Experimental Study of Wireless Monitoring of Human Respiratory Movements Using UWB Impulse Radar Systems
Abstract
:1. Introduction
- (1)
- The multiple automatic gain control (AGC) technique is employed to enhance the strength of the respiratory signals of human beings, which can better enhance human respiratory signals and reduce the noise based on the used gain values.
- (2)
- Two filters with seven values averaged are used for improving the SNR of human respiratory signals with one filter performed on the distance direction, and another filter performed on the frequency direction.
- (3)
- Two statistics, including the maximum slope and standard deviation, are used for analysing the characteristics of human respiratory signals. Based on the acquired results, the distance between the radar receiver and human beings can be calculated.
- (4)
- Based on the distance estimate, the interested region containing human respiratory signals can be determined, which can be used to improve the SNR and the accuracy of the frequency estimate of human respiratory movement.
- (5)
- The developed algorithm gives an excellent performance regarding human being detection, which is validated compared with several well-known algorithms.
2. Experimental Statement
3. Developed Algorithm
3.1. Clutters Suppression
3.2. Signal Enhancement
3.3. SNR Improvement
3.4. Spectrums Analysis
3.5. Object Detection
3.6. Interested Region Determination
3.7. Frequency Estimate
4. Results and Discussion
4.1. Clutters Suppression
4.2. Distance Estimate
4.3. Frequency Estimate
4.4. Detection of Two Human Beings
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, K.M.; Devendra, M.; Wang, H.; Chuang, H.R.; Postow, E. An X-banc microwave life-detection system. IEEE Trans. Biomed. Eng. 1986, 33, 697–701. [Google Scholar] [CrossRef] [PubMed]
- Sharafi, A.; Baboli, M.; Ahmadian, A. Respiration-rate estimation of a moving target using impulse-based ultra-wideband radars. Australas. Phys. Eng. Sci. Med. 2012, 35, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Immoreev, I.Y. Short-distance ultra-wideband radars. IEEE Aerosp. Electr. Syst. Mag. 2005, 20, 9–14. [Google Scholar] [CrossRef]
- Fontana, R.J. Recent system applications of short-pulse ultra-wideband (UWB) technology. IEEE Trans. Microw. Theory Tech. 2004, 52, 2087–2104. [Google Scholar] [CrossRef]
- Lv, H.; Zhang, Y.; Wang, J.Q. An adaptive-mssa-based algorithm for detection of trapped victims using uwb radar. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1808–1812. [Google Scholar] [CrossRef]
- Lazaro, A.; Girbau, D.; Villarino, R. Analysis of vital signs monitoring using an IR-UWB radar. Prog. Electromagn. Res. 2010, 100, 265–284. [Google Scholar] [CrossRef]
- Droitcour, A.D.; Boric-Lubecke, O.; Lubecke, V.M.; Lin, J. 0.25/spl mu/m CMOS and BiCMOS single-chip direct-conversion Doppler radars for remote sensing of vital signs. In Proceedings of the 2002 IEEE International Solid-State Circuits Conference (ISSCC), Digest of Technical Papers, San Francisco, CA, USA, 3–7 February 2002. [Google Scholar]
- He, M.; Nian, Y.; Gong, Y. Novel signal processing method for vital sign monitoring using FMCW radar. Biomed. Signal Process. Control 2017, 33, 335–345. [Google Scholar] [CrossRef]
- Sana, F.; Ballal, T.; Al-Naffouri, T.Y.; Hoteit, I. Low-complexity wireless monitoring of respiratory movements using ultra-wideband impulse response estimation. Biomed. Signal Process. Control 2014, 10, 192–200. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Sawan, M. Neural signal compression using a minimum Euclidean or Manhattan distance cluster-based deterministic compressed sensing matrix. Biomed. Signal Process. Control 2015, 19, 44–55. [Google Scholar] [CrossRef]
- Kranjec, J.; Beguš, S.; Geršak, G.; Drnovšek, J. Non-contact heart rate and heart rate variability measurements: A review. Biomed. Signal Process. Control 2014, 13, 102–112. [Google Scholar] [CrossRef]
- Van, N.; Javaid, A.Q.; Weitnauer, M.A. Harmonic Path (HAPA) algorithm for non-contact vital signs monitoring with IR-UWB radar. In Proceedings of the 2013 IEEE Biomedical Circuits and Systems Conference (BioCAS), Rotterdam, The Netherlands, 31 October–2 November 2013. [Google Scholar]
- Van, N.; Javaid, A.Q.; Weitnauer, M.A. Spectrum-averaged Harmonic Path (SHAPA) algorithm for non-contact vital sign monitoring with ultra-wideband (UWB) radar. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 27–31 August 2014. [Google Scholar]
- Khan, F.; Choi, J.W.; Cho, S.H. Design issues in vital sign monitoring through IR UWB radar. In Proceedings of the 18th IEEE International Symposium on Consumer Electronics (ISCE 2014), JeJu, Korea, 22–25 June 2014. [Google Scholar]
- Ascione, M.; Buonanno, A.; D’Urso, M.; Angrisani, L.; Moriello, R.S.L. A new measurement method based on music algorithm for through-the-wall detection of life signs. IEEE Trans. Instrum. Meas. 2013, 62, 13–26. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, H.; Lyu, T.; Xu, L.; Cao, C.; Gulliver, T.A. Ultra-wide band impulse radar for life detection using wavelet packet decomposition. Phys. Commun. 2018, 29, 31–47. [Google Scholar] [CrossRef]
- Lazaro, A.; Girbau, D.; Villarino, R. Techniques for clutter suppression in the presence of body movements during the detection of respiratory activity through UWB radars. Sensors 2014, 14, 2595–2618. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Hong, H.; Zhao, H.; Li, Y.S.; Gu, C.; Zhu, X.H. Through-wall multiple targets vital signs tracking based on VMD algorithm. Sensors 2016, 16, 1293. [Google Scholar] [CrossRef] [PubMed]
- Li, W.Z.; Li, Z.; Lv, H.; Lu, G.; Zhang, Y.; Jiang, X.; Li, S.; Wang, J. A new method for non-line-of-sight vital sign monitoring based on developed adaptive line enhancer using low centre frequency UWB radar. Prog. Electromagn. Res. 2013, 133, 535–554. [Google Scholar] [CrossRef]
- Van, N.; Javaid, A.Q.; Weitnauer, M.A. Detection of motion and posture change using an IR-UWB radar. In Proceedings of the 2016 IEEE 38th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016. [Google Scholar]
- Khan, F.; Choi, J.W.; Cho, S.H. Vital sign monitoring of a non-stationary human through IR-UWB radar. In Proceedings of the 2014 4th IEEE International Conference on Network Infrastructure and Digital Content (IC-NIDC), Beijing, China, 19–21 September 2014; pp. 511–514. [Google Scholar]
- Li, J.; Zeng, Z.; Sun, J.; Liu, F. Through-wall detection of human being’s movement by UWB radar. IEEE Geosci. Remote Sens. Lett. 2012, 9, 1079–1083. [Google Scholar] [CrossRef]
- Baboli, M.; Ghorashi, S.A.; Saniei, N.; Ahmadian, A. A new wavelet based algorithm for estimating respiratory motion rate using UWB radar. In Proceedings of the 2009 International Conference on Biomedical and Pharmaceutical Engineering, Singapore, 2–4 December 2009. [Google Scholar]
- Schleicher, B.; Nasr, I.; Trasser, A.; Schumacher, H. IR-UWB radar demonstrator for ultra-fine movement detection and vital-sign monitoring. IEEE Trans. Microw. Theory Tech. 2013, 61, 2076–2085. [Google Scholar] [CrossRef]
- Richards, J.L.; Fullerton, L.W.; Kelly, D.A. System and Method Using Impulse Radio Technology to Track and Monitor People Needing Health Care. U.S. Patent 6466125, 15 October 2002. [Google Scholar]
- Li, C.; Lin, J.; Xiao, Y. Robust overnight monitoring of human vital signs by a non-contact respiration and heartbeat detector. In Proceedings of the 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS’06), New York, NY, USA, 31 August–3 September 2006. [Google Scholar]
- Yilmaz, T.; Foster, R.; Hao, Y. Detecting vital signs with wearable wireless sensors. Sensors 2010, 10, 10837–10862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Lin, J. Random body movement cancellation in Doppler radar vital sign detection. IEEE Trans. Microw. Theory Tech. 2008, 56, 3143–3152. [Google Scholar]
- Hu, X.; Jin, T. Short-range vital signs sensing based on EEMD and CWT using IR-UWB radar. Sensors 2016, 16, 2025. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, S.; Anderson, C.R.; Rivera, N.V.; Buehrer, R.M. Implementation and analysis of respiration-rate estimation using impulse-based UWB. In Proceedings of the MILCOM 2005-IEEE Military Communications Conference, Atlantic, NJ, USA, 17–20 October 2005. [Google Scholar]
- Javaid, A.Q.; Noble, C.M.; Rosenberg, R.; Weitnauer, M.A. Towards sleep apnea screening with an under-the-mattress IR-UWB radar using machine learning. In Proceedings of the 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA), Miami, FL, USA, 9–11 December 2015. [Google Scholar]
- Ota, K.; Ota, Y.; Otsu, M.; Kajiwara, A. Elderly-care motion sensor using UWB-IR. In Proceedings of the 2011 IEEE Sensors Applications Symposium (SAS), San Antonio, TX, USA, 22–24 February 2011. [Google Scholar]
- Li, X.; Qiao, D.; Li, Y. Macro-motion detection using ultra-wideband impulse radar. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 27–31 August 2014. [Google Scholar]
- Immoreev, I.Y. New practical application of ultra-wideband radars. In Proceedings of the 2007 European Radar Conference, Munich, Germany, 10–12 October 2007; pp. 216–219. [Google Scholar]
- Chia, M.Y.W.; Leong, S.W.; Sim, C.K.; Chan, K.M. Through-wall UWB radar operating within FCC’s mask for sensing heart beat and breathing rate. In Proceedings of the 2005 European Radar Conference, Paris, France, 3–4 October 2005; pp. 267–270. [Google Scholar]
- Yarovoy, A.G.; Ligthart, L.P.; Matuzas, J.; Levitas, B. UWB radar for human being detection. IEEE Aerosp. Electron. Syst. Mag. 2008, 23, 36–40. [Google Scholar] [CrossRef]
- Levitas, B.; Matuzas, J. UWB radar for human being detection behind the wall. In Proceedings of the 2006 International Radar Symposium, Krakow, Poland, 24–26 May 2006; pp. 1–3. [Google Scholar]
- Hu, J.; Zhu, G.; Jin, T.; Zhou, Z. Adaptive through-wall indication of human target with different motions. IEEE Geosci. Remote Sens. Lett. 2013, 11, 911–915. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, H.; Fang, G.Y.; Ye, S.B.; Gulliver, T.A. An improved algorithm for through-wall target detection using ultra-wideband impulse radar. IEEE Access 2017, 5, 22101–22118. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, H.; Ye, S.B.; Fang, G.Y.; Gulliver, T.A. Improved denoising method for through-wall vital sign detection using uwb impulse radar. Digit. Signal Process. 2018, 74, 72–93. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, H.; Lyu, T.; Xiao, H.; Gulliver, T.A. A novel time of arrival estimation algorithm using an energy detector receiver in MMW systems. EURASIP J. Adv. Signal Process. 2017, 83, 1–13. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, H.; Lu, T.; Gulliver, T.A. Energy detector based TOA estimation for MMW systems using machine learning. Telecommun. Syst. 2017, 64, 417–427. [Google Scholar] [CrossRef]
- Liang, X.; Lu, T.; Zhang, H.; Gao, Y.; Fang, G. Through-wall human being detection using uwb impulse radar. EURASIP J. Wirel. Commun. 2018, 46, 1–17. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, H.; Lu, T.; Gulliver, T.A. Extreme learning machine for 60 GHz millimetre wave positioning. IET Commun. 2017, 11, 483–489. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, S.; Chen, C.; Chen, J.; Fang, G. A novel method for automatic detection of trapped victims by ultrawideband radar. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3132–3142. [Google Scholar] [CrossRef]
- Wu, S.; Tan, K.; Xia, Z.; Chen, J.; Meng, S.; Fang, G. Improved human respiration detection method via ultra-wideband radar in through-wall or other similar conditions. IET Radar Sonar Navig. 2016, 10, 468–476. [Google Scholar] [CrossRef]
- Xu, Y.; Dai, S.; Wu, S.; Chen, J.; Fang, G. Vital sign detection method based on multiple higher order cumulant for ultra-wideband radar. IEEE Trans. Geosci. Remote Sens. 2011, 50, 1254–1265. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
center frequency | 400 MHz |
bandwidth of the pulse | 400 MHz |
transmitted signal amplitude | 50 V |
pulse repeat frequency | 600 KHz |
number of averaged values | 30 |
time window | 124 ns |
number of samples | 4092 |
input bandwidth of the analog to digital converter (ADC) | 2.3 GHz |
ADC sampling rate | 500 MHz |
ADC sample size | 12 bits |
receiver dynamic range | 72 dB |
Methods | 4 m | 7 m | 10 m | 12 m | |
---|---|---|---|---|---|
CFAR | Error (m) | 0.36 | 3.47 | 7.32 | 8.78 |
Proposed | Error (m) | 0.15 | 0.17 | 0.21 | 0.24 |
MHOC | Error (m) | 0.65 | 2.93 | 2.56 | 8.38 |
AM | Error (m) | 0.34 | 3.46 | 5.62 | 4.25 |
Method | 4 m | 7 m | 10 m | 12 m | ||||
---|---|---|---|---|---|---|---|---|
Hz | Deviation (%) | Hz | Deviation (%) | Hz | Deviation (%) | Hz | Deviation (%) | |
FFT | 0.116 | 65.2 | 0.126 | 62.00 | 0.137 | 58.66 | 0.112 | 66.22 |
Proposed | 0.32 | 3.99 | 0.32 | 3.99 | 0.32 | 3.99 | 0.32 | 3.99 |
MHOC | 0.349 | 4.74 | 0.116 | 65.10 | 0.116 | 65.14 | 0.087 | 73.89 |
AM | 0.187 | 43.89 | 0.087 | 73.89 | 0.087 | 73.89 | 0.087 | 73.89 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, X.; Wang, Y.; Wu, S.; Gulliver, T.A. Experimental Study of Wireless Monitoring of Human Respiratory Movements Using UWB Impulse Radar Systems. Sensors 2018, 18, 3065. https://doi.org/10.3390/s18093065
Liang X, Wang Y, Wu S, Gulliver TA. Experimental Study of Wireless Monitoring of Human Respiratory Movements Using UWB Impulse Radar Systems. Sensors. 2018; 18(9):3065. https://doi.org/10.3390/s18093065
Chicago/Turabian StyleLiang, Xiaolin, Yuankai Wang, Shiyou Wu, and Thomas Aaron Gulliver. 2018. "Experimental Study of Wireless Monitoring of Human Respiratory Movements Using UWB Impulse Radar Systems" Sensors 18, no. 9: 3065. https://doi.org/10.3390/s18093065
APA StyleLiang, X., Wang, Y., Wu, S., & Gulliver, T. A. (2018). Experimental Study of Wireless Monitoring of Human Respiratory Movements Using UWB Impulse Radar Systems. Sensors, 18(9), 3065. https://doi.org/10.3390/s18093065