Smartphone-Based Microfluidic Colorimetric Sensor for Gaseous Formaldehyde Determination with High Sensitivity and Selectivity
Abstract
:1. Introduction
2. Experimental Section
2.1. AHMT Method
2.2. Standard Gaseous Formaldehyde
2.3. Microfluidic Chip Configuration
2.4. Smartphone-Based Formaldehyde Determination System
3. Results and Discussion
3.1. Relationship between Sampling Time and Color Ratios
3.2. Calibration of Smartphone-Based Microfluidic Colorimetric Sensor for Gaseous Formaldehyde Determination
3.3. Selectivity of the Smartphone-Based Microfluidic Colorimetric Sensor
3.4. Effect of Temperature and Humidity
3.5. Determination of Formaldehyde in a Newly Decorated House
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tang, X.J.; Bai, Y.; Duong, A.; Smith, M.T.; Li, L.Y.; Zhang, L.P. Formaldehyde in China: Production, consumption, exposure levels, and health effects. Environ. Int. 2009, 35, 1210–1224. [Google Scholar] [CrossRef] [PubMed]
- Material Safety Data Sheet Formaldehyde Solution, Reagnt, ACS MSDS. Available online: http://www.sciencelab.com/msds.php?msdsId=9924094 (accessed on 4 September 2018).
- Bunkoed, O.; Davis, F.; Kanatharana, P.; Thavarungkul, P.; Higson, S.P.J. Sol-gel based sensor for selective formaldehyde determination. Anal. Chim. Acta 2010, 659, 251–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hopkins, J.R.; Still, T.; Al-Haider, S.; Fisher, I.R.; Lewis, A.C.; Seakins, P.W. A simplified apparatus for ambient formaldehyde detection via GC-pHID. Atmos. Environ. 2003, 37, 2557–2565. [Google Scholar] [CrossRef]
- Rocha, F.R.; Coelho, L.H.G.; Lopes, M.L.A.; Carvalho, L.R.F.; da Silva, J.A.F.; do Lago, C.L.; Gutz, I.G.R. Environmental formaldehyde analysis by active diffusive sampling with a bundle of polypropylene porous capillaries followed by capillary zone electrophoretic separation and contactless conductivity detection. Talanta 2008, 76, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Dirksen, J.A.; Duval, K.; Ring, T.A. NiO thin-film formaldehyde gas sensor. Sens. Actuators B Chem. 2001, 80, 106–115. [Google Scholar] [CrossRef]
- Lee, C.Y.; Chiang, C.M.; Wang, Y.H.; Ma, R.H. A self-heating gas sensor with integrated NiO thin-film for formaldehyde detection. Sens. Actuators B Chem. 2007, 122, 503–510. [Google Scholar] [CrossRef]
- Xu, L.; Xing, R.Q.; Song, J.; Xu, W.; Song, H.W. ZnO-SnO2 nanotubes surface engineered by Ag nanoparticles: Synthesis, characterization, and highly enhanced HCHO gas sensing properties. J. Mater. Chem. C 2013, 1, 2174–2182. [Google Scholar] [CrossRef]
- Lv, P.; Tang, Z.A.; Yu, J.; Zhang, F.T.; Wei, G.F.; Huang, Z.X.; Hu, Y. Study on a micro-gas sensor with SnO2-NiO sensitive film for indoor formaldehyde detection. Sens. Actuators B Chem. 2008, 132, 74–80. [Google Scholar] [CrossRef]
- Xu, J.Q.; Ha, X.H.; Lou, X.D.; Xi, G.X.; Han, H.J.; Gao, Q.H. Selective detection of HCHO gas using mixed oxides of ZnO/ZnSnO3. Sens. Actuators B Chem. 2007, 120, 694–699. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, P.; Qi, J.Q.; Yao, P.J. Silicon-based micro-gas sensors for detecting formaldehyde. Sens. Actuators B Chem. 2009, 136, 399–404. [Google Scholar] [CrossRef]
- Gu, C.P.; Cui, Y.W.; Wang, L.Y.; Sheng, E.H.; Shim, J.J.; Huang, J.R. Synthesis of the porous NiO/SnO2 microspheres and microcubes and their enhanced formaldehyde gas sensing performance. Sens. Actuators B Chem. 2017, 241, 298–307. [Google Scholar] [CrossRef]
- Feng, L.; Liu, Y.J.; Zhou, X.D.; Hu, J.M. The fabrication and characterization of a formaldehyde odor sensor using molecularly imprinted polymers. J. Colloid Interface Sci. 2005, 284, 378–382. [Google Scholar] [CrossRef] [PubMed]
- Fatibello-Filho, O.; Suleiman, A.A.; Guilbault, G.G. Piezoelectric crystal sensor for the determination of formaldehyde in air. Talanta 1991, 38, 541–545. [Google Scholar] [CrossRef]
- Bunde, R.L.; Jarvi, E.J.; Rosentreter, J.J. A piezoelectric method for monitoring formaldehyde induced crosslink formation between poly-lysine and poly-deoxyguanosine. Talanta 2000, 51, 159–171. [Google Scholar] [CrossRef]
- Mitsubayashi, K.; Nishio, G.; Sawai, M.; Saito, T.; Kudo, H.; Saito, H.; Otsuka, K.; Noguer, T.; Marty, J.L. A bio-sniffer stick with FALDH (formaldehyde dehydrogenase) for convenient analysis of gaseous formaldehyde. Sens. Actuators B Chem. 2008, 130, 32–37. [Google Scholar] [CrossRef]
- Demkiv, O.; Smutok, O.; Paryzhak, S.; Gayda, G.; Sultanov, Y.; Guschin, D.; Shkil, H.; Schuhmann, W.; Gonchar, M. Reagentless amperometric formaldehyde-selective biosensors based on the recombinant yeast formaldehyde dehydrogenase. Talanta 2008, 76, 837–846. [Google Scholar] [CrossRef] [PubMed]
- Pretto, A.; Milani, M.R.; Cardoso, A.A. Colorimetric determination of formaldehyde in air using a hanging drop of chromotropic acid. J. Environ. Monit. 2000, 2, 566–570. [Google Scholar] [CrossRef] [PubMed]
- Gigante, A.C.; Gotardo, M.A.; Tognolli, J.O.; Pezza, L.; Pezza, H.R. Spectrophotometric determination of formaldehyde with chromotropic acid in phosphoric acid medium assisted by microwave oven. Microchem. J. 2004, 77, 47–51. [Google Scholar] [CrossRef]
- Maruo, Y.Y.; Nakamura, J.; Uchiyama, M.; Higuchi, M.; Izunli, K. Development of formaldehyde sensing element using porous glass impregnated with Schiff’s reagent. Sens. Actuators B Chem. 2008, 129, 544–550. [Google Scholar] [CrossRef]
- Toda, K.; Yoshioka, K.I.; Mori, K.; Hirata, S. Portable system for near-real time measurement of gaseous formaldehyde by means of parallel scrubber stopped-flow absorptiometry. Anal. Chim. Acta 2005, 531, 41–49. [Google Scholar] [CrossRef]
- Wang, X.Q.; Si, Y.; Mao, X.; Li, Y.; Yu, J.Y.; Wang, H.P.; Ding, B. Colorimetric sensor strips for formaldehyde assay utilizing fluoral-p decorated polyacrylonitrile nanofibrous membranes. Analyst 2013, 138, 5129–5136. [Google Scholar] [CrossRef] [PubMed]
- Guglielmino, M.; Bernhardt, P.; Trocquet, C.; Serra, C.A.; Le Calve, S. On-line gaseous formaldehyde detection by a microfluidic analytical method based on simultaneous uptake and derivatization in a temperature controlled annular flow. Talanta 2017, 172, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Vignau-Laulhere, J.; Plaisance, H.; Mocho, P.; Raulin, K.; Bigay, Y.; Desauziers, V. Performance of the Radiello (R) diffusive sampler for formaldehyde measurement: The influence of exposure conditions and ozone interference. Anal. Methods 2015, 7, 5497–5503. [Google Scholar] [CrossRef]
- Maruo, Y.Y.; Nakamura, J.; Uchiyama, M. Development of formaldehyde sensing element using porous glass impregnated with beta-diketone. Talanta 2008, 74, 1141–1147. [Google Scholar] [CrossRef] [PubMed]
- Guzman, J.M.C.C.; Tayo, L.L.; Liu, C.C.; Wang, Y.N.; Fu, L.M. Rapid microfluidic paper-based platform for low concentration formaldehyde detection. Sens. Actuators B Chem. 2018, 255, 3623–3629. [Google Scholar] [CrossRef]
- Liu, C.C.; Wang, Y.N.; Fu, L.M.; Huang, Y.H. Microfluidic paper-based chip platform for formaldehyde concentration detection. Chem. Eng. J. 2018, 332, 695–701. [Google Scholar] [CrossRef]
- Kawamura, K.; Kerman, K.; Fujihara, M.; Nagatani, N.; Hashiba, T.; Tamiya, E. Development of a novel hand-held formaldehyde gas sensor for the rapid detection of sick building syndrome. Sens. Actuators B Chem. 2005, 105, 495–501. [Google Scholar] [CrossRef]
- Vanderwal, J.F.; Korf, C.; Kuypers, A.T.J.M.; Neele, J. Interference by Chemicals in the Determination of Formaldehyde. Environ. Int. 1989, 15, 517–524. [Google Scholar] [CrossRef]
- Motyka, K.; Mikuska, P. Continuous fluorescence determination of formaldehyde in air. Anal. Chim. Acta 2004, 518, 51–57. [Google Scholar] [CrossRef]
- Maruo, Y.Y.; Nakamura, J. Portable formaldehyde monitoring device using porous glass sensor and its applications in indoor air quality studies. Anal. Chim. Acta 2011, 702, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Sugita, T.; Ishiwata, H.; Yoshihira, K. Comparative Studies on the Determination of Formaldehyde by the Acetylacetone and 4-Amino-3-Hydrazino-5-Mercapto-1,2,4-Triazole Methods. J. Food Hyg. Soc. Jpn. 1988, 29, 273–279. [Google Scholar] [CrossRef]
- Dong, S.; Dasgupta, P.K. Solubility of Gaseous Formaldehyde in Liquid Water and Generation of Trace Standard Gaseous Formaldehyde. Environ. Sci. Technol. 1986, 20, 637–640. [Google Scholar] [CrossRef] [PubMed]
- Sekine, Y.; Katori, R.; Tsuda, Y.; Kitahara, T. Colorimetric monitoring of formaldehyde in indoor environment using built-in camera on mobile phone. Environ. Technol. 2016, 37, 1647–1655. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, X.-L.; Chen, Y.; Jiang, H.-L.; Qiu, X.-B.; Yu, D.-L. Smartphone-Based Microfluidic Colorimetric Sensor for Gaseous Formaldehyde Determination with High Sensitivity and Selectivity. Sensors 2018, 18, 3141. https://doi.org/10.3390/s18093141
Guo X-L, Chen Y, Jiang H-L, Qiu X-B, Yu D-L. Smartphone-Based Microfluidic Colorimetric Sensor for Gaseous Formaldehyde Determination with High Sensitivity and Selectivity. Sensors. 2018; 18(9):3141. https://doi.org/10.3390/s18093141
Chicago/Turabian StyleGuo, Xiao-Liang, Yan Chen, Hong-Lan Jiang, Xian-Bo Qiu, and Du-Li Yu. 2018. "Smartphone-Based Microfluidic Colorimetric Sensor for Gaseous Formaldehyde Determination with High Sensitivity and Selectivity" Sensors 18, no. 9: 3141. https://doi.org/10.3390/s18093141
APA StyleGuo, X.-L., Chen, Y., Jiang, H.-L., Qiu, X.-B., & Yu, D.-L. (2018). Smartphone-Based Microfluidic Colorimetric Sensor for Gaseous Formaldehyde Determination with High Sensitivity and Selectivity. Sensors, 18(9), 3141. https://doi.org/10.3390/s18093141