An Associative Memory Approach to Healthcare Monitoring and Decision Making
Abstract
:1. Introduction
2. Previous Works
3. Associative Memories
4. Our Proposal
Preprocessing Phase
Algorithm 1: Preprocessing phase |
5. Performance Evaluation Methods
6. Experimental Phase
6.1. Heart Disease Dataset
6.2. e-Health Sensor Platform Dataset
- age
- sex
- maximum heart rate achieved
- resting electrocardiographic results (values 0, 1, 2)
- fasting blood sugar >120 mg/dL
- resting blood pressure
- class attribute: presence or absence (of coronary artery disease)
7. Results and Discussion
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schieber, G.; Maeda, A. Health care financing and delivery in developing countries. Health Aff. 1999, 18, 193–205. [Google Scholar] [CrossRef]
- Böhm, K.; Schmid, A.; Götze, R.; Landwehr, C.; Rothgang, H. Five types of OECD healthcare systems: Empirical results of a deductive classification. Health Policy 2013, 113, 258–269. [Google Scholar] [CrossRef] [PubMed]
- Font, J.C. The State and Healthcare: Comparing OECD Countries. West Eur. Politics 2012, 35, 439–440. [Google Scholar] [CrossRef]
- Senouci, M.R.; Mellouk, A. 1-Wireless Sensor Networks. In Deploying Wireless Sensor Networks; Senouci, M.R., Mellouk, A., Eds.; Elsevier: New York, NY, USA, 2016; pp. 1–19. [Google Scholar]
- Botta, A.; de Donato, W.; Persico, V.; Pescapé, A. Integration of Cloud computing and Internet of Things: A survey. Future Gener. Comput. Syst. 2016, 56, 684–700. [Google Scholar] [CrossRef]
- Llaves, A.; Corcho, Ó.; Taylor, P.; Taylor, K. Enabling RDF Stream Processing for Sensor Data Management in the Environmental Domain. Int. J. Semant. Web Inf. Syst. 2016, 12, 1–21. [Google Scholar] [CrossRef]
- Guinea, A.S.; Nain, G.; Traon, Y.L. A systematic review on the engineering of software for ubiquitous systems. J. Syst. Softw. 2016, 118, 251–276. [Google Scholar] [CrossRef]
- Qi, J.; Yang, P.; Min, G.; Amft, O.; Dong, F.; Xu, L. Advanced internet of things for personalised healthcare systems: A survey. Pervasive Mob. Comput. 2017, 41, 132–149. [Google Scholar] [CrossRef]
- Hamdi, O.; Chalouf, M.A.; Ouattara, D.; Krief, F. eHealth: Survey on research projects, comparative study of telemonitoring architectures and main issues. J. Netw. Comput. Appl. 2014, 46, 100–112. [Google Scholar] [CrossRef]
- Della Mea, V. What is e-Health (2): The death of telemedicine? J. Med. Internet Res. 2001, 3, e22. [Google Scholar] [CrossRef] [PubMed]
- Rashvand, H.F.; Traver Salcedo, V.; Montón Sánchez, E.; Iliescu, D. Ubiquitous wireless telemedicine. IET Commun. 2008, 2, 237–254. [Google Scholar] [CrossRef]
- Segato, F.; Masella, C. Telemedicine services: How to make them last over time. Health Policy Technol. 2017, 6, 268–278. [Google Scholar] [CrossRef]
- Suryadevara, N.; Mukhopadhyay, S.; Wang, R.; Rayudu, R. Forecasting the behavior of an elderly using wireless sensors data in a smart home. Eng. Appl. Artif. Intell. 2013, 26, 2641–2652. [Google Scholar] [CrossRef]
- Garcia-Perez, C.; Diaz-Zayas, A.; Rios, A.; Merino, P.; Katsalis, K.; Chang, C.Y.; Shariat, S.; Nikaein, N.; Rodriguez, P.; Morris, D. Improving the efficiency and reliability of wearable based mobile eHealth applications. Pervasive Mob. Comput. 2017, 40, 674–691. [Google Scholar] [CrossRef]
- Suominen, H. Text mining and information analysis of health documents. Artif. Intell. Med. 2014, 61, 127–130. [Google Scholar] [CrossRef] [PubMed]
- Talaminos-Barroso, A.; Estudillo-Valderrama, M.A.; Roa, L.M.; Reina-Tosina, J.; Ortega-Ruiz, F. A Machine-to-Machine protocol benchmark for eHealth applications-Use case: Respiratory rehabilitation. Comput. Methods Programs Biomed. 2016, 129, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Johnson, W.O.; Ward, E.B.; Gillen, D.L. Chapter 15-Bayesian Methods in Public Health. In Disease Modelling and Public Health, Part A; Rao, A.S.S., Pyne, S., Rao, C., Eds.; Handbook of Statistics; Elsevier: New York, NY, USA, 2017; Volume 36, pp. 407–442. [Google Scholar]
- Paradarami, T.K.; Bastian, N.D.; Wightman, J.L. A hybrid recommender system using artificial neural networks. Expert Syst. Appl. 2017, 83, 300–313. [Google Scholar] [CrossRef]
- Erkaymaz, O.; Ozer, M.; Perc, M. Performance of small-world feedforward neural networks for the diagnosis of diabetes. Appl. Math. Comput. 2017, 311, 22–28. [Google Scholar] [CrossRef]
- López-Vallverdú, J.A.; Riaño, D.; Bohada, J.A. Improving medical decision trees by combining relevant health-care criteria. Expert Syst. Appl. 2012, 39, 11782–11791. [Google Scholar] [CrossRef]
- Aldape-Pérez, M.; Yáñez-Márquez, C.; Camacho-Nieto, O.; Argüelles-Cruz, A.J. A New Tool for Engineering Education: Hepatitis Diagnosis using Associative Memories. Int. J. Eng. Educ. 2012, 28, 1399–1405. [Google Scholar]
- Cerón-Figueroa, S.; López-Yáñez, I.; Alhalabi, W.; Camacho-Nieto, O.; Villuendas-Rey, Y.; Aldape-Pérez, M.; Yáñez-Márquez, C. Instance-based ontology matching for e-learning material using an associative pattern classifier. Comput. Hum. Behav. 2017, 69, 218–225. [Google Scholar] [CrossRef]
- Aldape-Pérez, M.; Yáñez-Márquez, C.; Camacho-Nieto, O.; Argüelles-Cruz, A.J. An associative memory approach to medical decision support systems. Comput. Methods Programs Biomed. 2012, 106, 287–307. [Google Scholar] [CrossRef] [PubMed]
- Aldape-Pérez, M.; Yáñez-Márquez, C.; Camacho-Nieto, O.; López-Yáñez, I.; Argüelles-Cruz, A.J. Collaborative learning based on associative models: Application to pattern classification in medical datasets. Comput. Hum. Behav. 2015, 51, 771–779. [Google Scholar] [CrossRef]
- Ramírez-Rubio, R.; Aldape-Pérez, M.; Yáñez-Márquez, C.; López-Yáñez, I.; Camacho-Nieto, O. Pattern classification using smallest normalized difference associative memory. Pattern Recognit. Lett. 2017, 93, 104–112. [Google Scholar] [CrossRef]
- Kahramanli, H.; Allahverdi, N. Design of a hybrid system for the diabetes and heart diseases. Expert Syst. Appl. 2008, 35, 82–89. [Google Scholar] [CrossRef]
- Dheeru, D.; Karra Taniskidou, E. UCI Machine Learning Repository. 2017. Available online: http://archive.ics.uci.edu/ml (accessed on 7 August 2018).
- Polat, K.; Güneş, S. A new feature selection method on classification of medical datasets: Kernel F-score feature selection. Expert Syst. Appl. 2009, 36, 10367–10373. [Google Scholar] [CrossRef]
- McSherry, D. Conversational case-based reasoning in medical decision making. Artif. Intell. Med. 2011, 52, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Anooj, P. Clinical decision support system: Risk level prediction of heart disease using weighted fuzzy rules. J. King Saud Univ. Comput. Inf. Sci. 2012, 24, 27–40. [Google Scholar] [CrossRef]
- Nahar, J.; Imam, T.; Tickle, K.S.; Chen, Y.P.P. Association rule mining to detect factors which contribute to heart disease in males and females. Expert Syst. Appl. 2013, 40, 1086–1093. [Google Scholar] [CrossRef]
- Biswas, S.K.; Sinha, N.; Purakayastha, B.; Marbaniang, L. Hybrid expert system using case based reasoning and neural network for classification. Biol. Inspir. Cogn. Archit. 2014, 9, 57–70. [Google Scholar] [CrossRef]
- Nguyen, T.; Khosravi, A.; Creighton, D.; Nahavandi, S. Classification of healthcare data using genetic fuzzy logic system and wavelets. Expert Syst. Appl. 2015, 42, 2184–2197. [Google Scholar] [CrossRef]
- Leema, N.; Nehemiah, H.K.; Kannan, A. Neural network classifier optimization using Differential Evolution with Global Information and Back Propagation algorithm for clinical datasets. Appl. Soft Comput. 2016, 49, 834–844. [Google Scholar] [CrossRef]
- Nahato, K.B.; Nehemiah, K.H.; Kannan, A. Hybrid approach using fuzzy sets and extreme learning machine for classifying clinical datasets. Inform. Med. Unlocked 2016, 2, 1–11. [Google Scholar] [CrossRef]
- Acevedo-Mosqueda, M.E.; Yáñez-Márquez, C.; López-Yáñez, I. Alpha-Beta bidirectional associative memories: Theory and applications. Neural Process. Lett. 2007, 26, 1–40. [Google Scholar] [CrossRef]
- Shah, S.; Batool, S.; Khan, I.; Ashraf, M.; Abbas, S.; Hussain, S. Feature extraction through parallel Probabilistic Principal Component Analysis for heart disease diagnosis. Phys. A Stat. Mech. Its Appl. 2017, 482, 796–807. [Google Scholar] [CrossRef]
- Steinbuch, K. Die Lernmatrix. Kybernetik 1961, 1, 36–45. [Google Scholar] [CrossRef]
- Steinbuch, K.; Frank, H. Nichtdigitale lernmatrizen als perzeptoren. Kybernetik 1961, 1, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Steinbuch, K.; Piske, U.A.W. Learning Matrices and Their Applications. IEEE Trans. Electron. Comput. 1963, EC-12, 846–862. [Google Scholar] [CrossRef]
- Steinbuch, K. Adaptive networks using learning matrices. Kybernetik 1964, 2, 148–152. [Google Scholar]
- Steinbuch, K.; Widrow, B. A Critical Comparison of Two Kinds of Adaptive Classification Networks. IEEE Trans. Electron. Comput. 1965, EC-14, 737–740. [Google Scholar] [CrossRef]
- Ting, K.M. Sensitivity and Specificity. In Encyclopedia of Machine Learning; Sammut, C., Webb, G.I., Eds.; Springer: Boston, MA, USA, 2010; pp. 901–902. [Google Scholar]
- Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA Data Mining Software: An Update. SIGKDD Explor. 2009, 11, 10–18. [Google Scholar] [CrossRef]
- Kohavi, R.; John, G.H. Wrappers for Feature Subset Selection. Artif. Intell. 1997, 97, 273–324. [Google Scholar] [CrossRef]
- Le Cessie, S.; van Houwelingen, J. Ridge Estimators in Logistic Regression. Appl. Stat. 1992, 41, 191–201. [Google Scholar] [CrossRef]
- Buhmann, M.D. Radial Basis Functions: Theory and Implementations (Cambridge Monographs on Applied and Computational Mathematics); Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Sumner, M.; Frank, E.; Hall, M. Speeding up logistic model tree induction. In 9th European Conference on Principles and Practice of Knowledge Discovery in Databases; Springer: Berlin/Heidelberg, Germany, 2005; pp. 675–683. [Google Scholar]
- Platt, J. Fast Training of Support Vector Machines Using Sequential Minimal Optimization; Advances in Kernel Methods-Support Vector Learning; MIT Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Freund, Y.; Schapire, R. Experiments with a new boosting algorithm. In Proceedings of the Thirteenth International Conference on Machine Learning, Bari, Italy, 3–6 July 1996; pp. 148–156. [Google Scholar]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Ting, K.M.; Witten, I.H. Stacking Bagged and Dagged Models. In Fourteenth International Conference on Machine Learning; Fisher, D.H., Ed.; Morgan Kaufmann Publishers: San Francisco, CA, USA, 1997; pp. 367–375. [Google Scholar]
- Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. Weka 3: Data Mining Software in Java; University of Waikato: Hamilton, Waikato, 2010. [Google Scholar]
- Witten, I.H.; Frank, E. Data Mining: Practical Machine Learning Tools and Techniques, Second Edition (Morgan Kaufmann Series in Data Management Systems); Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 2005. [Google Scholar]
- Ho, T.K. The Random Subspace Method for Constructing Decision Forests. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 832–844. [Google Scholar]
- Rodriguez, J.J.; Kuncheva, L.I.; Alonso, C.J. Rotation Forest: A new classifier ensemble method. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 1619–1630. [Google Scholar] [CrossRef] [PubMed]
- Kohavi, R. The Power of Decision Tables. In Proceedings of the 8th European Conference on Machine Learning, Heraclion, Crete, Greece, 25–27 April 1995; pp. 174–189. [Google Scholar]
- Hall, M.; Frank, E. Combining Naive Bayes and Decision Tables. In Proceedings of the 21st Florida Artificial Intelligence Society Conference (FLAIRS), Coconut Grove, FL, USA, 15–17 May 2008; pp. 318–319. [Google Scholar]
- Christofides, N. Graph Theory: An Algorithmic Approach (Computer Science and Applied Mathematics); Academic Press, Inc.: Orlando, FL, USA, 1975. [Google Scholar]
- John, G.; Langley, P. Estimating continuous distributions in Bayesian classifiers. In Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, Montreal, QU, Canada, 18–20 August 1995; pp. 338–345. [Google Scholar]
- Duda, R.; Hart, P. Pattern Classification and Scene Analysis; Wiley: New York, NY, USA, 1973. [Google Scholar]
- Landwehr, N.; Hall, M.; Frank, E. Logistic Model Trees. Mach. Learn. 2005, 59, 161–205. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Wolpert, D.H.; Macready, W.G. No Free Lunch Theorems for Optimization. IEEE Trans. Evolut. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef]
No | Algorithm | Sensitivity | Specificity | Accuracy |
---|---|---|---|---|
1. | AdaBoostM1 | 85.30 | 78.30 | 82.22 |
2. | Bagging | 87.30 | 79.20 | 83.70 |
3. | BayesNet | 86.00 | 77.50 | 82.22 |
4. | Dagging | 88.00 | 75.00 | 82.22 |
5. | DecisionTable | 87.30 | 78.30 | 83.33 |
6. | DTNB | 85.30 | 79.20 | 82.59 |
7. | FT | 86.00 | 77.50 | 82.22 |
8. | LMT | 86.00 | 77.50 | 82.22 |
9. | Logistic | 87.30 | 79.20 | 83.70 |
10. | MultiClassClassifier | 87.30 | 79.20 | 83.70 |
11. | NaiveBayes | 87.30 | 78.30 | 83.33 |
12. | NaiveBayesSimple | 86.70 | 78.30 | 82.96 |
13. | NveBayesUpdateable | 87.30 | 78.30 | 83.33 |
14. | RandomCommittee | 86.70 | 76.70 | 82.22 |
15. | RandomForest | 89.30 | 76.70 | 83.70 |
16. | RandomSubSpace | 86.70 | 76.70 | 82.22 |
17. | RBFNetwork | 86.70 | 80.83 | 84.07 |
18. | RotationForest | 86.70 | 77.50 | 82.59 |
19. | SimpleLogistic | 86.00 | 77.50 | 82.22 |
20. | SMO | 86.70 | 79.20 | 83.33 |
21. | IDAM (our proposal) | 86.70 | 80.83 | 84.07 |
No | Algorithm | Sensitivity | Specificity | Accuracy |
---|---|---|---|---|
1. | AdaBoostM1 | 94.10 | 96.40 | 95.60 |
2. | Bagging | 95.40 | 96.60 | 96.19 |
3. | BayesNet | 97.90 | 96.80 | 97.21 |
4. | Dagging | 94.60 | 98.00 | 96.77 |
5. | DecisionTable | 93.70 | 96.80 | 95.75 |
6. | DTNB | 98.30 | 97.10 | 97.51 |
7. | FT | 97.50 | 96.60 | 96.92 |
8. | LMT | 94.10 | 97.70 | 96.48 |
9. | Logistic | 94.60 | 97.70 | 96.63 |
10. | MultiClassClassifier | 94.60 | 97.70 | 96.63 |
11. | NaiveBayes | 97.10 | 95.70 | 96.19 |
12. | NaiveBayesSimple | 97.90 | 95.50 | 96.33 |
13. | NveBayesUpdateable | 97.10 | 95.70 | 96.19 |
14. | RandomCommittee | 95.40 | 97.10 | 96.48 |
15. | RandomForest | 97.50 | 96.80 | 97.07 |
16. | RandomSubSpace | 95.00 | 96.20 | 95.54 |
17. | RBFNetwork | 95.80 | 95.90 | 95.90 |
18. | RotationForest | 97.90 | 96.80 | 97.21 |
19. | SimpleLogistic | 94.10 | 98.00 | 96.63 |
20. | SMO | 95.80 | 97.50 | 96.92 |
21. | IDAM (our proposal) | 98.33 | 97.51 | 97.80 |
No | Algorithm | Sensitivity | Specificity | Accuracy |
---|---|---|---|---|
1. | Bagging | 87.30 | 79.20 | 83.70 |
2. | Logistic | 87.30 | 79.20 | 83.70 |
3. | RandomForest | 89.30 | 76.70 | 83.70 |
4. | RBFNetwork | 86.70 | 80.83 | 84.07 |
5. | IDAM (our proposal) | 86.70 | 80.83 | 84.07 |
No | Algorithm | Sensitivity | Specificity | Accuracy |
---|---|---|---|---|
1. | BayesNet | 97.90 | 96.80 | 97.21 |
2. | DTNB | 98.30 | 97.10 | 97.51 |
3. | RotationForest | 97.90 | 96.80 | 97.21 |
4. | SimpleLogistic | 94.10 | 98.00 | 96.63 |
5. | IDAM (our proposal) | 98.33 | 97.51 | 97.80 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldape-Pérez, M.; Alarcón-Paredes, A.; Yáñez-Márquez, C.; López-Yáñez, I.; Camacho-Nieto, O. An Associative Memory Approach to Healthcare Monitoring and Decision Making. Sensors 2018, 18, 2690. https://doi.org/10.3390/s18082690
Aldape-Pérez M, Alarcón-Paredes A, Yáñez-Márquez C, López-Yáñez I, Camacho-Nieto O. An Associative Memory Approach to Healthcare Monitoring and Decision Making. Sensors. 2018; 18(8):2690. https://doi.org/10.3390/s18082690
Chicago/Turabian StyleAldape-Pérez, Mario, Antonio Alarcón-Paredes, Cornelio Yáñez-Márquez, Itzamá López-Yáñez, and Oscar Camacho-Nieto. 2018. "An Associative Memory Approach to Healthcare Monitoring and Decision Making" Sensors 18, no. 8: 2690. https://doi.org/10.3390/s18082690