 2012, 714, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Palmisano, F.; Rizzi, R.; Centonze, D.; Zambonin, P.G. Simultaneous monitoring of glucose and lactate by an interference and cross-talk free dual electrode amperometric biosensor based on electropolymerized thin films. Biosens. Bioelectron. 2000, 15, 531–539. [Google Scholar] [CrossRef]
- Weber, J.; Kumar, A.; Kumar, A.; Bhansali, S. Novel lactate and pH biosensor for skin and sweat analysis based on single walled carbon nanotubes. Sens. Actuators B Chem. 2006, 117, 308–313. [Google Scholar] [CrossRef]
- Santos, A.D.S.; Gorton, L.; Kubota, L.T. Nile blue adsorbed onto silica gel modified with niobium oxide for electrocatalytic oxidation of NADH. Electrochim. Acta 2002, 47, 3351–3360. [Google Scholar] [CrossRef]
- Rahman, M.M.; Shiddiky, M.J.A.; Rahman, M.A.; Shim, Y.B. A lactate biosensor based on lactate dehydrogenase/nictotinamide adenine dinucleotide (oxidized form) immobilized on a conducting polymer/multiwall carbon nanotube composite film. Anal. Biochem. 2009, 384, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Pundir, C.S.; Narwal, V.; Batra, B. Determination of lactic acid with special emphasis on biosensing methods: A review. Biosens. Bioelectron. 2016, 86, 777–790. [Google Scholar] [CrossRef] [PubMed]
- Khan, P.; Idrees, D.; Moxley, M.A.; Corbett, J.A.; Ahmad, F.; von Figura, G.; Sly, W.S.; Waheed, A.; Hassan, M.I. Luminol-Based Chemiluminescent Signals: Clinical and Non-clinical Application and Future Uses. Appl. Biochem. Biotechnol. 2014, 173, 333–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, N.; Izumi, H.; Morimoto, Y. Review of toxicity studies of carbon nanotubes. J. Occup. Health 2017, 59, 394–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanefeld, U.; Gardossi, L.; Magner, E. Understanding enzyme immobilisation. Chem. Soc. Rev. 2009, 38, 453–468. [Google Scholar] [CrossRef] [PubMed]
- Chaubey, A.; Pande, K.K.; Singh, V.S.; Malhotra, B.D. Co-immobilization of lactate oxidase and lactate dehydrogenase on conducting polyaniline films. Anal. Chim. Acta 2000, 407, 97–103. [Google Scholar] [CrossRef]
- Jesionowski, T.; Zdarta, J.; Krajewska, B. Enzyme immobilization by adsorption: A review. Adsorption 2014, 20, 801–821. [Google Scholar] [CrossRef]
- Bănică, F.-G. Chemical Sensors and Biosensors; John Wiley & Sons, Ltd.: Chichester, UK, 2012; ISBN 9781118354162. [Google Scholar]
- Mohamad, N.R.; Marzuki, N.H.C.; Buang, N.A.; Huyop, F.; Wahab, R.A. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol. Biotechnol. Equip. 2015, 29, 205–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanefeld, U.; Cao, L.; Magner, E. Enzyme immobilisation: Fundamentals and application. Chem. Soc. Rev. 2013, 42, 6211. [Google Scholar] [CrossRef] [PubMed]
- Kwan, R.C.; Hon, P.Y.; Mak, K.K.; Renneberg, R. Amperometric determination of lactate with novel trienzyme/poly(carbamoyl) sulfonate hydrogel-based sensor. Biosens. Bioelectron. 2004, 19, 1745–1752. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Fang, X.; Gu, Y.; Yan, X.; Kang, Z.; Zheng, X.; Lin, P.; Zhao, L.; Zhang, Y. Gold nanoparticles coated zinc oxide nanorods as the matrix for enhanced l-lactate sensing. Colloid Surf. B 2015, 126, 476–480. [Google Scholar] [CrossRef] [PubMed]
- Suman, S.; Singhal, R.; Sharma, A.L.; Malthotra, B.D.; Pundir, C.S. Development of a lactate biosensor based on conducting copolymer bound lactate oxidase. Sens. Actuators B Chem. 2005, 107, 768–772. [Google Scholar] [CrossRef]
- Albareda-Sirvent, M.; Hart, A.L. Preliminary estimates of lactic and malic acid in wine using electrodes printed from inks containing sol-gel precursors. Sens. Actuators B Chem. 2002, 87, 73–81. [Google Scholar] [CrossRef]
- Lamas-Ardisana, P.J.; Loaiza, O.A.; Añorga, L.; Jubete, E.; Borghei, M.; Ruiz, V.; Ochoteco, E.; Cabañero, G.; Grande, H.J. Disposable amperometric biosensor based on lactate oxidase immobilised on platinum nanoparticle-decorated carbon nanofiber and poly(diallyldimethylammonium chloride) films. Biosens. Bioelectron. 2014, 56, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Perdomo, J.; Hinkers, H.; Sundermeier, C.; Seifert, W.; Martínez Morell, O.; Knoll, M. Miniaturized real-time monitoring system for L-lactate and glucose using microfabricated multi-enzyme sensors. Biosens. Bioelectron. 2000, 15, 515–522. [Google Scholar] [CrossRef]
- Nguyen-Boisse, T.T.; Saulnier, J.; Jaffrezic-Renault, N.; Lagarde, F. Highly sensitive conductometric biosensors for total lactate, D- and L-lactate determination in dairy products. Sens. Actuators B Chem. 2013, 179, 232–239. [Google Scholar] [CrossRef]
- Liu, X.; Tan, W. Development of an Optical Fiber Lactate Sensor. Microchim. Acta 1999, 131, 129–135. [Google Scholar] [CrossRef]
- Mason, A.; Korostynska, O.; Louis, J.; Cordova-Lopez, L.E.; Abdullah, B.; Greene, J.; Connell, R.; Hopkins, J. Noninvasive In-Situ Measurement of Blood Lactate Using Microwave Sensors. IEEE Trans. Biomed. Eng. 2018, 65, 698–705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broder, G.; Weil, M.H. Excess Lactate: An Index of Reversibility of Shock in Human Patients. Science 1964. [Google Scholar] [CrossRef]
- Choi, M.M.F.F. Progress in Enzyme-Based Biosensors Using Optical Transducers. Microchim. Acta 2004, 148, 107–132. [Google Scholar] [CrossRef]
- Tabata, M.; Fukunaga, C.; Ohyabu, M.; Murachi, T. Highly sensitive flow injection analysis of glucose and uric acid in serum using an immobilized enzyme column and chemiluminescence. J. Appl. Biochem. 1984. [Google Scholar]
- Martínez-Olmos, A.; Ballesta-Claver, J.; Palma, A.J.; Valencia-Mirón, M.C.; Capitán-Vallvey, L.F. A portable luminometer with a disposable electrochemiluminescent biosensor for lactate determination. Sensors 2009, 9, 7694–7710. [Google Scholar] [CrossRef]
- Berger, A.; Blum, L.J. Enhancement of the response of a lactate oxidase/peroxidase-based fiberoptic sensor by compartmentalization of the enzyme layer. Enzyme Microb. Technol. 1994, 16, 979–984. [Google Scholar] [CrossRef]
- Marquette, C.A.; Blum, L.J. Luminol electrochemiluminescence-based fibre optic biosensors for flow injection analysis of glucose and lactate in natural samples. Anal. Chim. Acta 1999. [Google Scholar] [CrossRef]
- Caspers, P.J.; Lucassen, G.W.; Carter, E.A.; Bruining, H.A.; Puppels, G.J. In vivo confocal raman microspectroscopy of the skin: Noninvasive determination of molecular concentration profiles. J. Invest. Dermatol. 2001, 116, 434–442. [Google Scholar] [CrossRef] [PubMed]
- Pilotto, S.; Pacheco, M.T.T.; Silveira, L.; Balbin Villaverde, A.; Zângaro, R.A. Analysis of near-infrared Raman spectroscopy as a new technique for a transcutaneous non-invasive diagnosis of blood components. Lasers Med. Sci. 2001, 16, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.C.; Lyandres, O.; Walsh, J.T.; Glucksberg, M.R.; Van Duyne, R.P.; Walsh, J.T.; Glucksberg, M.R.; Van Duyne, R.P. Lactate and Sequential Lactate−Glucose Sensing Using Surface-Enhanced Raman Spectroscopy. Anal. Chem. 2007, 79, 6927–6932. [Google Scholar] [CrossRef] [PubMed]
- Lafrance, D.; Lands, L.C.; Burns, D.H. In vivo lactate measurement in human tissue by near-infrared diffuse reflectance spectroscopy. Vib. Spectrosc. 2004, 36, 195–202. [Google Scholar] [CrossRef]
- Wong, L.S.; Otsuka, A.; Tanizaki, H.; Nonomura, Y.; Nakashima, C.; Yamamoto, Y.; Yen, Y.T.; Rerknimitr, P.; Honda, T.; Kabashima, K. Decrease of superficial serine and lactate in the stratum corneum due to repetitive frictional trauma. Int. J. Dermatol. 2018, 57, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Ilchenko, O.; Pilgun, Y.; Makhnii, T.; Slipets, R.; Reynt, A.; Kutsyk, A.; Slobodianiuk, D.; Koliada, A.; Krasnenkov, D.; Kukharskyy, V. High-speed line-focus Raman microscopy with spectral decomposition of mouse skin. Vib. Spectrosc. 2016, 83, 180–190. [Google Scholar] [CrossRef]
- Egawa, M.; Tagami, H. Comparison of the depth profiles of water and water-binding substances in the stratum corneum determined in vivo by Raman spectroscopy between the cheek and volar forearm skin: Effects of age, seasonal changes and artificial forced hydration. Br. J. Dermatol. 2008, 158, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Pletcher, D. A First Course in Electrode Processes, 2nd ed.; Royal Society of Chemistry: London, UK, 2009; ISBN 978-1-84755-893-0. [Google Scholar]
- Brett, C.M.A. Electrochemistry: Principles, Methods, and Applications; Oxford University Press: Oxford, UK, 1993; ISBN 0198553889. [Google Scholar]
- Male, K.B.; Hrapovic, S.; Luong, J.H.T. Electrochemically-assisted deposition of oxidases on platinum nanoparticle/multi-walled carbon nanotube-modified electrodes. Analyst 2007, 132, 1254. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Song, Z.; Li, J.; Yang, Y.; Shi, H.; Wu, B.; Anzai, J.I.; Osa, T.; Chen, Q. A highly-sensitive l-lactate biosensor based on sol-gel film combined with multi-walled carbon nanotubes (MWCNTs) modified electrode. Mater. Sci. Eng. C 2007, 27, 29–34. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, M.; Gorski, W. Coupling the lactate oxidase to electrodes by ionotropic gelation of biopolymer. Anal. Chem. 2003, 75, 2060–2064. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, A. Toxicity of indium arsenide, gallium arsenide, and aluminium gallium arsenide. Toxicol. Appl. Pharmacol. 2004, 198, 405–411. [Google Scholar] [CrossRef] [PubMed]
Measurands | Interpretation | |
---|---|---|
pH | Lactate | |
≥7.25 | ≤4.1 mmol/L | Normal |
7.21–7.24 | 4.2–4.8 mmol/L | Borderline |
≤7.20 | ≥4.9 mmol/L | Abnormal |
Parameter | Functionality |
---|---|
External environment | The device should maintain accuracy and functionality when exposed to
|
Biological fluid sampled | The device has the potential to sample fetal scalp interstitial fluid and/or fetal blood |
Device dimensions and specifications | The probe should be able to be affixed to the fetal scalp through a cervix, which is 1 cm or more dilated. The probe should be no more invasive than an existing FSE. The probe should be easy to attach and remove from the fetal head while remaining immobilized against the scalp during contractions or fetal movements. The device should be compatible and not interfere with existing external methods of fetal monitoring (e.g., external CTG). No separate fetal blood gas/lactate analyzer was required. The device should be capable of continuous sampling (<5 min intervals) and measurement of the measurand (s) for a minimum of 12 h. The material must not degrade during sterilization. |
Biocompatibility | The materials used in construction should be biocompatible. Any chemicals used for sensing must be affixed in a way that ensures that they do not separate from the sensor surface. |
Substrate | Enzyme | Attachment Method | Material | Transduction | Application | Response Time [s] | Sensitivity | LoD [pM] | Range of Detection [pM] | Reference |
---|---|---|---|---|---|---|---|---|---|---|
Polymer | LOx | E (Ent) | Carbon paste | AM | Test solution | -- | -- | 4.20 × 108 | 4.20 × 108–8.00 × 108 | [49] |
Pt | LOx | C | Pt | AM | Blood and EISF | 120 | 0.2252 µA mM−1 | 4.44 × 106 | 3 to 13 mg dL−1 | [58] |
NA | LOx | E (HG) | HG | P | Test solution | 912 | 171.52 μA mM−1 | 4.44 × 107 | -- | [65] |
Pt | LDH | A | CNTs | ECL | Test solution, sweat | -- | -- | 8.90 | 8.90–8.90 ×106 | [67] |
AlGaAs | LOx | A | In-doped ZnO NW | AM | Test solution | 10 | -- | 3.00 | 3.00–3.00 ×109 | [68] |
GC | LDH | A | NPs/MWCNT | AM | Serum | -- | 7.67 μA mM−1 | 5.00 × 106 | 5.00 × 107–5.00 × 108 | [69] |
GC | LOx | A | Carbon | ECL | Human serum | -- | -- | 2.00 × 106 | 2.00 × 106–2.00 × 108 | [70] |
GC | LOx | A | CNT | AM | Test solution | 2 | 40.00 µA mM–1 cm–2 | 4.10 × 106 | 1.40 × 107–3.25 × 108 | [71] |
Carbon | LOx | A | Pt-NPs/GCNF-SPCEs | AM | Food samples | -- | 41.30 ± 546 μA mM−1 cm−2 | 6.90 × 106 | 1.00 × 107–3.25 × 108 | [72] |
Pt | LOx | A | NPs | AM | Test solution | 6 | 0.0002 µA mM−1 | 1.00 × 102 | 5.00 × 108–1.55 × 1010 | [73] |
OF | LDH | A | -- | F | Test solution, single cell | 1 | -- | 2.00 × 107 | 6.00 × 107–1.00 × 109 | [74] |
Glass | LOx | E (HG) | NA | AM | Test solution | 20 | 0.0662 µA mM−1 | 8.00 × 107 | 8.00 × 107–9.00 × 1010 | [75] |
Graphene | LDH | E (SG) | Au NPs | AM | Artificial serum | 8 | 154 µA mM−1 cm−2 | 1.30 × 105 | 1.00 × 107–5.00 × 109 | [76] |
GC | LOx | E (SG) | Pt NP. MWCNTs | AM | Whole blood | 5 | 6.36 μA mM−1 | 3.00 × 108 | 2.00 × 108–2.00 × 109 | [77] |
Au | LOx | E (Ent) | Chitosan/CNT | AM | Test solution | 7 | 19.7 μA mM−1 cm−2 | 5.00 × 106 | -- | [78] |
Graphite | LOx | E (Ent) | Chitosan/CNT | AM | Test solution, cell culture | -- | 3.417 µA mM−1 | 2.26 × 107 | 3.04 × 107–2.44 × 108 | [79] |
GC | LOx | E (SG) | Polymer | AM | -- | -- | 1.02 μA mM−1 | 5.00 × 107 | 1.00 × 108–9.00 × 109 | [80] |
Polyimide | LOx | E (HG) | Pt | AM | -- | 30 | 0.005 µA mM−1 mm−2 | -- | -- | [81] |
Plastic | LOx | E (HG) | Glass | AM | Test solution, dialysate | 144 | 0.00027 µA mM−1 | -- | 0–1.5 × 1010 | [82] |
Pt | LOx | E (SG) | SiOx | AM | Test solution | -- | 180 µA mM−1 cm−2 | -- | 2.00 × 109–8.00 × 109 | [83] |
Glass | LDH | E (SG) | Si | ECL | Test solution | -- | -- | -- | -- | [84] |
Glass ceramic | LOx | C | Au thin film | AM | Test solution, wine | 15 | 37.1 μA mM−1 cm−2 | 5.00 × 106 | 5×106–1 × 109 | [85] |
Glass | LOx | C | Al Au | OFET | Test solution | -- | -- | 6.60 × 104 | 0–1 × 1012 | [86] |
Glass | LOx | C | ZnO NR | AM | Test solution | 10 | 41.33 ± 1.58 mV/decade | 1.00 × 106 | 1 × 108–1 × 1012 | [87] |
Pt | LOx | C | HG mucin/albumin | AM | Blood | 90 | 0.537 µA mM−1 | 8.00 × 105 | 2 × 106–1 × 109 | [88] |
Glass | LOx | C | Carbon film | AM | Test solution/rat brain | -- | -- | 2.30 × 106 | 5 × 106–5 × 109 | [89] |
Pt | LOx | C | Monomer | AM | Food samples | 60 | -- | 8.00 × 106 | 8 × 106–1 × 109 | [90] |
PVC | LOx | C | PB nanocubes | CV | Test solution | 5 | 6.379 μA mM−1 cm−2 | 1.00 × 107 | 1 × 107–5 × 108 | [91] |
Pt | LOx | C | SPEES/PES | AM | Rats | 180 | 0.001 µA mM−1 | -- | 0–7 × 109 | [92] |
Substrate | Enzyme | Material | Transduction | Application | Response Time [s] | Sensitivity | LOD [pM] | Range of Detection [pM] | Reference |
---|---|---|---|---|---|---|---|---|---|
None | LOx | HG | Phosphorescent | Test solution | 912 | 171.52 μA mM−1 | 4.44 × 107 | -- | [65] |
Pt | LDH | CNTs | ECL | Test solution, sweat | -- | -- | 8.90 | 8.90–8.90 × 106 | [67] |
GC | LOx | Carbon | ECL | Human serum | -- | -- | 2.00 × 106 | 2.00 × 106–2.00 × 103 | [70] |
OF | LDH | Al coating | ECL | Test solution, single cell | 1 | -- | 2.00 × 107 | 6.00 × 107–1.00 × 109 | [74] |
Glass | LDH | Si | Fluorescence | Test solution | -- | -- | -- | -- | [84] |
OF | LOx | PDMS | Colorimetric | Test solution | 130 | -- | 5.20 × 108 | -- | [93] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cummins, G.; Kremer, J.; Bernassau, A.; Brown, A.; Bridle, H.L.; Schulze, H.; Bachmann, T.T.; Crichton, M.; Denison, F.C.; Desmulliez, M.P.Y. Sensors for Fetal Hypoxia and Metabolic Acidosis: A Review. Sensors 2018, 18, 2648. https://doi.org/10.3390/s18082648
Cummins G, Kremer J, Bernassau A, Brown A, Bridle HL, Schulze H, Bachmann TT, Crichton M, Denison FC, Desmulliez MPY. Sensors for Fetal Hypoxia and Metabolic Acidosis: A Review. Sensors. 2018; 18(8):2648. https://doi.org/10.3390/s18082648
Chicago/Turabian StyleCummins, Gerard, Jessica Kremer, Anne Bernassau, Andrew Brown, Helen L. Bridle, Holger Schulze, Till T. Bachmann, Michael Crichton, Fiona C. Denison, and Marc P. Y. Desmulliez. 2018. "Sensors for Fetal Hypoxia and Metabolic Acidosis: A Review" Sensors 18, no. 8: 2648. https://doi.org/10.3390/s18082648
APA StyleCummins, G., Kremer, J., Bernassau, A., Brown, A., Bridle, H. L., Schulze, H., Bachmann, T. T., Crichton, M., Denison, F. C., & Desmulliez, M. P. Y. (2018). Sensors for Fetal Hypoxia and Metabolic Acidosis: A Review. Sensors, 18(8), 2648. https://doi.org/10.3390/s18082648