Contact-Lens Biosensors
Abstract
:1. Introduction
1.1. Essentials of Tear fluid
1.2. Why Contact Lenses?
2. Tear Fluid Analysis
2.1. Biomarkers in Tear Fluid
2.1.1. Dry Eye Syndrome (DES)
2.1.2. Diabetic Retinopathy (DR)
2.1.3. Cancers
2.1.4. Cystic Fibrosis and Others
3. Contact-Lens Biosensors
3.1. Fluorescence-Based Sensing
3.2. Photonic-Based Sensing Structures
3.2.1. One-Dimensional Photonic Crystal: Holographic Gratings
3.2.2. Multi-Dimensional Photonic Crystal: Colloidal Crystal Arrays (CCA)
3.3. Electrochemical Sensing
4. Future Prospects
4.1. Challenges of Current Methods and Devices
4.2. Suggestions
5. Conclusions
Funding
Conflicts of Interest
References
- Luppa, P.B.; Müller, C.; Schlichtiger, A.; Schlebusch, H. Point-of-care testing (POCT): Current techniques and future perspectives. Trends Anal. Chem. 2011, 30, 887–898. [Google Scholar] [CrossRef]
- Yager, P.; Domingo, G.J.; Gerdes, J. Point-of-care diagnostics for global health. Annu. Rev. Biomed. Eng. 2008, 10, 107–144. [Google Scholar] [CrossRef] [PubMed]
- Andreu-Perez, J.; Leff, D.R.; Ip, H.M.; Yang, G.Z. From wearable sensors to smart implants: Toward pervasive and personalized healthcare. IEEE Trans. Biomed. Eng. 2015, 62, 2750–2762. [Google Scholar] [CrossRef] [PubMed]
- Watch. Available online: https://www.apple.com/lae/watch/ (accessed on 21 June 2018).
- Wearables. Available online: https://www.samsung.com/us/mobile/wearables/ (accessed on 21 June 2018).
- HUAWEI Wearables. Available online: https://consumer.huawei.com/us/ (accessed on 21 June 2018).
- Wearables and Smartwatches. Available online: https://buy.garmin.com/en-US/US/c10002-p1.html (accessed on 21 June 2018).
- Products of Fitbit. Available online: https://www.fitbit.com/home (accessed on 21 June 2018).
- Wang, X.; Liu, Z.; Zhang, T. Flexible sensing electronics for wearable/attachable health monitoring. Small 2017, 13, 1602790. [Google Scholar] [CrossRef] [PubMed]
- Emaminejad, S.; Gao, W.; Wu, E.; Davies, Z.A.; Yin Yin Nyein, H.; Challa, S.; Ryan, S.P.; Fahad, H.M.; Chen, K.; Shahpar, Z.; et al. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform. Proc. Natl. Acad. Sci. USA 2017, 114, 4625–4630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corrie, S.R.; Coffey, J.W.; Islam, J.; Markey, K.A.; Kendall, M.A.F. Blood, sweat, and tears: Developing clinically relevant protein biosensors for integrated body fluid analysis. Analyst 2015, 140, 4350–4364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bandodkar, A.J.; Wang, J. Non-invasive wearable electrochemical sensors: A review. Trends Biotechnol. 2014, 32, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, M.D.; Kassal, P.; Steinberg, I.M. System architectures in wearable rlectrochemical sensors. Electroanalysis 2016, 28, 1149–1169. [Google Scholar] [CrossRef]
- Mannoor, M.S.; Tao, H.; Clayton, J.D.; Sengupta, A.; Kaplan, D.L.; Naik, R.R.; Verma, N.; Omenetto, F.G.; McAlpine, M.C. Graphene-based wireless bacteria detection on tooth enamel. Nat. Commun. 2012, 3, 763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohji, M.; Takahiro, A. Cavitas sensors: Contact lens type sensors & mouthguard sensors. Electroanalysis 2016, 28, 1170–1187. [Google Scholar]
- March, W.F.; Mueller, A.; Herbrechtsmeier, P. Clinical trial of a noninvasive contact lens glucose sensor. Diabetes Technol. Ther. 2004, 6, 782–789. [Google Scholar] [CrossRef] [PubMed]
- Enríquez-de-Salamanca, A.; Castellanos, E.; Stern, M.E.; Fernández, I.; Carreño, E.; García-Vázquez, C.; Herreras, J.M.; Calonge, M. Tear cytokine and chemokine analysis and clinical correlations in evaporative-type dry eye disease. Mol. Vis. 2010, 16, 862–873. [Google Scholar] [PubMed]
- Sambursky, R.; Davitt, W.F., 3rd; Friedberg, M.; Tauber, S. Prospective, multicenter, clinical evaluation of point-of-care matrix metalloproteinase-9 test for confirming dry eye disease. Cornea 2014, 33, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Farandos, N.M.; Yetisen, A.K.; Monteiro, M.J.; Lowe, C.R.; Yun, S.H. Contact lens sensors in ocular diagnostics. Adv. Healthc. Mater. 2015, 4, 792–810. [Google Scholar] [CrossRef] [PubMed]
- Otis, B.P.; Parviz, B. Introducing Our Smart Contact Lens Project; Alphabet: Mountain View, CA, USA, 2014. [Google Scholar]
- Senior, M. Novartis signs up for Google smart lens. Nat. Biotechnol. 2014, 32, 856. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Pratt, B.; Honikel, M.; Jenish, A.; Ramesh, B.; Alkhan, A.; La Belle, J.T. Toward the development of a glucose dehydrogenase-based saliva glucose sensor without the need for sample preparation. J. Diabetes Sci. Technol. 2018, 12, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.H.; Martino, R.; Anikst, V.; Xu, Z.; Mix, S.; Benjamin, R.; Schub, H.; Eiden, M.; Rhodes, P.A.; Banaei, N. Rapid diagnosis of tuberculosis from analysis of urine volatile organic compounds. ACS Sens. 2016, 1, 852–856. [Google Scholar] [CrossRef] [PubMed]
- Von Thun und Hohenstein-Blaul, N.; Funke, S.; Grus, F.H. Tears as a source of biomarkers for ocular and systemic diseases. Exp. Eye Res. 2013, 117, 126–137. [Google Scholar] [CrossRef] [PubMed]
- Murube, J. Basal, reflex, and psycho-emotional tears. Ocul. Surf. 2009, 7, 60–66. [Google Scholar] [CrossRef]
- De Souza, G.A.; Godoy, L.M.F.; Mann, M. Identification of 491 proteins in the tear fluid proteome reveals a large number of proteases and protease inhibitors. Genome Biol. 2006, 7, R72. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Beuerman, R.W. The power of tears: How tear proteomics research could revolutionize the clinic. Expert Rev. Proteom. 2017, 14, 189–191. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Beuerman, R.W. Tear analysis in ocular surface diseases. Prog. Retin. Eye Res. 2012, 31, 527–550. [Google Scholar] [CrossRef] [PubMed]
- Georgiev, G.A.; Eftimov, P.; Yokoi, N. Structure-function relationship of tear film lipid layer: A contemporary perspective. Exp. Eye Res. 2017, 163, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Downie, L.E.; Craig, J.P. Tear film evaluation and management in soft contact lens wear: A systematic approach. Clin. Exp. Optom. 2017, 100, 438–458. [Google Scholar] [CrossRef] [PubMed]
- Baca, J.T.; Finegold, D.N.; Asher, S.A. Tear glucose analysis for the noninvasive detection and monitoring of diabetes mellitus. Ocul. Surf. 2007, 5, 280–293. [Google Scholar] [CrossRef]
- Dmitry, P.; Elena, G.A.; Zoltan, B.; Sergey, S. Tear based bioelectronics. Electroanalysis 2016, 28, 1250–1266. [Google Scholar]
- Markoulli, M.; Papas, E.; Petznick, A.; Holden, B. Validation of the flush method as an alternative to basal or reflex tear collection. Curr. Eye Res. 2011, 36, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Green-Church, K.B.; Nichols, K.K.; Kleinholz, N.M.; Zhang, L.; Nichols, J.J. Investigation of the human tear film proteome using multiple proteomic approaches. Mol. Vis. 2008, 14, 456–470. [Google Scholar] [PubMed]
- Malvitte, L.; Montange, T.; Vejux, A.; Baudouin, C.; Bron, A.M.; Creuzot-Garcher, C.; Lizard, G. Measurement of inflammatory cytokines by multicytokine assay in tears of patients with glaucoma topically treated with chronic drugs. Br. J. Opthalmol. 2007, 91, 29–32. [Google Scholar] [CrossRef] [PubMed]
- Gilbard, J.P. Human tear film electrolyte concentrations in health and dry-eye disease. Int. Ophthalmol. Clin. 1994, 34, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Taormina, C.R.; Baca, J.T.; Asher, S.A.; Grabowski, J.J.; Finegold, D.N. Analysis of tear glucose concentration with electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 2007, 18, 332–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harvey, D.; Hayes, N.W.; Tighe, B. Fibre optics sensors in tear electrolyte analysis: Towards a novel point of care potassium sensor. Cont. Lens Anterior Eye 2012, 35, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Shum, A.J.; Cowan, M.; Lähdesmäki, I.; Parviz, B.A. A contact lens with embedded sensor for monitoring tear glucose level. Biosens. Bioelectron. 2011, 26, 3290–3296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choy, C.; Benzie, I.; Cho, P. Antioxidants in tears and plasma: Inter-relationships and effect of vitamin C supplementation. Curr. Eye Res. 2003, 27, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Choy, C.K.; Benzie, I.F.; Cho, P. Is ascorbate in human tears from corneal leakage or from lacrimal secretion? Clin. Exp. Optom. 2004, 87, 24–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, N.; Lähdesmäki, I.; Parviz, B.A. A contact lens with an integrated lactate sensor. Sens. Actuators B Chem. 2012, 162, 128–134. [Google Scholar] [CrossRef]
- Ng, V.; Cho, P. The relationship between total tear protein concentrations determined by different methods and standards. Graefes Arch. Clin. Exp. Ophthalmol. 2000, 238, 571–576. [Google Scholar] [CrossRef] [PubMed]
- Badugu, R.; Lakowicz, J.R.; Geddes, C.D. Noninvasive continuous monitoring of physiological glucose using a monosaccharide-sensing contact lens. Anal. Chem. 2004, 76, 610–618. [Google Scholar] [CrossRef] [PubMed]
- Badugu, R.; Lakowicz, J.R.; Geddes, C.D. A glucose-sensing contact lens: From bench top to patient. Curr. Opin. Biotechnol. 2005, 16, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Cope, J.R.; Collier, S.A.; Nethercut, H.; Jones, J.M.; Yates, K.; Yoder, J.S. Risk behaviors for contact lens–related eye infections among adults and adolescents—United States, 2016. MMWR Morb. Mortal. Wkly. Rep. 2017, 66, 841–845. [Google Scholar] [CrossRef] [PubMed]
- How Much Do Contacts Cost? Available online: https://www.allaboutvision.com/contacts/faq/contact-cost.htm (accessed on 21 June 2018).
- Efron, N.; Efron, S.E.; Morgan, P.B.; Morgan, S.L. A ‘cost-per-wear’ model based on contact lens replacement frequency. Clin. Exp. Optom. 2010, 93, 253–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nichols, J.J. Contact Lenses 2017. Contact Lens Spectr. 2018, 33, 20–25. [Google Scholar]
- Hagan, S.; Martin, E.; Enríquez-de-Salamanca, A. Tear fluid biomarkers in ocular and systemic disease: Potential use for predictive, preventive and personalised medicine. EPMA J. 2016, 7, 15. [Google Scholar] [CrossRef] [PubMed]
- Hagan, S. Biomarkers of ocular surface disease using impression cytology. Biomark. Med. 2017, 11, 1135–1147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aluru, S.V.; Agarwal, S.; Srinivasan, B.; Iyer, G.K.; Rajappa, S.M.; Tatu, U.; Padmanabhan, P.; Subramanian, N.; Narayanasamy, A. Lacrimal proline rich 4 (LPRR4) protein in the rear fluid Is a potential biomarker of dry eye syndrome. PLoS ONE 2012, 7, e51979. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Beuerman, R.W.; Chan, C.M.; Zhao, S.Z.; Li, X.R.; Yang, H.; Tong, L.; Liu, S.; Stern, M.E.; Tan, D. Identification of tear fluid biomarkers in dry eye syndrome using iTRAQ quantitative proteomics. J. Proteome Res. 2009, 8, 4889–4905. [Google Scholar] [CrossRef] [PubMed]
- Argueso, P.; Balaram, M.; Spurr-Michaud, S.; Keutmann, H.T.; Dana, M.R.; Gipson, I.K. Decreased levels of the goblet cell mucin MUC5AC in tears of patients with Sjogren syndrome. Investig. Ophthalmol. Vis. Sci. 2002, 43, 1004–1011. [Google Scholar]
- Guo, Q.; Huang, H.; Pi, Y.; Zhang, H. Evaluation of tear malate dehydrogenase 2 in mild dry eye disease. Eye Sci. 2014, 29, 204–208. [Google Scholar] [PubMed]
- Lambiase, A.; Micera, A.; Sacchetti, M.; Cortes, M.; Mantelli, F.; Bonini, S. Alterations of tear neuromediators in dry eye disease. Arch. Ophthalmol. 2011, 129, 981–986. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.; Li, Z.; Oh, H.J.; Im, S.K.; Lee, S.H.; Park, S.H.; You, I.C.; Yoon, K.C. Expression of CCR5 and its ligands CCL3, -4, and -5 in the tear film and ocular surface of patients with dry eye disease. Curr. Eye Res. 2012, 37, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Lam, H.; Bleiden, L.; de Paiva, C.S.; Farley, W.; Stern, M.E.; Pflugfelder, S.C. Tear cytokine profiles in dysfunctional tear syndrome. Am. J. Ophthalmol. 2009, 147, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Acera, A.; Rocha, G.; Vecino, E.; Lema, I.; Duran, J.A. Inflammatory markers in the tears of patients with ocular surface disease. Ophthalmic Res. 2008, 40, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Massingale, M.L.; Li, X.; Vallabhajosyula, M.; Chen, D.; Wei, Y.; Asbell, P.A. Analysis of inflammatory cytokines in the tears of dry eye patients. Cornea 2009, 28, 1023–1027. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.F.; Zhang, Y.; Rittenhouse, K.D.; Pickering, E.H.; McDowell, M.T. Evaluations of tear protein markers in dry eye disease: Repeatability of measurement and correlation with disease. Investig. Ophthalmol. Vis. Sci. 2012, 53, 4556–4564. [Google Scholar] [CrossRef] [PubMed]
- Aragona, P.; Aguennouz, M.; Rania, L.; Postorino, E.; Sommario, M.S.; Roszkowska, A.M.; De Pasquale, M.G.; Pisani, A.; Puzzolo, D. Matrix metalloproteinase 9 and transglutaminase 2 expression at the ocular surface in patients with different forms of dry eye disease. Ophthalmology 2015, 122, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.; Lian, C.; Ying, L.; Kim, G.E.; You, I.C.; Park, S.H.; Yoon, K.C. Expression of Lipid Peroxidation Markers in the Tear Film and Ocular Surface of Patients with Non-Sjogren Syndrome: Potential Biomarkers for Dry Eye Disease. Curr. Eye Res. 2016, 41, 1143–1149. [Google Scholar] [CrossRef] [PubMed]
- Galbis-Estrada, C.; Pinazo-Duran, M.D.; Martinez-Castillo, S.; Morales, J.M.; Monleon, D.; Zanon-Moreno, V. A metabolomic approach to dry eye disorders. The role of oral supplements with antioxidants and omega 3 fatty acids. Mol. Vis. 2015, 21, 555–567. [Google Scholar] [PubMed]
- Ogurtsova, K.; da Rocha Fernandes, J.D.; Huang, Y.; Linnenkamp, U.; Guariguata, L.; Cho, N.H.; Cavan, D.; Shaw, J.E.; Makaroff, L.E. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res. Clin. Pract. 2017, 128, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Cheung, N.; Mitchell, P.; Wong, T.Y. Diabetic retinopathy. Lancet 2010, 376, 124–136. [Google Scholar] [CrossRef]
- Ting, D.S.; Cheung, G.C.; Wong, T.Y. Diabetic retinopathy: Global prevalence, major risk factors, screening practices and public health challenges: A review. Clin. Exp. Ophthalmol. 2016, 44, 260–277. [Google Scholar] [CrossRef] [PubMed]
- Csosz, E.; Boross, P.; Csutak, A.; Berta, A.; Toth, F.; Poliska, S.; Torok, Z.; Tozser, J. Quantitative analysis of proteins in the tear fluid of patients with diabetic retinopathy. J. Proteom. 2012, 75, 2196–2204. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Kim, P.K.; Yoo, H.S.; Kim, C.W. Comparison of tear proteins between healthy and early diabetic retinopathy patients. Clin. Biochem. 2012, 45, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Costagliola, C.; Romano, V.; De Tollis, M.; Aceto, F.; dell Omo, R.; Romano, M.R.; Pedicino, C.; Semeraro, F. TNF-alpha levels in tears: A novel biomarker to assess the degree of diabetic retinopathy. Mediat. Inflamm. 2013, 2013, 629529. [Google Scholar] [CrossRef] [PubMed]
- Park, K.S.; Kim, S.S.; Kim, J.C.; Kim, H.C.; Im, Y.S.; Ahn, C.W.; Lee, H.K. Serum and tear levels of nerve growth factor in diabetic retinopathy patients. Am. J. Ophthalmol. 2008, 145, 432–437. [Google Scholar] [CrossRef] [PubMed]
- Evans, V.; Vockler, C.; Friedlander, M.; Walsh, B.; Willcox, M.D. Lacryglobin in human tears, a potential marker for cancer. Clin. Exp. Ophthalmol. 2001, 29, 161–163. [Google Scholar] [CrossRef] [PubMed]
- Lebrecht, A.; Boehm, D.; Schmidt, M.; Koelbl, H.; Grus, F.H. Surface-enhanced laser desorption/ionisation time-of-flight mass spectrometry to detect breast cancer markers in tears and serum. Cancer Genom. Proteom. 2009, 6, 75–83. [Google Scholar]
- Lebrecht, A.; Boehm, D.; Schmidt, M.; Koelbl, H.; Schwirz, R.L.; Grus, F.H. Diagnosis of breast cancer by tear proteomic pattern. Cancer Genom. Proteom. 2009, 6, 177–182. [Google Scholar]
- Bohm, D.; Keller, K.; Pieter, J.; Boehm, N.; Wolters, D.; Siggelkow, W.; Lebrecht, A.; Schmidt, M.; Kolbl, H.; Pfeiffer, N.; et al. Comparison of tear protein levels in breast cancer patients and healthy controls using a de novo proteomic approach. Oncol. Rep. 2012, 28, 429–438. [Google Scholar] [CrossRef] [PubMed]
- Davies, J.C.; Alton, E.W.F.W.; Bush, A. Cystic fibrosis. BMJ 2007, 335, 1255–1259. [Google Scholar] [CrossRef] [PubMed]
- Mrugacz, M.; Kaczmarski, M.; Bakunowicz-Lazarczyk, A.; Zelazowska, B.; Wysocka, J.; Minarowska, A. IL-8 and IFN-γ in tear fluid of patients with cystic fibrosis. J. Interferon Cytokine Res. 2006, 26, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Mrugacz, M.; Zelazowska, B.; Bakunowicz-Lazarczyk, A.; Kaczmarski, M.; Wysocka, J. Elevated tear fluid levels of MIP-1alpha in patients with cystic fibrosis. J. Interferon Cytokine Res. 2007, 27, 491–495. [Google Scholar] [CrossRef] [PubMed]
- Mrugacz, M. CCL4/MIP-1beta levels in tear fluid and serum of patients with cystic fibrosis. J. Interferon Cytokine Res. 2010, 30, 509–512. [Google Scholar] [CrossRef] [PubMed]
- Salvisberg, C.; Tajouri, N.; Hainard, A.; Burkhard, P.R.; Lalive, P.H.; Turck, N. Exploring the human tear fluid: Discovery of new biomarkers in multiple sclerosis. Proteom. Clin. Appl. 2014, 8, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Comoglu, S.S.; Guven, H.; Acar, M.; Ozturk, G.; Kocer, B. Tear levels of tumor necrosis factor-alpha in patients with Parkinson’s disease. Neurosci. Lett. 2013, 553, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Elsherif, M.; Hassan, M.U.; Yetisen, A.K.; Butt, H. Wearable contact lens biosensors for continuous glucose monitoring using smartphones. ACS Nano 2018. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Cano, G.G.; Braun, P.V. Linear and fast hydrogel glucose sensor materials enabled by volume resetting agents. Adv. Mater. 2014, 26, 5678–5683. [Google Scholar] [CrossRef] [PubMed]
- Ruan, J.-L.; Chen, C.; Shen, J.-H.; Zhao, X.-L.; Qian, S.-H.; Zhu, Z.-G. A gelated colloidal crystal attached lens for noninvasive continuous monitoring of tear glucose. Polymers 2017, 9, 125. [Google Scholar] [CrossRef]
- Yao, H.; Liao, Y.; Lingley, A.R.; Afanasiev, A.; Lähdesmäki, I.; Otis, B.P.; Parviz, B.A. A contact lens with integrated telecommunication circuit and sensors for wireless and continuous tear glucose monitoring. J. Micromech. Microeng. 2012, 22, 075007. [Google Scholar] [CrossRef]
- Chu, M.X.; Miyajima, K.; Takahashi, D.; Arakawa, T.; Sano, K.; Sawada, S.; Kudo, H.; Iwasaki, Y.; Akiyoshi, K.; Mochizuki, M.; et al. Soft contact lens biosensor for in situ monitoring of tear glucose as non-invasive blood sugar assessment. Talanta 2011, 83, 960–965. [Google Scholar] [CrossRef] [PubMed]
- March, W.; Lazzaro, D.; Rastogi, S. Fluorescent measurement in the non-invasive contact lens glucose sensor. Diabetes Technol. Ther. 2006, 8, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Badugu, R.; Jeng, B.H.; Reece, E.A.; Lakowicz, J.R. Contact lens to measure individual ion concentrations in tears and applications to dry eye disease. Anal. Biochem. 2018, 542, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Badugu, R.; Lakowicz, J.R.; Geddes, C.D. A glucose sensing contact lens: A non-invasive technique for continuous physiological glucose monitoring. J. Fluoresc. 2003, 13, 371–374. [Google Scholar] [CrossRef] [PubMed]
- Badugu, R.; Lakowicz, J.R.; Geddes, C.D. Ophthalmic glucose monitoring using disposable contact lenses—A review. J. Fluoresc. 2004, 14, 617–633. [Google Scholar] [CrossRef] [PubMed]
- Dumbleton, K.A.; Richter, D.; Woods, C.A.; Aakre, B.M.; Plowright, A.; Morgan, P.B.; Jones, L.W. A multi-country assessment of compliance with daily disposable contact lens wear. Contact Lens Anterior Eye 2013, 36, 304–312. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Pan, X.; Blyth, J.; Lowe, C.R. Towards the real-time monitoring of glucose in tear fluid: Holographic glucose sensors with reduced interference from lactate and pH. Biosens. Bioelectron. 2008, 23, 899–905. [Google Scholar] [CrossRef] [PubMed]
- Horgan, A.M.; Marshall, A.J.; Kew, S.J.; Dean, K.E.; Creasey, C.D.; Kabilan, S. Crosslinking of phenylboronic acid receptors as a means of glucose selective holographic detection. Biosens. Bioelectron. 2006, 21, 1838–1845. [Google Scholar] [CrossRef] [PubMed]
- Yetisen, A.K.; Montelongo, Y.; da Cruz Vasconcellos, F.; Martinez-Hurtado, J.L.; Neupane, S.; Butt, H.; Qasim, M.M.; Blyth, J.; Burling, K.; Carmody, J.B.; et al. Reusable, robust, and accurate laser-generated photonic nanosensor. Nano Lett. 2014, 14, 3587–3593. [Google Scholar] [CrossRef] [PubMed]
- Domschke, A.; Kabilan, S.; Anand, R.; Caines, M.; Fetter, D.; Griffith, P.; James, K.; Karangu, N.; Smith, D.; Vargas, M.; et al. Holographic sensors in contact lenses for minimally-invasive glucose measurements. In Proceedings of the IEEE Sensors, Vienna, Austria, 24–27 October 2004; pp. 1320–1323. [Google Scholar]
- Kabilan, S.; Marshall, A.J.; Sartain, F.K.; Lee, M.C.; Hussain, A.; Yang, X.; Blyth, J.; Karangu, N.; James, K.; Zeng, J.; et al. Holographic glucose sensors. Biosens. Bioelectron. 2005, 20, 1602–1610. [Google Scholar] [CrossRef] [PubMed]
- Alexeev, V.L.; Das, S.; Finegold, D.N.; Asher, S.A. Photonic crystal glucose-sensing material for noninvasive monitoring of glucose in tear fluid. Clin. Chem. 2004, 50, 2353. [Google Scholar] [CrossRef] [PubMed]
- Ben-Moshe, M.; Alexeev, V.L.; Asher, S.A. Fast responsive crystalline colloidal array photonic crystal glucose sensors. Anal. Chem. 2006, 78, 5149–5157. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Jiang, X.; Zhang, L.; Fan, J.; Wu, W. Construction of near-infrared photonic crystal glucose-sensing materials for ratiometric sensing of glucose in tears. Biosens. Bioelectron. 2013, 48, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.; Choi, Y.; Nejad, Y.H.P.; Shin, K.; Park, J. Label-free specific detection of immunoglobulin G antibody using nanoporous hydrogel photonic crystals. Sens. Actuators B Chem. 2013, 180, 107–113. [Google Scholar] [CrossRef]
- Hyunjae, L.; Joseph, H.Y.; Seungmin, B.; Taeghwan, H.; Dae-Hyeong, K. Enzyme-based glucose sensor: From invasive to wearable device. Adv. Healthc. Mater. 2018, 7. [Google Scholar] [CrossRef]
- Kim, J.; Kim, M.; Lee, M.-S.; Kim, K.; Ji, S.; Kim, Y.-T.; Park, J.; Na, K.; Bae, K.-H.; Kyun Kim, H.; et al. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nat. Commun. 2017, 8, 14997. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.C.; Kabilan, S.; Hussain, A.; Yang, X.; Blyth, J.; Lowe, C.R. Glucose-sensitive holographic sensors for monitoring bacterial growth. Anal. Chem. 2004, 76, 5748–5755. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Boo, H.; Chung, T.D. Electrochemical non-enzymatic glucose sensors. Anal. Chem. Acta 2006, 556, 46–57. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.; Huy, B.T.; Hwang, S.Y.; Vuong, N.M.; Pham, Q.T.; Nghia, N.N.; Kirtland, A.; Lee, Y.I. Preparing cuprous oxide nanomaterials by electrochemical method for non-enzymatic glucose biosensor. Nanotechnology 2018, 29, 205501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taurino, I.; Sanzó, G.; Mazzei, F.; Favero, G.; De Micheli, G.; Carrara, S. Fast synthesis of platinum nanopetals and nanospheres for highly-sensitive non-enzymatic detection of glucose and selective sensing of ions. Sci. Rep. 2015, 5, 15277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, S.-L.; Zhuang, J.; Yang, D.-P.; Tang, D. Eggshell membrane-templated synthesis of 3D hierarchical porous Au networks for electrochemical nonenzymatic glucose sensor. Biosens. Bioelectron. 2017, 96, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Tee, S.Y.; Teng, C.P.; Ye, E. Metal nanostructures for non-enzymatic glucose sensing. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 70, 1018–1030. [Google Scholar] [CrossRef] [PubMed]
- Witkowska Nery, E.; Kundys, M.; Jeleń, P.S.; Jönsson-Niedziółka, M. Electrochemical glucose sensing: Is there still room for improvement? Anal. Chem. 2016, 88, 11271–11282. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.-W.; Su, F.-C.; Peng, P.-Y.; Young, H.-T.; Liao, S.; Wang, G.-J. Highly sensitive non-enzymatic electrochemical glucose biosensor using a photolithography fabricated micro/nano hybrid structured electrode. Sens. Actuators B Chem. 2016, 230, 559–565. [Google Scholar] [CrossRef]
- Liao, Y.T.; Yao, H.; Lingley, A.; Parviz, B.; Otis, B.P. A 3-uW CMOS glucose sensor for wireless contact-lens tear glucose monitoring. IEEE J. Solid-State Circuits 2012, 47, 335–344. [Google Scholar] [CrossRef]
- Lingley, A.R.; Otis, B.P.; Shen, T.T.; Parviz, B.A. A contact lens with integrated micro solar cells. Microsyst. Technol. 2012, 18, 453–458. [Google Scholar] [CrossRef]
- Lingley, A.R.; Ali, M.; Liao, Y.; Mirjalili, R.; Klonner, M.; Sopanen, M.; Suihkonen, S.; Shen, T.; Otis, B.P.; Lipsanen, H.; et al. A single-pixel wireless contact lens display. J. Micromech. Microeng. 2011, 21, 125014. [Google Scholar] [CrossRef]
- Reid, R.C.; Minteer, S.D.; Gale, B.K. Contact lens biofuel cell tested in a synthetic tear solution. Biosens. Bioelectron. 2015, 68, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Falk, M.; Andoralov, V.; Blum, Z.; Sotres, J.; Suyatin, D.B.; Ruzgas, T.; Arnebrant, T.; Shleev, S. Biofuel cell as a power source for electronic contact lenses. Biosens. Bioelectron. 2012, 37, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Falk, M.; Andoralov, V.; Silow, M.; Toscano, M.D.; Shleev, S. Miniature biofuel cell as a potential power source for glucose-sensing contact lenses. Anal. Chem. 2013, 85, 6342–6348. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Siepenkoetter, T.; Conghaile, P.Ó.; Leech, D.; Magner, E. Nanoporous gold-based biofuel cells on contact lenses. ACS Appl. Mater. Interfaces 2018, 10, 7107–7116. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Jo, I.; Kang, S.; Jang, B.; Moon, J.; Park, J.B.; Lee, S.; Rho, S.; Kim, Y.; Hong, B.H. Smart contact lenses with graphene coating for electromagnetic interference shielding and dehydration protection. ACS Nano 2017, 11, 5318–5324. [Google Scholar] [CrossRef] [PubMed]
Tear Layer | Primary Function | Source/Composition | Ref. |
---|---|---|---|
Lipid (outer) | Meibomian glands—low (wax and cholesterol esters) and high (triglyceride, fatty acids, and phospholipids) polarity lipids | Enables formation of a thin tear film, stabilizes the aqueous layer by suppressing evaporation, as well as preventing microbial infection | [29] |
Aqueous (middle) | Lacrimal glands—inorganic salts, enzymes, metabolites, and proteins | Provides oxygen to the corneal epithelium, lubricates the eye, washes away foreign particles and irritants, and can also protect from infection (lysozyme and β-lysine) | [28,30] |
Mucin (inner) | Conjunctival goblet cells (and corneal and conjunctival epithelium)—glycoproteins | Hydrophilic interfacial layer over the ocular surface that forms a protective film over the epithelial cells | [28,30] |
Component | Concentration | Ref. |
---|---|---|
Na+ | 120–165 mM | [15,36,37] |
K+ | 15–42 mM | [15,38] |
Cl− | 118–135 mM | [15,19] |
Mg2+ | 0.5–1.1 mM | [15,38] |
Ca2+ | 0.4–1.1 mM | [15,38] |
HCO3− | 20–42 mM | [15] |
Urea | 6 mM | [39] |
Ascorbate | 11–23 µM | [40,41] |
Lactate | 1–5 mM | [42] |
Glucose *,** | 0.1–0.6 mM | [15,39] |
Total Protein | 5–11 mg/mL | [15,43] |
Condition/Disease | Biomarkers |
---|---|
Allergic conjunctivitis | Ig gamma-2, leukocyte elastase inhibitor, sPLA2-IIa, total protein, serum albumin precursor |
Autoimmune thyroid eye disease | interleukin-1β, IL-6, IL-7, IL-13, IL-17A, IL-18, TNF-α, RANTES/CCL5, IFN-γ |
Blepharitis | Proteomics and lipodomics, serum albumin precursor, α-1 antitrypsin, lacritin precursor, lysozyme, Ig-κ chain VIII, prolactin inducible protein (PIP/GCDFP-15), cystatin-SA III, pyruvate kinase, phosphoethanolamine, sphingomyelin |
Cancer | Lacryglobin, sulf-1, cystatin SA, 5-AMP-activated protein kinase subunit γ-3, triosephosphate isomerase, microtubule-associated tumor suppressor 1, keratin (type I) putative LCN-1 like protein, malate dehydrogenase, Ig α-2 chain c region, Ig heavy chain VIII region, protein S100-A4, keratin (type II), pericentrin, complement C1q subcomponent subunit C |
Conjunctivochalasis | S100 (A8, A9, A4), guanosine triphosphate-binding protein 2, l-lactate dehydrogenase A-like 6B, fatty acid-binding protein, keratin type I cytoskeletal 10, gluthathione S-transferase P, peroxiredoxin-1, peroxiredoxin-5, cullin-4B+ glyceraldehydes 3-phosphate dehydrogenase, Pro-MMP-9 |
Cystic Fibrosis | IL-8, IFN-γ, MIP-1α, MIP-1β |
Diabetic retinopathy | NGF, LCN-1, lactotransferrin, lysozyme C, lacritin, lipophilin A, Ig lambda chain, HSP27, B2M, TNF-α, N- and O-linked glycans |
Dry eye | Proteins: Lysozyme, lactoferrin, LPRR4, calgranulin A/S100 A8, LPRR3, nasopharyngeal carcinoma-associated PRP4, α-1 antitrypsin α-enolase, α-1 acid glycoprotein 1, S100 A4, S100 A11 (calgizzarin), S100 A9/calgranulin B, LCN-1, mammaglobin B, lipophilin A, B2M, S100A6, annexin A1, annexin A11, CST4, PLAA, transferrin, defensin-1, clusterin, lactotransferrin, cathepsin S, anti-SS-A, anti-SS-B, anti-α-fodrin, malate dehydrogenase (MDH) 2, palate lung nasal clone (PLUNC), MUC5AC, NGF, CGRP, NPY, serotonin, IL-1, IL-2, IL-5, IL-6, IL-8/CXCL8, IL-10, IL-12, IL-16, IL-33, GCSF, MCP1/CCL2, MIP1d (CCL15), ENA-78/CXCL5, sILR1, sIL-6R, sgp, sEGFR, sTNFR, IL-17A, IL-21, IL-22, IL-1RA, CXCL9/MIG, CXCL11/I-TAC, CXCL10/IP-10, MIP-1β/CCL4, RANTES/CCL5, EGF, TNF-α, IFN-γ, MMP-9, MIP1-α/CCL3, VEGF, fractalkine, OAHFA, lysophospholipids, PUFA-containing diacylglyceride, HEL, HNE, MDA, cholesterol, N-acetylglucosamine, glutamate, creatine, amino-n-butyrate, choline, acetylchoine, arginine, phosphoethanolamine, glucose, phenylalanine |
Glaucoma | Autoantibodies—HSP10, HSP27, MBP, Protein S100, BDNF, immunoglobulins, PIP, lysozyme C, LCN-1, lactotransferrin, PRP4, PIP, zinc-α2-glycoprotein, polymeric immunoglobulin receptor, cystatin S, Ig-γ chain C region, Ig-α-2 chain C region, immunoglobulin J chain, Ig α-1 chain, MUC5AC, Hcy |
Herpes Simplex Virus | HSV-specific IgA and IgG antibodies |
Keratoconus | Llactoferrin, IgA, GCDFP-15/PIP, RANTES/CCL5, MMP-13, NGF, IL-6, MMP-9, IL-1β, IFN-γ, SFRP-1, prolidase |
Keratopathy | N-linked glycoproteins, cytokines, gelatinases, MMP-2, -9, -10, TIMP-2 |
Ocular allergy | Proteins: neutrophil myeloperoxidase, ECP, eosinophil, neurotoxin, sIL-2 receptor, histamine, MMP-1, MMP-9, TIMP-2, haemopexin, substance P, CGRP, VIP, transferring, mamaglobin B, secretoglobin 1D, IgE Cytokines/chemokines: IL-1α, IL-1β, IL-2, IL-6, IL-12, IL-13, eotaxin-1/CCL11, RANTES/CCL5, MCP-1/CCL2, IL-4, IL-5, IL-10, sIL-6R, eotaxin-2/CCL24, TNF-α, IFN-γ, IL-5, IL-10 |
Ocular chlamydia trachomatis | IgA, antichlamydial IgG |
Ocular GVHD | Cytokines/chemokines: IL-6, IFN-γ, soluble TNF receptor 1 (sRNFR1), IL-2, IL-10, IL-17A, TNF-α, EGF, IL-1RA, IL-8/CXCL8, IP10/CXCL10 |
Ocular rosacea | Matrix metalloproteinase-8 (MMP-8), oligosaccharides |
Peripheral Ulcerative Keratitis | MMP-2, MMP-9 |
Pterygium | α-defensins, S100A8, A9 |
Sjörgen’s syndrome | Proteomics, lysozyme, epidermal growth factor, AQP5, IL-1α and β, IL-6, IL-8, TGF-β1, IL-1Ra, TNF-α, MUC5AC, GalNAc transferase, GalNAc-T2, -T6 isoenzymes, O-glycan residues, MMP-9 |
Trachoma | Immunoglobulins, IgG against cHSP60, CPAF, CT795, EGF, TGF-β1, TNF-α |
Thyroid Ophthalmopathy | IL-1β, IL-6, IL-13, IL-17A, IL-18, TNF-α, RANTES/CCL5, IL-7 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tseng, R.C.; Chen, C.-C.; Hsu, S.-M.; Chuang, H.-S. Contact-Lens Biosensors. Sensors 2018, 18, 2651. https://doi.org/10.3390/s18082651
Tseng RC, Chen C-C, Hsu S-M, Chuang H-S. Contact-Lens Biosensors. Sensors. 2018; 18(8):2651. https://doi.org/10.3390/s18082651
Chicago/Turabian StyleTseng, Ryan Chang, Ching-Chuen Chen, Sheng-Min Hsu, and Han-Sheng Chuang. 2018. "Contact-Lens Biosensors" Sensors 18, no. 8: 2651. https://doi.org/10.3390/s18082651
APA StyleTseng, R. C., Chen, C. -C., Hsu, S. -M., & Chuang, H. -S. (2018). Contact-Lens Biosensors. Sensors, 18(8), 2651. https://doi.org/10.3390/s18082651