The Dynamic EEG Microstates in Mental Rotation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Paradigm
2.2. EEG Data Preprocess
2.3. Methods
2.3.1. The ICA Algorithm
2.3.2. The Microstates Model
2.3.3. GFP
2.3.4. The Lateralization Analysis
3. Results
3.1. Feature of Microstates in Mental Rotation
3.2. The Relationship between Microstate and ERP
3.3. Hemispheric Lateralization of the Microstates Mode A
3.4. “Angle Effect" on the Duration of the Second Microstates Mode A
4. Discussion
4.1. Alternate Activation Process of the Brain Activation Area
4.2. Microstate and ERP in Mental Rotation
4.3. Hemispheric Lateralization for Activation Area
4.4. “Angle Effect" on Duration of the Second Microstates Mode A
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shepard, R.N.; Metzler, J. Mental rotation of three-dimensional objects. Science 1971, 171, 701–703. [Google Scholar] [CrossRef] [PubMed]
- Kaltner, S.; Jansen, P. Developmental Changes in Mental Rotation: A Dissociation between Object-Based and Egocentric Transformations. Adv. Cogn. Psychol. 2016, 12, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Heil, M. The functional significance of ERP effects during mental rotation. Psychophysiology 2002, 39, 535–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Yang, L.; Liu, G.; Wu, X.; Zhang, Y.; Ma, W.; Deng, Z. The ERP brain topographic map study on mental rotation of depression. Chin. J. Behav. Med. Brain Sci. 2012, 21, 135–138. [Google Scholar]
- Yan, J. Study of Motor Imagery Cognitive Process for Stroke Patients Based on Electroencephalography; Shanghai JiaoTong University: Shanghai, China, 2012. [Google Scholar]
- Heil, M.; Rolke, B. Toward a chronopsychophysiology of mental rotation. Psychophysiology 2002, 39, 414–422. [Google Scholar] [CrossRef] [PubMed]
- Jansen-Osmann, P.; Heil, M. Developmental aspects of parietal hemispheric asymmetry during mental rotation. Neuroreport 2007, 18, 175–178. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.W.; Mckenzie, K.J.; Hamm, J.P. Cerebral asymmetry for mental rotation: Effects of response hand, handedness and gender. Neuroreport 2002, 13, 1929–1932. [Google Scholar] [CrossRef] [PubMed]
- Heath, M.; Hassall, C.D.; MacLean, S.; Krigolson, O.E. Event-related brain potentials during the visuomotor mental rotation task: The contingent negative variation scales to angle of rotation. Neuroscience 2015, 311, 153–165. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, P.E. Event-Related Potentials; Springer: New York, USA, 2011. [Google Scholar]
- Jiang, A.; Yang, J.; Yang, Y. MMN responses during implicit processing of changes in emotional prosody: An ERP study using Chinese pseudo-syllables. Cogn. Neurodyn. 2014, 8, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Keating, D.P. Cognitive and Brain Development; John Wiley & Sons, Inc.: New York, USA, 2004; pp. 45–84. [Google Scholar]
- Pascualmarqui, R.D.; Michel, C.M.; Lehmann, D. Segmentation of brain electrical activity into microstates: Model estimation and validation. IEEE Trans. Bio-Med. Eng. 1995, 42, 658–665. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, M.; Koenig, T.; Munesue, T.; Hanaoka, A.; Strik, W.; Dierks, T.; Koshino, Y.; Minabe, Y. EEG Microstate Analysis in Drug-Naive Patients with Panic Disorder. PLoS ONE 2011, 6, e22912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehmann, D.; Skrandies, W. Reference-free identification of components of checkerboard-evoked multichannel potential fields. Electroencephal. Clin. Neurophysiol. 1980, 48, 609–621. [Google Scholar] [CrossRef]
- Michel, C.M.; Henggeler, B.; Lehmann, D. 42-Channel potential map series to visual contrast and stereo stimuli: Perceptual and cognitive event-related segments. Int. J. Psychophysiol. 1992, 12, 133–145. [Google Scholar] [CrossRef]
- Brandeis, D.; Lehmann, D.; Michel, C.M.; Mingrone, W. Mapping event-related brain potential microstates to sentence endings. Brain Topogr. 1995, 8, 145–159. [Google Scholar] [CrossRef] [PubMed]
- Kondakor, I.; Lehmann, D.; Michel, C.M.; Brandeis, D.; Kochi, K.; Koenig, T. Prestimulus EEG microstates influence visual event-related potential microstates in field maps with 47 channels. J. Neural Transm. 1997, 104, 161–173. [Google Scholar] [CrossRef] [PubMed]
- Koenig, T.; Lehmann, D. Microstates in language-related brain potential maps show noun-verb differences. Brain Lang. 1996, 53, 169–182. [Google Scholar] [CrossRef] [PubMed]
- Brandeis, D.; Lehmann, D. Segments of ERP map series reveal landscape changes with visual attention and subjective contours. Electroencephalogr. Clin. Neurophysiol. 1990, 73, 507–519. [Google Scholar] [CrossRef]
- Milz, P.; Faber, P.L.; Lehmann, D.; Koenig, T.; Kochi, K.; Pascual-Marqui, R.D. The functional significance of EEG microstates—Associations with modalities of thinking. Neuroimage 2016, 125, 643–656. [Google Scholar] [CrossRef] [PubMed]
- Michalopoulos, K.; Zervakis, M.; Deiber, M.P.; Bourbakis, N. Classification of EEG Single Trial Microstates Using Local Global Graphs and Discrete Hidden Markov Models. Int. J. Neural Syst. 2016, 26, 1650036. [Google Scholar] [CrossRef] [PubMed]
- Britz, J.; Landis, T.; Michel, C.M. Right Parietal Brain Activity Precedes Perceptual Alternation of Bistable Stimuli. Cerebral Cortex 2009, 19, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, D.; Pascual-Marqui, R.D.; Strik, W.K.; Koenig, T. Core networks for visual-concrete and abstract thought content: A brain electric microstate analysis. Neuroimage 2010, 49, 1073–1079. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, D.; Strik, W.K.; Henggeler, B.; Koenig, T.; Koukkou, M. Brain electric microstates and momentary conscious mind states as building blocks of spontaneous thinking: I. Visual imagery and abstract thoughts. Int. J. Psychophysiol. 1998, 29, 1–11. [Google Scholar] [CrossRef]
- Müller, T.J.; Koenig, T.; Wackermann, J.; Kalus, P.; Fallgatter, A.; Strik, W.; Lehmann, D. Subsecond changes of global brain state in illusory multistable motion perception. J. Neural Transm. 2005, 112, 565–576. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Lu, B.L. Discriminative extreme learning machine with supervised sparsity preserving for image classification. Neurocomputing 2017, 261, 242–252. [Google Scholar] [CrossRef]
- Schlegel, F.; Lehmann, D.; Faber, P.L.; Milz, P.; Gianotti, L.R. EEG microstates during resting represent personality differences. Brain Topogr. 2012, 25, 20–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, L.; Valentini, E.; Zhang, Z.G.; Liang, M.; Lannetti, G.D. The primary somatosensory cortex contributes to the latest part of the cortical response elicited by nociceptive somatosensory stimuli in humans. Neuroimage 2013, 84, 383–393. [Google Scholar] [CrossRef] [PubMed]
- Von Wegner, F.; Tagliazucchi, E.; Laufs, H. Information-theoretical analysis of resting state EEG microstate sequences, non-Markovianity, non-stationarity and periodicities. NeuroImage 2017, 158, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Dering, B.; Donaldson, D.I. Dissociating Attention Effects from Categorical Perception with ERP Functional Microstates. PLoS ONE 2016, 11, e0163336. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Guo, X.L.; Jin, Z.; Sun, J.F.; Shen, L.W.; Tong, S.B. Cognitive Alterations in Motor Imagery Process after Left Hemispheric Ischemic Stroke. PLoS ONE 2012, 7, 753–756. [Google Scholar] [CrossRef] [PubMed]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Kong, W.; Lin, W.; Babiloni, F.; Hu, S.; Borghini, G. Investigating Driver Fatigue versus Alertness Using the Granger Causality Network. Sensors 2015, 15, 19181–19198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salem, M.; Hamouda, M.; Ben, H.S.J. Blind separation of auditory event-related brain responses into independent components. Proc. Natl. Acad. Sci. USA 1997, 94, 10979–10984. [Google Scholar] [Green Version]
- Kong, W.; Zhou, Z.; Hu, S.; Zhang, J.; Babiloni, F.; Dai, G. Automatic and Direct Identification of Blink Components from Scalp EEG. Sensors 2013, 13, 10783–10801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bezdek, J.C.; Hathaway, R.J.; Howard, R.E.; Wilson, C.A.; Windham, M.P. Local convergence analysis of a grouped variable version of coordinate descent. J. Optim. Theory Appl. 1987, 54, 471–477. [Google Scholar] [CrossRef]
- Skrandies, W.; Lehmann, D. Spatial principal components of multichannel maps evoked by lateral visual half-field stimuli. Electroencephalogr. Clin. Neurophysiol. 1982, 54, 662–667. [Google Scholar] [CrossRef]
- Wraga, M.; Thompson, W.L.; Alpert, N.M.; Kosslyn, S.M. Implicit transfer of motor strategies in mental rotation. Brain Cogn. 2003, 52, 135–143. [Google Scholar] [CrossRef]
- Lamm, C.; Windischberger, C.; Moser, E.; Bauer, H. The functional role of dorso-lateral premotor cortex during mental rotation: An event-related fMRI study separating cognitive processing steps using a novel task paradigm. Neuroimage 2007, 36, 1374–1386. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Guo, X.; Lv, Y.; Sun, J. Mental Rotation Process for Mirrored and Identical Stimuli: A Beta-band ERD Study. In Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC’ 14), Chicago, IL, USA, 26–30 August 2014; pp. 4948–4951. [Google Scholar]
- Windischberger, C.; Lamm, C.; Bauer, H.; Moser, E. Human motor cortex activity during mental rotation. Neuroimage 2003, 20, 225–232. [Google Scholar] [CrossRef] [Green Version]
- Jordan, K.; Heinze, H.J.; Lutz, K.; Kanowski, M.; Jäncke, L. Cortical Activations during the Mental Rotation of Different Visual Objects. Neuroimage 2001, 13, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Muthukumaraswamy, S.D.; Johnson, B.W.; Hamm, J.P. A high density ERP comparison of mental rotation and mental size transformation. Brain Cogn. 2003, 52, 271–280. [Google Scholar] [CrossRef]
- Heil, M.; Bajrić, J.; Rösler, F.; Hennighausen, E. A rotation aftereffect changes both the speed and the preferred direction of mental rotation. J. Exp. Psychol. Hum. Percept. Perform. 1997, 23, 681–692. [Google Scholar]
- Parsons, L.M. Temporal and kinematic properties of motor behavior reflected in mentally simulated action. J. Exp. Psychol. Hum. Percept. Perform. 1994, 20, 709–730. [Google Scholar] [CrossRef] [PubMed]
Left Hand | Right Hand | |||||
---|---|---|---|---|---|---|
Name | Rotation Angle | Probability | Name | Rotation Angle | Probability | |
S1 | | 25% | S7 | | 25% | |
S2 | | 12.5% | S8 | | 12.5% | |
S3 | | 12.5% | S9 | | 12.5% | |
S4 | | 25% | S10 | | 25% | |
S5 | | 12.5% | S11 | | 12.5% | |
S6 | | 12.5% | S12 | | 12.5% |
Parameters | A | B | A | A + B + A | ||||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Duration (ms) | 110.23 | 54.44 | 70.33 | 29.01 | 63.11 | 35.29 | 237.45 | 61.77 |
Coverage (%) | 36.93 | 17.96 | 23.38 | 8.61 | 21.15 | 11.28 | 79.44 | 18.43 |
Hand | Stimulus Type | Left Area | Right Area | p-Value | |||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | ||||
Left Hand | S1 | 1.43 | 2.30 | 2.66 | 3.31 | 0.021 | |
S2 | 1.03 | 1.11 | 1.53 | 1.18 | 0.045 | ||
S3 | 1.38 | 2.22 | 1.80 | 2.28 | 0.161 | ||
S4 | 0.76 | 1.44 | 1.15 | 1.52 | 0.021 | ||
S5 | −0.10 | 2.12 | 0.87 | 1.62 | 0.026 | ||
S6 | 1.35 | 2.15 | 3.05 | 3.12 | 0.010 | ||
Right Hand | S7 | 1.39 | 2.15 | 2.50 | 3.01 | 0.047 | |
S8 | 1.13 | 2.30 | 1.94 | 1.96 | 0.1125 | ||
S9 | 0.03 | 2.35 | 1.36 | 1.83 | 0.020 | ||
S10 | 0.58 | 1.38 | 1.74 | 1.84 | 0.012 | ||
S11 | 0.27 | 1.85 | 1.64 | 1.84 | 0.021 | ||
S12 | 0.43 | 1.68 | 1.37 | 1.91 | 0.089 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, W.; Wang, L.; Zhang, J.; Zhao, Q.; Sun, J. The Dynamic EEG Microstates in Mental Rotation. Sensors 2018, 18, 2920. https://doi.org/10.3390/s18092920
Kong W, Wang L, Zhang J, Zhao Q, Sun J. The Dynamic EEG Microstates in Mental Rotation. Sensors. 2018; 18(9):2920. https://doi.org/10.3390/s18092920
Chicago/Turabian StyleKong, Wanzeng, Luyun Wang, Jianhai Zhang, Qibin Zhao, and Junfeng Sun. 2018. "The Dynamic EEG Microstates in Mental Rotation" Sensors 18, no. 9: 2920. https://doi.org/10.3390/s18092920
APA StyleKong, W., Wang, L., Zhang, J., Zhao, Q., & Sun, J. (2018). The Dynamic EEG Microstates in Mental Rotation. Sensors, 18(9), 2920. https://doi.org/10.3390/s18092920