An Improved Spatiotemporal Fusion Approach Based on Multiple Endmember Spectral Mixture Analysis
Abstract
:1. Introduction
2. Description of IESTARFM
2.1. The Similar Pixel Selection Method in ESTARFM
2.2. Improved Selection of Similar Pixels
2.3. Fused Data Generation
3. Data and Pre-Process
4. Result and Analysis
4.1. Spectral Mixture Analysis
4.2. Fusion Results and Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Adachi, M.; Ito, A.; Yonemura, S.; Takeuchi, W. Estimation of global soil respiration by accounting for land-use changes derived from remote sensing data. J. Environ. Manage. 2017, 200, 97–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senf, C.; Pflugmacher, D.; Heurich, M.; Krueger, T. A Bayesian hierarchical model for estimating spatial and temporal variation in vegetation phenology from Landsat time series. Remote Sens. Environ. 2017, 194, 155–160. [Google Scholar] [CrossRef]
- Zhang, F.; Zhu, X.; Liu, D. Blending MODIS and Landsat images for urban flood mapping. Int. J. Remote Sens. 2014, 35, 3237–3253. [Google Scholar] [CrossRef]
- González-Sanpedro, M.; Le Toan, T.; Moreno, J.; Kergoat, L.; Rubio, E. Seasonal variations of leaf area index of agricultural fields retrieved from Landsat data. Remote Sens. Environ. 2008, 112, 810–824. [Google Scholar] [Green Version]
- Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218. [Google Scholar]
- Gao, F.; Wang, P.; Masek, J. Integrating remote sensing data from multiple optical sensors for ecological and crop condition monitoring. In Remote Sensing and Modeling of Ecosystems for Sustainability X; International Society for Optics and Photonics: San Diego, CA, USA, 2013; p. 886903. [Google Scholar]
- Zheng, Y.; Wu, B.; Zhang, M.; Zeng, H. Crop phenology detection using high spatio-temporal resolution data fused from SPOT5 and MODIS products. Sensors 2016, 16, 2099. [Google Scholar] [CrossRef]
- Hilker, T.; Wulder, M.A.; Coops, N.C.; Linke, J.; McDermid, G.; Masek, J.G.; Gao, F.; White, J.C. A new data fusion model for high spatial-and temporal-resolution mapping of forest disturbance based on Landsat and MODIS. Remote Sens. Environ. 2009, 113, 1613–1627. [Google Scholar] [CrossRef]
- Roy, D.P.; Ju, J.; Lewis, P.; Schaaf, C.; Gao, F.; Hansen, M.; Lindquist, E. Multi-temporal MODIS–Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data. Remote Sens. Environ. 2008, 112, 3112–3130. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, J.; Gao, F.; Chen, X.; Masek, J.G. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sens. Environ. 2010, 114, 2610–2623. [Google Scholar] [CrossRef]
- Kwan, C.; Zhu, X.; Gao, F.; Chou, B.; Perez, D.; Li, J.; Shen, Y.; Koperski, K.; Marchisio, G. Assessment of spatiotemporal fusion algorithms for planet and worldview images. Sensors 2018, 18, 1051. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Zhang, W.; Marinoni, A.; Gao, L.; Zhang, B. Performance assessment of ESTARFM with different similar-pixel identification schemes. J. Appl. Remote Sens. 2018, 12, 025017. [Google Scholar] [CrossRef]
- Fu, D.; Chen, B.; Wang, J.; Zhu, X.; Hilker, T. An improved image fusion approach based on enhanced spatial and temporal the adaptive reflectance fusion model. Remote Sens. 2013, 5, 6346–6360. [Google Scholar] [CrossRef]
- Zhu, X.; Helmer, E.H.; Gao, F.; Liu, D.; Chen, J.; Lefsky, M.A. A flexible spatiotemporal method for fusing satellite images with different resolutions. Remote Sens. Environ. 2016, 172, 165–177. [Google Scholar] [CrossRef]
- Knauer, K.; Gessner, U.; Fensholt, R.; Kuenzer, C. An ESTARFM fusion framework for the generation of large-scale time series in cloud-prone and heterogeneous landscapes. Remote Sens. 2016, 8, 425. [Google Scholar] [CrossRef]
- Gevaert, C.M.; García-Haro, F.J. A comparison of STARFM and an unmixing-based algorithm for Landsat and MODIS data fusion. Remote Sens. Environ. 2015, 156, 34–44. [Google Scholar] [CrossRef]
- Small, C. The Landsat ETM+ spectral mixing space. Remote Sens. Environ. 2004, 93, 1–17. [Google Scholar] [CrossRef]
- Ma, W.-K.; Bioucas-Dias, J.M.; Chan, T.-H.; Gillis, N.; Gader, P.; Plaza, A.J.; Ambikapathi, A.; Chi, C.-Y. A signal processing perspective on hyperspectral unmixing: Insights from remote sensing. IEEE Signal Process Mag. 2014, 31, 67–81. [Google Scholar] [CrossRef]
- Song, C. Spectral mixture analysis for subpixel vegetation fractions in the urban environment: How to incorporate endmember variability? Remote Sens. Environ. 2005, 95, 248–263. [Google Scholar] [CrossRef]
- Franke, J.; Roberts, D.A.; Halligan, K.; Menz, G. Hierarchical multiple endmember spectral mixture analysis (MESMA) of hyperspectral imagery for urban environments. Remote Sens. Environ. 2009, 113, 1712–1723. [Google Scholar] [CrossRef]
- Roberts, D.A.; Gardner, M.; Church, R.; Ustin, S.; Scheer, G.; Green, R. Mapping chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models. Remote Sens. Environ. 1998, 65, 267–279. [Google Scholar] [CrossRef]
- Ridd, M.K. Exploring a VIS (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing: Comparative anatomy for cities. Int. J. Remote Sens. 1995, 16, 2165–2185. [Google Scholar] [CrossRef]
- Aggarwal, A.; Garg, R. Systematic approach towards extracting endmember spectra from hyperspectral image using PPI and SMACC and its evaluation using spectral library. Appl. Geomatics 2015, 7, 37–48. [Google Scholar] [CrossRef]
- Powell, R.L.; Roberts, D.A.; Dennison, P.E.; Hess, L.L. Sub-pixel mapping of urban land cover using multiple endmember spectral mixture analysis: Manaus, Brazil. Remote Sens. Environ. 2007, 106, 253–267. [Google Scholar] [CrossRef]
- Cooley, T.; Anderson, G.P.; Felde, G.W.; Hoke, M.L.; Ratkowski, A.; Chetwynd, J.H.; Gardner, J.A.; Adler-Golden, S.; Matthew, M.W.; Berk, A.; et al. FLAASH, a MODTRAN4-based atmospheric correction algorithm, its application and validation. In Proceedings of the IEEE International Geoscience & Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002. [Google Scholar]
- Wayne, L. The IDL Astronomy User’s Library. Website; 2016. Available online: https://idlastro.gsfc.nasa.gov/ftp/pro/ image/correl_optimize.pro (accessed on 20 November 2018).
- Cui, J.; Zhang, X.; Luo, M. Combining Linear pixel unmixing and STARFM for spatiotemporal fusion of Gaofen-1 wide field of view imagery and MODIS imagery. Remote Sens. 2018, 10, 1047. [Google Scholar] [CrossRef]
- Xie, D.; Zhang, J.; Zhu, X.; Pan, Y.; Liu, H.; Yuan, Z.; Yun, Y. An improved STARFM with help of an unmixing-based method to generate high spatial and temporal resolution remote sensing data in complex heterogeneous regions. Sensors 2016, 16, 207. [Google Scholar] [CrossRef]
- Guan, Q.; Peng, X. High-performance Spatio-temporal Fusion Models for Remote Sensing Images with Graphics Processing Units. In AGU Fall Meeting Abstracts; American Geophysical Union: Washington, DC, USA, 2018. [Google Scholar]
Data Type | Row and Column | Study Area | Image Function | Acquired Date |
---|---|---|---|---|
Landsat8 OLI | 127/36 | Study area 1 | basis | 2014/12/5 |
validation | 2014/12/21 | |||
basis | 2015/1/22 | |||
136/35 | Study area 2 | basis | 2016/3/12 | |
basis | 2016/6/16 | |||
validation | 2016/9/20 | |||
122/39 | Study area 3 | basis | 2016/8/1 | |
basis | 2016/8/17 | |||
validation | 2016/9/2 | |||
MODIS09GA | h27v05 | Study area 1 | basis | 2014/12/5 |
predict | 2014/12/21 | |||
basis | 2015/1/22 | |||
h25v05 | Study area 2 | basis | 2016/3/12 | |
basis | 2016/6/16 | |||
predict | 2016/9/20 | |||
h27v06 | Study area 3 | basis | 2016/8/1 | |
basis | 2016/8/17 | |||
predict | 2016/9/2 |
Landsat OLI Band | Wavelength (nm) | MODIS Band | Wavelength (nm) |
---|---|---|---|
Landsat8 OLI Band2 | 450–510 | MOD09GA Band3 | 459–479 |
Landsat8 OLI Band3 | 530–590 | MOD09GA Band4 | 545–565 |
Landsat8 OLI Band4 | 640–670 | MOD09GA Band1 | 620–670 |
Landsat8 OLI Band5 | 850–880 | MOD09GA Band2 | 841–876 |
Landsat8 OLI Band6 | 1570–1650 | MOD09GA Band6 | 1628–1652 |
Landsat8 OLI Band7 | 2110–2290 | MOD09GA Band7 | 2105–2155 |
Band | STARFM | ESTARFM | I-ESTARFM | |||
---|---|---|---|---|---|---|
r | RMSE | r | RMSE | r | RMSE | |
red | 0.88530 | 0.01895 | 0.90969 | 0.01812 | 0.92767 | 0.01769 |
green | 0.83601 | 0.02431 | 0.93395 | 0.02283 | 0.94859 | 0.02236 |
blue | 0.89573 | 0.02800 | 0.94181 | 0.02707 | 0.95345 | 0.02669 |
NIR | 0.97119 | 0.07007 | 0.97123 | 0.06893 | 0.98162 | 0.06757 |
SWIR 1 | 0.95649 | 0.04105 | 0.95477 | 0.04088 | 0.96558 | 0.04005 |
SWIR 2 | 0.94699 | 0.03801 | 0.95653 | 0.03752 | 0.96634 | 0.03676 |
Band | STARFM | ESTARFM | I-ESTARFM | |||
---|---|---|---|---|---|---|
r | RMSE | r | RMSE | r | RMSE | |
red | 0.82264 | 0.04239 | 0.83780 | 0.04076 | 0.86990 | 0.03919 |
green | 0.81513 | 0.04930 | 0.84313 | 0.04788 | 0.86412 | 0.04519 |
blue | 0.80664 | 0.05665 | 0.81788 | 0.05521 | 0.85654 | 0.05158 |
NIR | 0.83907 | 0.06435 | 0.88136 | 0.06392 | 0.89616 | 0.06287 |
SWIR 1 | 0.72223 | 0.05237 | 0.74327 | 0.05057 | 0.76800 | 0.04860 |
SWIR 2 | 0.69582 | 0.04804 | 0.73173 | 0.04585 | 0.75836 | 0.04226 |
Band | STARFM | ESTARFM | I-ESTARFM | |||
---|---|---|---|---|---|---|
r | RMSE | r | RMSE | r | RMSE | |
red | 0.80609 | 0.01420 | 0.81288 | 0.01403 | 0.85434 | 0.01296 |
green | 0.83983 | 0.01709 | 0.84642 | 0.01575 | 0.90146 | 0.01482 |
blue | 0.87306 | 0.02589 | 0.87751 | 0.02522 | 0.91762 | 0.02361 |
NIR | 0.90136 | 0.05373 | 0.90889 | 0.05243 | 0.93467 | 0.04983 |
SWIR 1 | 0.87413 | 0.04916 | 0.88579 | 0.04853 | 0.92770 | 0.04502 |
SWIR 2 | 0.86640 | 0.03700 | 0.87866 | 0.03631 | 0.91614 | 0.03540 |
Method | STARFM | ESTARFM | I-ESTARFM |
---|---|---|---|
Costing time (s) | 180 | 290 | 320 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Zeng, Y.; Li, S.; Pi, X.; Huang, W. An Improved Spatiotemporal Fusion Approach Based on Multiple Endmember Spectral Mixture Analysis. Sensors 2019, 19, 2443. https://doi.org/10.3390/s19112443
Liu W, Zeng Y, Li S, Pi X, Huang W. An Improved Spatiotemporal Fusion Approach Based on Multiple Endmember Spectral Mixture Analysis. Sensors. 2019; 19(11):2443. https://doi.org/10.3390/s19112443
Chicago/Turabian StyleLiu, Wenjie, Yongnian Zeng, Songnian Li, Xinyu Pi, and Wei Huang. 2019. "An Improved Spatiotemporal Fusion Approach Based on Multiple Endmember Spectral Mixture Analysis" Sensors 19, no. 11: 2443. https://doi.org/10.3390/s19112443
APA StyleLiu, W., Zeng, Y., Li, S., Pi, X., & Huang, W. (2019). An Improved Spatiotemporal Fusion Approach Based on Multiple Endmember Spectral Mixture Analysis. Sensors, 19(11), 2443. https://doi.org/10.3390/s19112443