Peripheral Network Connectivity Analyses for the Real-Time Tracking of Coupled Bodies in Motion
Abstract
:But there’s nothing more profound than creating something out of nothing.—Rainbow Rowell
1. Introduction
2. Materials and Methods
2.1. Motivation: Deliberate vs. Consequential Motions Self-Generated by the Nervous Systems
2.2. Data Acquisition and Signal Processing
2.3. Instrumentation Specs
2.4. Pre-Processing
2.5. First Parameterization: The Micro-Movements
2.6. Distance Estimation in Probability Space
2.7. Second Parameterization: Coherence-Phase-Frequency (CPF)
2.8. A Measure of Physical Entrainment
3. Results
3.1. Connectivity Metrics: Body-Body Networks Degree Distributions
3.2. Connectivity Metrics: Body-Body Networks Leading-Lagging Profiles
3.3. Dynamically Coupled Body-Body Networks
3.4. Automatic Identification of Connectivity and Coordination Patterns
3.5. Individualized Noise-Body-Map Profiles
3.6. K/W Distance in Probability Space
4. Discussion
4.1. Connecting Central and Peripheral Signals of the Nervous Systems
4.2. Other Applications in AI and Robotics
4.3. Closing the Feedback Loop: Shifting from Correlation to Causation in Statistical Inference
4.4. Higher Frequencies and Their Possible Uses in Sensory-Substitution Interventions
5. Patents
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Yu, X.; Huang, J.; Zhang, S.; Metaxas, D.N. Face Landmark Fitting via Optimized Part Mixtures and Cascaded Deformable Model. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 2212–2226. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Liu, Q.; Yang, P.; Huang, J.; Metaxas, D.N. Learning Multiscale Active Facial Patches for Expression Analysis. IEEE Trans. Cybern. 2015, 45, 1499–1510. [Google Scholar] [CrossRef] [PubMed]
- Torres, E.B. Objective Biometric Methods for the Diagnosis and Treatment of Nervous System Disorders; Elsevier Science: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Torres, E.B.; Isenhower, R.W.; Nguyen, J.; Whyatt, C.; Nurnberger, J.I.; Jose, J.V.; Silverstein, S.M.; Papathomas, T.V.; Sage, J.; Cole, J. Toward Precision Psychiatry: Statistical Platform for the Personalized Characterization of Natural Behaviors. Front. Neurol. 2016, 7, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres, E.B. Two classes of movements in motor control. Exp. Brain Res. 2011, 215, 269–283. [Google Scholar] [CrossRef] [PubMed]
- Torres, E.B.; Yanovich, P.; Metaxas, D.N. Give spontaneity and self-discovery a chance in ASD: Spontaneous peripheral limb variability as a proxy to evoke centrally driven intentional acts. Front. Integr. Neurosci. 2013, 7, 46. [Google Scholar] [CrossRef] [PubMed]
- Torres, E.B.; Brincker, M.; Isenhower, R.W.; Yanovich, P.; Stigler, K.A.; Nurnberger, J.I.; Metaxas, D.N.; Jose, J.V. Autism: The micro-movement perspective. Front. Integr. Neurosci. 2013, 7, 32. [Google Scholar] [CrossRef] [PubMed]
- Torres, E.B. Section III: Contemporary Problems with Methods in Basic Science Impede Progress in ASD Research and Treatments. In Autism: The Movement Sensing Approach; Torres, E.B., Whyatt, C., Eds.; CRC Press Taylor and Francis: Boca Raton, FL, USA, 2018; p. 177. [Google Scholar]
- Von Holst, E.; Mittelstaedt, H. The principle of reafference: Interactions between the central nervous system and the peripheral organs. In Perceptual Processing: Stimulus Equivalence and Pattern Recognition; Dodwell, P.C., Ed.; Appleton-Century-Crofts: New York, NY, USA, 1950; pp. 41–72. [Google Scholar]
- Torres, E.B.; Whyatt, C. Autism: The Movement Sensing Perspective; CRC Press/Taylor & Francis Group: Boca Raton, FL, USA, 2017; pp. XVIII; p. 386. [Google Scholar]
- Torres, E.B.; Zipser, D. Reaching to grasp with a multi-jointed arm. I. Computational model. J. Neurophysiol. 2002, 88, 2355–2367. [Google Scholar] [CrossRef] [PubMed]
- Torres, E.B.; Zipser, D. Simultaneous control of hand displacements and rotations in orientation-matching experiments. J. Appl. Physiol. 2004, 96, 1978–1987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres, E.; Andersen, R. Space-time separation during obstacle-avoidance learning in monkeys. J. Neurophysiol. 2006, 96, 2613–2632. [Google Scholar] [CrossRef] [PubMed]
- Torres, E.B. New symmetry of intended curved reaches. Behav. Brain Funct. 2010, 6, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brincker, M.; Torres, E.B. Noise from the periphery in autism. Front. Integr. Neurosci. 2013, 7, 34. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, P.; Romero, V.; Amaral, J.L.; Duncan, A.; Barnard, H.; Richardson, M.J.; Schmidt, R.C. Social Motor Synchronization: Insights for Understanding Social Behavior in Autism. J. Autism Dev. Disord. 2017, 47, 2092–2107. [Google Scholar] [CrossRef] [PubMed]
- Vesper, C.; Richardson, M.J. Strategic communication and behavioral coupling in asymmetric joint action. Exp. Brain Res. 2014, 232, 2945–2956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coey, C.A.; Varlet, M.; Richardson, M.J. Coordination dynamics in a socially situated nervous system. Front. Hum. Neurosci. 2012, 6, 164. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, R.C.; Nie, L.; Franco, A.; Richardson, M.J. Bodily synchronization underlying joke telling. Front. Hum. Neurosci. 2014, 8, 633. [Google Scholar] [CrossRef] [PubMed]
- Paxton, A.; Dale, R. Frame-differencing methods for measuring bodily synchrony in conversation. Behav. Res. Methods 2013, 45, 329–343. [Google Scholar] [CrossRef] [PubMed]
- Romero, V.; Fitzpatrick, P.; Roulier, S.; Duncan, A.; Richardson, M.J.; Schmidt, R.C. Evidence of embodied social competence during conversation in high functioning children with autism spectrum disorder. PLoS ONE 2018, 13, e0193906. [Google Scholar]
- Schmidt, R.C.; Carello, C.; Turvey, M.T. Phase transitions and critical fluctuations in the visual coordination of rhythmic movements between people. J. Exp. Psychol. Hum. Percept. Perform. 1990, 16, 227–247. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, P.; Romero, V.; Amaral, J.L.; Duncan, A.; Barnard, H.; Richardson, M.J.; Schmidt, R.C. Evaluating the importance of social motor synchronization and motor skill for understanding autism. Autism Res. 2017, 10, 1687–1699. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, R.C.; Fitzpatrick, P.; Caron, R.; Mergeche, J. Understanding social motor coordination. Hum. Mov. Sci. 2011, 30, 834–845. [Google Scholar] [CrossRef] [PubMed]
- Whyatt, C.; Torres, E.B. The social-dance: Decomposing naturalistic dyadic interaction dynamics to the ‘micro-level’. In Proceedings of the Fourth International Symposium on Movement and Computing, MOCO’17, London, UK, 28–30 June 2017; pp. 1–8. [Google Scholar]
- Torres, E.B. Atypical signatures of motor variability found in an individual with ASD. Neurocase 2012, 1, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Kalampratsidou, V.; Torres, E.B. Outcome Measures of Deliberate and Spontaneous Motions. In Proceedings of the Third International Symposium on Movement and Computing, MOCO’16, Thessaloniki, Greece, 5–6 July 2016; pp. 1–8. [Google Scholar]
- Torres, E.B. Signatures of movement variability anticipate hand speed according to levels of intent. Behav. Brain Funct. 2013, 9, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, J.; Majmudar, U.; Papathomas, T.V.; Silverstein, S.M.; Torres, E.B. Schizophrenia: The micro-movements perspective. Neuropsychologia 2016, 85, 310–326. [Google Scholar] [CrossRef] [PubMed]
- Atkeson, C.G.; Hollerbach, J.M. Kinematic features of unrestrained vertical arm movements. J. Neurosci. 1985, 5, 2318–2330. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, K.C.; Murray, S.T.; Flanders, M. Do arm postures vary with the speed of reaching? J. Neurophysiol. 1999, 81, 2582–2586. [Google Scholar] [CrossRef] [PubMed]
- Torres, E. Theoretical Framework for the Study of Sensory-Motor Integration; University of California: San Diego, CA, USA, 2001. [Google Scholar]
- Carmo, M.P.O.D. Differential Geometry of Curves and Surfaces; Prentice-Hall: Englewood Cliffs, NJ, USA, 1976; pp. VIII; p. 503. [Google Scholar]
- Lleonart, J.; Salat, J.; Torres, G.J. Removing allometric effects of body size in morphological analysis. J. Theor. Biol. 2000, 205, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Kantorovich, L.V. On translocation of masses. USSR AS Dokl. New Serie 1942, 37, 227–229. (In Russian) [Google Scholar] [CrossRef]
- Kantorovich, L.V.; Gavurin, M.K. Application of Mathematical Methods to Problems of Analysis of Freight Flows; Problems of Raising the Efficiency of Transport Performance; Academy of Sciences of the USSR: Moscow, Russia; Leningrad, Russia, 1949; pp. 110–138. (In Russian) [Google Scholar]
- Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein GAN. arXiv, 2017; arXiv:1701.07875v3. [Google Scholar]
- Rachev, S.T. Probability Metrics and the Stability of Stochastic Models; Wiley: Chichester, UK; New York, NY, USA, 1991; pp. XIV; p. 494. [Google Scholar]
- Kullback, S. Information Theory and Statistics; Wiley: New York, NY, USA, 1959; p. 395. [Google Scholar]
- Endres, D.M.; Schindelin, J.E. A new metric for probability distributions. IEEE Trans. Inf. Theory 2003, 49, 1858–1860. [Google Scholar] [CrossRef] [Green Version]
- Torres, E.B.; Smith, B.; Mistry, S.; Brincker, M.; Whyatt, C. Neonatal Diagnostics: Toward Dynamic Growth Charts of Neuromotor Control. Front. Pediatr. 2016, 4, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Torres, E.B.; Nguyen, J.; Mistry, S.; Whyatt, C.; Kalampratsidou, V.; Kolevzon, A. Characterization of the Statistical Signatures of Micro-Movements Underlying Natural Gait Patterns in Children with Phelan McDermid Syndrome: Towards Precision-Phenotyping of Behavior in ASD. Front. Integr. Neurosci. 2016, 10, 22. [Google Scholar] [CrossRef] [PubMed]
- Torres, E.B.; Denisova, K. Motor noise is rich signal in autism research and pharmacological treatments. Sci. Rep. 2016, 6, 37422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres, E.B.; Lande, B. Objective and personalized longitudinal assessment of a pregnant patient with post severe brain trauma. Front. Hum. Neurosci. 2015, 9, 128. [Google Scholar] [CrossRef] [PubMed]
- Rubinov, M.; Sporns, O. Complex network measures of brain connectivity: Uses and interpretations. Neuroimage 2010, 52, 1059–1069. [Google Scholar] [CrossRef] [PubMed]
- Ryu, J.; Torres, E.B. Characterization of Sensory-Motor Behavior Under Cognitive Load Using a New Statistical Platform for Studies of Embodied Cognition. Front. Hum. Neurosci. 2018, 12, 116. [Google Scholar] [CrossRef] [PubMed]
- Ryu, J.; Torres, E.B. Methods for Dynamically Coupled Brain Body Tracking. In Proceedings of the Fourth International Symposium on Movement and Computing, MOCO’17, London, UK, 28–30 June 2017; pp. 1–8. [Google Scholar]
- Kalampratsidou, V. Co-Adaptive Multimodal Interface Guided by Real-Time Multisensory Stochastic Feedback; Rutgers The State University of New Jersey: Piscataway, NJ, USA, 2018. [Google Scholar]
- Laban, R.V. Principles of Dance and Movement Notation: With 114 Basic Movement Graphs and Their Explanation; Macdonald & Evans: London, UK, 1956; p. 56. [Google Scholar]
- Benesh, R.; Benesh, J. An Introduction to Benesh Dance Notation; A. and C. Black: London, UK, 1956; p. 48. [Google Scholar]
- Ryu, J.; Torres, E.B. Individualized stochastic characterization of dynamically coupled brain-body biorhythms in ASD vs. controls. In Proceedings of the Annual Meeting of the Society for Neuroscience, Washington, DC, USA, 11–15 November 2017. [Google Scholar]
- Torres, E.B.; Vero, J.; Rai, R. Statistical Platform for Individualized Behavioral Analyses Using Biophysical Micro-Movement Spikes. Sensors 2018, 18, 1025. [Google Scholar] [CrossRef] [PubMed]
- Torres, E.B.; Quian Quiroga, R.; Cui, H.; Buneo, C.A. Neural correlates of learning and trajectory planning in the posterior parietal cortex. Front. Integr. Neurosci. 2013, 7, 39. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Jose, J.V.; Nurnberger, J.I.; Torres, E.B. A Biomarker Characterizing Neurodevelopment with applications in Autism. Sci. Rep. 2018, 8, 614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control, 5th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; pp. XXVI; p. 669. [Google Scholar]
- Torres, E.B.; Heilman, K.M.; Poizner, H. Impaired endogenously evoked automated reaching in Parkinson’s disease. J. Neurosci. 2011, 31, 17848–17863. [Google Scholar] [CrossRef] [PubMed]
- Torres, E.B.; Raymer, A.; Gonzalez Rothi, L.J.; Heilman, K.M.; Poizner, H. Sensory-spatial transformations in the left posterior parietal cortex may contribute to reach timing. J. Neurophysiol. 2010, 104, 2375–2388. [Google Scholar] [CrossRef] [PubMed]
- Marple, S.L. Digital Spectral Analysis: With Applications; Prentice-Hall: Englewood Cliffs, NJ, USA, 1987; pp. XX; p. 492. [Google Scholar]
- Sporns, O. Networks of the Brain; MIT Press: Cambridge, MA, USA, 2011; pp. XI; pp. 412–418. [Google Scholar]
- Gotham, K.; Risi, S.; Pickles, A.; Lord, C. The Autism Diagnostic Observation Schedule: Revised algorithms for improved diagnostic validity. J. Autism Dev. Disord. 2007, 37, 613–627. [Google Scholar] [CrossRef] [PubMed]
Parameter | Condition | p-Value |
---|---|---|
Shape (a) | Dancing vs. NonDancing | 1.3027 × 10−21 |
Scale (b) | Dancing vs. NonDancing | 2.4329 × 10−18 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalampratsidou, V.; Torres, E.B. Peripheral Network Connectivity Analyses for the Real-Time Tracking of Coupled Bodies in Motion. Sensors 2018, 18, 3117. https://doi.org/10.3390/s18093117
Kalampratsidou V, Torres EB. Peripheral Network Connectivity Analyses for the Real-Time Tracking of Coupled Bodies in Motion. Sensors. 2018; 18(9):3117. https://doi.org/10.3390/s18093117
Chicago/Turabian StyleKalampratsidou, Vilelmini, and Elizabeth B. Torres. 2018. "Peripheral Network Connectivity Analyses for the Real-Time Tracking of Coupled Bodies in Motion" Sensors 18, no. 9: 3117. https://doi.org/10.3390/s18093117
APA StyleKalampratsidou, V., & Torres, E. B. (2018). Peripheral Network Connectivity Analyses for the Real-Time Tracking of Coupled Bodies in Motion. Sensors, 18(9), 3117. https://doi.org/10.3390/s18093117