Application of Biphase Complete Complementary Code for Ionospheric Sounding
Abstract
:1. Introduction
2. Complete Complementary Code
3. Waveform and Signal Processing
4. Feasibility Analysis
5. Experiments and Discussions
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Breit, G.; Tuve, M.A. A Test of the Existence of the Conducting Layer. Phys. Rev. 1926, 28, 554–575. [Google Scholar] [CrossRef]
- Reinisch, B.W.; Haines, D.M.; Bibl, K.; Galkin, I.; Huang, X.; Kitrosser, D.F.; Sales, G.S.; Scali, J.L. Ionospheric sounding in support of over-the-horizon radar. Radio Sci. 1997, 32, 1681–1694. [Google Scholar] [CrossRef] [Green Version]
- Stamper, R.; Davis, C.J.; Bradford, W.; Hapgood, M.; McCrea, I. RAL Low-Cost Ionosonde System; American Geophysical Union: Washington, DC, USA, 2005. [Google Scholar]
- Reinisch, B.W.; Galkin, I.A.; Khmyrov, G.M.; Kozlov, A.V.; Bibl, K.; Lisysyan, I.A.; Cheney, G.P.; Huang, X.; Kitrosser, D.F.; Paznukhov, V.V.; et al. New Digisonde for research and monitoring applications. Radio Sci. 2009, 44, 1–15. [Google Scholar] [CrossRef]
- Verhulst, T.; Altadill, D.; Mielich, J.; Reinisch, B.; Galkin, I.; Mouzakis, A.; Belehaki, A.; Burešová, D.; Stankov, S.; Blanch, E.; et al. Vertical and oblique HF sounding with a network of synchronised ionosondes. Adv. Space Res. 2017, 60, 1644–1656. [Google Scholar] [CrossRef]
- Dautbegovic, D. Chirp Sounding and HF Application: SDR Technology Implementation. Bachelor’s Thesis, Linnaeus University, Växjö, Sweden, 2012. [Google Scholar]
- Barona, J.; Fernando Quiroga Ruiz, C.; Pinedo, C. Implementation of an Electronic Ionosonde to Monitor the Earth’s Ionosphere Via a Projected Column through USRP. Sensors 2017, 17, 946. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, V.; Ivanov, D.; Elsukov, A.; Ovchinnikov, V.; Ryabova, N.; Ryabova, M.I. BPSK signal shaping and processing for digital SDR ionosonde. In Proceedings of the 2018 Systems of Signals Generating and Processing in the Field of on Board Communications, Moscow, Russia, 14–15 March 2018; pp. 1–5. [Google Scholar]
- Hengqing, S.; Guobin, Y.; Xiao, C.; Peng, Z.; ChunHua, J. Design of an Ultrawideband Ionosonde. IEEE Geosci. Remote. Sens. Lett. 2015, 12, 1042–1045. [Google Scholar] [CrossRef]
- Shi, S.; Chen, G.; Yang, G.; Li, T.; Zhao, Z.; Liu, J. Wuhan Ionospheric Oblique-Incidence Sounding System and Its New Application in Localization of Ionospheric Irregularities. IEEE Trans. Geosci. Remote. Sens. 2015, 53, 2185–2194. [Google Scholar] [CrossRef]
- Shi, S.; Yang, G.; Jiang, C.; Zhang, Y.; Zhao, Z. Wuhan Ionospheric Oblique Backscattering Sounding System and Its Applications-A Review. Sensors 2017, 17. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.; Zhao, Z.; Chen, G.; Yang, G.; Su, F.; Li, S.; Zhang, X. Comparison of Radar Waveforms for a Low-Power Vertical-Incidence Ionosonde. IEEE Geosci. Remote. Sens. Lett. 2010, 7, 636–640. [Google Scholar] [CrossRef]
- Jiang, C.; Yang, G.; Zhou, Y.; Zhu, P.; Lan, T.; Zhao, Z.; Zhang, Y. Software for scaling and analysis of vertical incidence ionograms-ionoScaler. Adv. Space Res. 2017, 59, 968–979. [Google Scholar] [CrossRef]
- Tie-Jun, S.; Kailath, T. Adaptive beamforming for coherent signals and interference. IEEE Trans. Acoust. Speech Signal Process. 1985, 33, 527–536. [Google Scholar] [CrossRef]
- Yang, J.; Kaveh, M. Coherent signal-subspace transformation beam former. IEE Proc. F Radar Signal Process. 1990, 137, 267–275. [Google Scholar] [CrossRef]
- Luthra, A. A solution to the adaptive nulling problem with a look-direction constraint in the presence of coherent jammers. IEEE Trans. Antennas Propag. 1986, 34, 702–710. [Google Scholar] [CrossRef]
- Widrow, B.; Duvall, K.; Gooch, R.; Newman, W. Signal cancellation phenomena in adaptive antennas: Causes and cures. IEEE Trans. Antennas Propag. 1982, 30, 469–478. [Google Scholar] [CrossRef]
- Yeh, C.; Wang, W. Coherent interference suppression by an antenna array of arbitrary geometry. IEEE Trans. Antennas Propag. 1989, 37, 1317–1322. [Google Scholar] [CrossRef]
- Suehiro, N.; Hatori, M. N-shift cross-orthogonal sequences. IEEE Trans. Inf. Theory 1988, 34, 143–146. [Google Scholar] [CrossRef]
- Hsiao-Hwa, C.; Jun-Feng, Y.; Suehiro, N. A multicarrier CDMA architecture based on orthogonal complementary codes for new generations of wideband wireless communications. IEEE Commun. Mag. 2001, 39, 126–135. [Google Scholar] [CrossRef]
- Tang, J.; Ma, Z.; Han, C. The Application of Complete Complementary Codes in MIMO Radar. In Proceedings of the 2012 International Waveform Diversity & Design Conference (WDD), Kauai, HI, USA, 22–27 January 2012; pp. 271–276. [Google Scholar]
- Li, S.; Chen, J.; Zhang, L.; Zhou, Y.-Q. Application of Complete Complementary Sequence in Orthogonal MIMO SAR System. PIER C 2010, 13, 51–66. [Google Scholar] [CrossRef]
- Han, S.; Venkatesan, R.; Chen, H.H.; Meng, W.; Li, C.; Yang, P.Y. A Complete Complementary Coded MIMO System and Its Performance in Multipath Channels. IEEE Wirel. Commun. Lett. 2014, 3, 181–184. [Google Scholar]
- Chen, J.; Li, Z.; Li, C.-S. A Novel Strategy for Topside Ionosphere Sounder Based on Spaceborne MIMO Radar with FDCD. PIER 2011, 116, 381–393. [Google Scholar] [CrossRef]
- Raja, D.R.S.; Suehiro, N.; Han, C. Complete Complementary Sequences of Different Length. IEICE Trans. Fundam. A 2007, 90, 1428–1431. [Google Scholar] [CrossRef]
- Torii, H.; Suehiro, N.; Nakamura, M. General Construction of Periodic Complete Complementary Codes Composed of Expanded Modulatable Orthogonal Sequences. In Proceedings of the ISCC 2000 Fifth IEEE Symposium on Computers and Communications, Antibes-Juan Les Pins, France, 3–6 July 2000; pp. 738–743. [Google Scholar]
- Chenggao, H.; Suchiro, N. A Generation Method for Constructing (N,N,MN/P) Complete Complementary Sequences, Mobile Future. In Proceedings of the 2004 and the Symposium on Trends in Communications. SympoTIC ‘04. Joint IST Workshop on, Bratislava, Slovakia, 24–26 October 2004; pp. 70–73. [Google Scholar]
- Han, C.; Suehiro, N.; Hashimoto, T. N-Shift Cross-Orthogonal Sequences and Complete Complementary Codes. In Proceedings of the 2007 IEEE International Symposium on Information Theory, Nice, France, 24–26 October 2007; pp. 2611–2615. [Google Scholar]
- Hedayat, A.; Wallis, W.D. Hadamard Matrices and Their Applications. Ann. Stat. 1978, 6, 1184–1238. [Google Scholar] [CrossRef]
- Shufeng, L. The ambiguity function analysis of complete complementary sequence in MIMO system. In Proceedings of the 2015 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Ningbo, China, 19–22 September 2015; pp. 1–5. [Google Scholar]
- Lynn, K. Ionospheric Observations Made by a Time-Interleaved Doppler Ionosonde. Adv. Space Res. 2008, 42, 1218–1230. [Google Scholar] [CrossRef]
A0 | ++++ | +−+− | ++−− | +−−+ |
A1 | +−+− | ++++ | +−−+ | ++−− |
A2 | ++−− | +−−+ | ++++ | +−+− |
A3 | +−−+ | ++−− | +−+− | ++++ |
B0 | ++++ | −+−+ | ++−− | −++− |
B1 | +−+− | −−−− | +−−+ | −−++ |
B2 | ++−− | −++− | ++++ | −+−+ |
B3 | +−−+ | −−++ | +−+− | −−−− |
C0 | ++++ | +−+− | −−++ | −++− |
C1 | +−+− | ++++ | −++− | −−++ |
C2 | ++−− | +−−+ | −−−− | −+−+ |
C3 | +−−+ | ++−− | −+−+ | −−−− |
D0 | ++++ | −+−+ | −−++ | −++− |
D1 | +−+− | −−−− | −++− | ++−− |
D2 | ++−− | −++− | −−−− | +−+− |
D3 | +−−+ | −−++ | −+−+ | ++++ |
Waveform | 0 Hz (dB) | 5 Hz (dB) | 10 Hz (dB) | 20 Hz (dB) | 100 Hz (dB) | 200 Hz (dB) |
---|---|---|---|---|---|---|
31-bit m sequence | −6.59 | −6.59 | −6.59 | −6.59 | −6.63 | −6.76 |
13-bit Barker code | −11.14 | −11.14 | −11.14 | −11.14 | −11.14 | −11.11 |
16-bit complementary code | − | −28.24 | −25.23 | −22.15 | −15.17 | −12.13 |
{4, 4, 16} complete complementary code | − | −33.01 | −30.00 | −26.99 | −19.96 | −16.88 |
System Parameter | Typical Value | Rationale |
---|---|---|
Radiated power (W) | 200 | Required for adequate SNR |
Receiver sensitivity (dBm) | −120 | Keeps receiver noise below cosmic value |
Pulse width (us) | 25.6 | Determines the range resolution |
Pulse repetition interval (ms) | 8.192 | Provides the unambiguous range |
Frequency range (MHz) | 2~20 | Required for the expected range of ionosphere |
Frequency step (MHz) | 0.05 | Provides the electron destiny resolution of ionosphere |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, G.; Duan, P.; Jiang, C.; Liu, T.; Lan, T.; Zhao, Z.; Shi, S.; Xu, C. Application of Biphase Complete Complementary Code for Ionospheric Sounding. Sensors 2018, 18, 2811. https://doi.org/10.3390/s18092811
Yang G, Duan P, Jiang C, Liu T, Lan T, Zhao Z, Shi S, Xu C. Application of Biphase Complete Complementary Code for Ionospheric Sounding. Sensors. 2018; 18(9):2811. https://doi.org/10.3390/s18092811
Chicago/Turabian StyleYang, Guobin, Peng Duan, Chunhua Jiang, Tongxin Liu, Ting Lan, Zhengyu Zhao, Shuzhu Shi, and Chen Xu. 2018. "Application of Biphase Complete Complementary Code for Ionospheric Sounding" Sensors 18, no. 9: 2811. https://doi.org/10.3390/s18092811
APA StyleYang, G., Duan, P., Jiang, C., Liu, T., Lan, T., Zhao, Z., Shi, S., & Xu, C. (2018). Application of Biphase Complete Complementary Code for Ionospheric Sounding. Sensors, 18(9), 2811. https://doi.org/10.3390/s18092811