Systematic Analysis of a Military Wearable Device Based on a Multi-Level Fusion Framework: Research Directions
Abstract
:1. Introduction
2. Related Work
3. Multi-Level Fusion Framework (MLFF)
3.1. The Composition of MLFF
3.2. Sensor Deployment Model Based on the MLFF
4. Systematic Analysis of Framework Units
4.1. A-Level Information
4.2. B-Level Information
4.2.1. Fatigue Detection System (FDS)
4.2.2. Emotion Recognition System (ERS)
4.2.3. Behavior Tracking System (BTS)
4.2.4. Cooperative Localization System (CLS)
4.2.5. Environment Detection System (EDS)
4.3. C-Level Information
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Notation
IoBT | Internet of Battlefield Things |
BSNs | Body Sensor Networks |
S-BSNs | Soldier Body Sensor Networks |
MLFF | multi-level fusion framework |
FDS | Fatigue Detection System |
ERS | Emotion Recognition System |
BTS | Behavior Tracking System |
EDS | Environment Detection System |
CLS | Cooperative Localization System |
PPG | PhotoPlethysmoGraphy |
ECG | Electrocardiogram |
GSR | Galvanic skin response |
EMG | Electromyogram |
EEG | Electroencephalogram |
EOG | Electrooculography |
HRV | Heart rate variability |
RFID | Radio Frequency Identification |
UWB | Ultra Wideband |
VLC | Visible Light communication |
GNSS | Global Navigation Satellite System |
References
- Farooq, M.J.; Zhu, Q. On the Secure and Reconfigurable Multi-Layer Network Design for Critical Information Dissemination in the Internet of Battlefield Things (IoBT). IEEE Trans. Wirel. Commun. 2018, 17, 2618–2632. [Google Scholar] [CrossRef] [Green Version]
- Russell, S.; Abdelzaher, T. The Internet of Battlefield Things: The Next Generation of Command, Control, Communications and Intelligence (C3I) Decision-Making. In Proceedings of the MILCOM 2018—2018 IEEE Military Communications Conference (MILCOM), Los Angeles, CA, USA, 29–31 October 2018; pp. 737–742. [Google Scholar]
- Fortino, G.; Ghasemzadeh, H.; Gravina, R.; Liu, P.X.; Poon, C.C.Y.; Wang, Z. Advances in multi-sensor fusion for body sensor networks: Algorithms, architectures, and applications. Inf. Fusion 2019, 45, 150–152. [Google Scholar] [CrossRef]
- Pirbhulal, S.; Zhang, H.; Wu, W.; Mukhopadhyay, S.C.; Zhang, Y.-T. Heartbeats Based Biometric Random Binary Sequences Generation to Secure Wireless Body Sensor Networks. IEEE Trans. Biomed. Eng. 2018, 65, 2751–2759. [Google Scholar] [CrossRef] [PubMed]
- Ciuonzo, D.; Rossi, P.S. Quantizer Design for Generalized Locally Optimum Detectors in Wireless Sensor Networks. IEEE Wirel. Commun. Lett. 2018, 7, 162–165. [Google Scholar] [CrossRef]
- Ciuonzo, D.; Buonanno, A.; D’Urso, M.; Palmieri, F. Distributed classification of multiple moving targets with binary wireless sensor networks. In Proceedings of the 2011 14th International Conference on Information Fusion (FUSION), Chicago, IL, USA, 5–8 July 2011; pp. 1–8. [Google Scholar]
- Dao, T.; Roy-Chowdhury, A.; Nasrabadi, N.; Krishnamurthy, S.V.; Mohapatra, P.; Kaplan, L.M. Accurate and Timely Situation Awareness Retrieval from a Bandwidth Constrained Camera Network. In Proceedings of the 2017 IEEE 14th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), Orlando, FL, USA, 22–25 October 2017; pp. 416–425. [Google Scholar]
- Wang, Y.; Liu, H.; Zheng, W.; Xia, Y.; Li, Y.; Chen, P.; Guo, K.; Xie, H. Multi-Objective Workflow Scheduling with Deep-Q-Network-Based Multi-Agent Reinforcement Learning. IEEE Access 2019, 7, 39974–39982. [Google Scholar] [CrossRef]
- Buonanno, A.; D’Urso, M.; Prisco, G.; Felaco, M.; Meliado, E.F.; Mattei, M.; Palmieri, F.; Ciuonzo, D. Mobile sensor networks based on autonomous platforms for homeland security. In Proceedings of the 2012 Tyrrhenian Workshop on Advances in Radar and Remote Sensing (TyWRRS), Naples, Italy, 12–14 September 2012; IEEE: Naples, Italy, 2012; pp. 80–84. [Google Scholar] [Green Version]
- Zheng, Y.; Sun, L.; Wang, S.; Zhang, J.; Ning, J. Spatially Regularized Structural Support Vector Machine for Robust Visual Tracking. IEEE Trans. Neural Netw. Learn. Syst. 2018, 99, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Wang, X.; Zhang, G.; Xiao, B.; Xiao, F.; Zhang, J. Multiple Kernel Coupled Projections for Domain Adaptive Dictionary Learning. IEEE Trans. Multimed. 2019, 1. [Google Scholar] [CrossRef]
- Cerutti, F.; Alzantot, M.; Xing, T.; Harborne, D.; Bakdash, J.Z.; Braines, D.; Chakraborty, S.; Kaplan, L.; Kimmig, A.; Preece, A.; et al. Learning and Reasoning in Complex Coalition Information Environments: A Critical Analysis. In Proceedings of the 2018 21st International Conference on Information Fusion (FUSION), Cambridge, UK, 10–13 July 2018; pp. 1–8. [Google Scholar]
- Anastasopoulou, P.; Antonopoulos, C.; Shgir, H.; Krikis, G.; Voros, N.S.; Hey, S. Mobile Multi-parametric Sensor System for Diagnosis of Epilepsy and Brain Related Disorders. In Wireless Mobile Communication and Healthcare; Godara, B., Nikita, K.S., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 61, pp. 207–214. ISBN 978-3-642-37892-8. [Google Scholar]
- Zhu, Y.; Liu, D.; Grosu, R.; Wang, X.; Duan, H.; Wang, G. A Multi-Sensor Data Fusion Approach for Atrial Hypertrophy Disease Diagnosis Based on Characterized Support Vector Hyperspheres. Sensors 2017, 17, 2049. [Google Scholar] [CrossRef] [PubMed]
- Xiong, P.; Wu, C.; Zhou, H.; Song, A.; Hu, L.; Liu, X.P. Design of an accurate end-of-arm force display system based on wearable arm gesture sensors and EMG sensors. Inf. Fusion 2018, 39, 178–185. [Google Scholar] [CrossRef]
- Cvetković, B.; Szeklicki, R.; Janko, V.; Lutomski, P.; Luštrek, M. Real-time activity monitoring with a wristband and a smartphone. Inf. Fusion 2018, 43, 77–93. [Google Scholar] [CrossRef]
- Friedl, K.E. Military applications of soldier physiological monitoring. J. Sci. Med. Sport 2018, 21, 1147–1153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murray, J. Wearable computers in battle: Recent advances in the Land Warrior system. In Proceedings of the Digest of Papers. Fourth International Symposium on Wearable Computers, Atlanta, GA, USA, 16–17 October 2000; pp. 169–170. [Google Scholar]
- Yan, S.; Soh, P.J.; Vandenbosch, G.A.E. Wearable Ultrawideband Technology—A Review of Ultrawideband Antennas, Propagation Channels, and Applications in Wireless Body Area Networks. IEEE Access 2018, 6, 42177–42185. [Google Scholar] [CrossRef]
- Camomilla, V.; Bergamini, E.; Fantozzi, S.; Vannozzi, G. Trends Supporting the In-Field Use of Wearable Inertial Sensors for Sport Performance Evaluation: A Systematic Review. Sensors 2018, 18, 873. [Google Scholar] [CrossRef] [PubMed]
- Martín-Vaquero, J.; Hernández Encinas, A.; Queiruga-Dios, A.; José Bullón, J.; Martínez-Nova, A.; Torreblanca González, J.; Bullón-Carbajo, C. Review on Wearables to Monitor Foot Temperature in Diabetic Patients. Sensors 2019, 19, 776. [Google Scholar] [CrossRef] [PubMed]
- Taj-Eldin, M.; Ryan, C.; O’Flynn, B.; Galvin, P. A Review of Wearable Solutions for Physiological and Emotional Monitoring for Use by People with Autism Spectrum Disorder and Their Caregivers. Sensors 2018, 18, 4271. [Google Scholar] [CrossRef] [PubMed]
- Ray, P.P.; Dash, D.; De, D. A Systematic Review of Wearable Systems for Cancer Detection: Current State and Challenges. J. Med. Syst. 2017, 41, 180. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Lach, J.; Lo, B.; Yang, G.-Z. Toward Pervasive Gait Analysis with Wearable Sensors: A Systematic Review. IEEE J. Biomed. Health Inf. 2016, 20, 1521–1537. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Wong, D.; Lam, W.; Wan, A.; Lee, W. Balance Improvement Effects of Biofeedback Systems with State-of-the-Art Wearable Sensors: A Systematic Review. Sensors 2016, 16, 434. [Google Scholar] [CrossRef] [PubMed]
- Koshmak, G.; Loutfi, A.; Linden, M. Challenges and Issues in Multisensor Fusion Approach for Fall Detection: Review Paper. J. Sens. 2016, 2016, 6931789. [Google Scholar] [CrossRef]
- Kamišalić, A.; Fister, I.; Turkanović, M.; Karakatič, S. Sensors and Functionalities of Non-Invasive Wrist-Wearable Devices: A Review. Sensors 2018, 18, 1714. [Google Scholar] [CrossRef] [PubMed]
- Pacchierotti, C.; Sinclair, S.; Solazzi, M.; Frisoli, A.; Hayward, V.; Prattichizzo, D. Wearable Haptic Systems for the Fingertip and the Hand: Taxonomy, Review, and Perspectives. IEEE Trans. Haptics 2017, 10, 580–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nesenbergs, K.; Selavo, L. Smart textiles for wearable sensor networks: Review and early lessons. In Proceedings of the 2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings, Turin, Italy, 7–9 May 2015; pp. 402–406. [Google Scholar]
- Stoppa, M.; Chiolerio, A. Wearable Electronics and Smart Textiles: A Critical Review. Sensors 2014, 14, 11957–11992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rehmat, N.; Zuo, J.; Meng, W.; Liu, Q.; Xie, S.Q.; Liang, H. Upper limb rehabilitation using robotic exoskeleton systems: A systematic review. Int. J. Intell. Robot. Appl. 2018, 2, 283–295. [Google Scholar] [CrossRef]
- Gálvez-Zúñiga, M.A.; Aceves-López, A. A Review on Compliant Joint Mechanisms for Lower Limb Exoskeletons. J. Robot. 2016, 2016, 5751391. [Google Scholar] [CrossRef]
- Rucco, R.; Sorriso, A.; Liparoti, M.; Ferraioli, G.; Sorrentino, P.; Ambrosanio, M.; Baselice, F. Type and Location of Wearable Sensors for Monitoring Falls during Static and Dynamic Tasks in Healthy Elderly: A Review. Sensors 2018, 18, 1613. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yang, Z.; Dong, T. A Review of Wearable Technologies for Elderly Care that Can Accurately Track Indoor Position, Recognize Physical Activities and Monitor Vital Signs in Real Time. Sensors 2017, 17, 341. [Google Scholar] [CrossRef]
- Singh, P.; Kaur, G.; Kaur, D. Infant Monitoring System Using Wearable Sensors Based on Blood Oxygen Saturation: A Review. In Intelligent, Secure, and Dependable Systems in Distributed and Cloud Environments; Traore, I., Woungang, I., Awad, A., Eds.; Springer International Publishing: Cham, Switzerland, 2017; Volume 10618, pp. 162–168. ISBN 978-3-319-69154-1. [Google Scholar]
- Chen, H.; Xue, M.; Mei, Z.; Bambang Oetomo, S.; Chen, W. A Review of Wearable Sensor Systems for Monitoring Body Movements of Neonates. Sensors 2016, 16, 2134. [Google Scholar] [CrossRef] [PubMed]
- Nweke, H.F.; Teh, Y.W.; Mujtaba, G.; Al-garadi, M.A. Data fusion and multiple classifier systems for human activity detection and health monitoring: Review and open research directions. Inf. Fusion 2019, 46, 147–170. [Google Scholar] [CrossRef]
- Sun, S.; Lin, H.; Ma, J.; Li, X. Multi-sensor distributed fusion estimation with applications in networked systems: A review paper. Inf. Fusion 2017, 38, 122–134. [Google Scholar] [CrossRef]
- Wei, P.; Ball, J.E.; Anderson, D.T. Multi-sensor conflict measurement and information fusion. In Proceedings of the SPIE 9842, Signal Processing, Sensor/Information Fusion, and Target Recognition XXV, Baltimore, MD, USA, 17 May 2016; p. 98420F. [Google Scholar]
- Karthick, P.A.; Ghosh, D.M.; Ramakrishnan, S. Surface electromyography based muscle fatigue detection using high-resolution time-frequency methods and machine learning algorithms. Comput. Methods Programs Biomed. 2018, 154, 45–56. [Google Scholar] [CrossRef]
- Zhang, G.; Morin, E.; Zhang, Y.; Etemad, S.A. Non-invasive detection of low-level muscle fatigue using surface EMG with wavelet decomposition. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 5648–5651. [Google Scholar]
- Hu, W.; Li, K.; Wei, N.; Yue, S.; Yin, C. Influence of exercise-induced local muscle fatigue on the thumb and index finger forces during precision pinch. In Proceedings of the 2017 Chinese Automation Congress (CAC), Jinan, China, 20–22 October 2017; pp. 2258–2261. [Google Scholar]
- Zou, B.; Liu, Y.; Guo, M.; Wang, Y. EEG-Based Assessment of Stereoscopic 3D Visual Fatigue Caused by Vergence-Accommodation Conflict. J. Disp. Technol. 2015, 11, 1076–1083. [Google Scholar] [CrossRef]
- Ito, K.; Kourakata, Y.; Hotta, Y. Muscle fatigue detection during dynamic contraction under blood flow restriction: Improvement of detection sensitivity using multivariable fatigue indices. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 6078–6081. [Google Scholar]
- Ko, L.W.; Lai, W.K.; Liang, W.G.; Chuang, C.H.; Lu, S.W.; Lu, Y.C.; Hsiung, T.Y.; Wu, H.H.; Lin, C.T. Single channel wireless EEG device for real-time fatigue level detection. In Proceedings of the 2015 International Joint Conference on Neural Networks (IJCNN), Killarney, Ireland, 12–17 July 2015; pp. 1–5. [Google Scholar]
- Kobayshi, T.; Okada, S.; Makikawa, M.; Shiozawa, N.; Kosaka, M. Development of wearable muscle fatigue detection system using capacitance coupling electrodes. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Seogwipo, Korea, 11–15 July 2017; pp. 833–836. [Google Scholar]
- Myrden, A.; Chau, T. A Passive EEG-BCI for Single-Trial Detection of Changes in Mental State. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 345–356. [Google Scholar] [CrossRef] [PubMed]
- Thakur, C.; Ogawa, K.; Tsuji, T.; Kurita, Y. Soft Wearable Augmented Walking Suit With Pneumatic Gel Muscles and Stance Phase Detection System to Assist Gait. IEEE Robot. Autom. Lett. 2018, 3, 4257–4264. [Google Scholar] [CrossRef]
- Ma, B.; Li, C.; Wu, Z.; Huang, Y. A PWM-Based Muscle Fatigue Detection and Recovery System. In Proceedings of the 2018 International Conference on Bioinformatics and Biomedicine (BIBM), Madrid, Spain, 3–6 December 2018; pp. 1013–1016. [Google Scholar]
- Farina, D.; Yoshida, K.; Stieglitz, T.; Koch, K.P. Multichannel thin-film electrode for intramuscular electromyographic recordings. J. Appl. Physiol. 2008, 104, 821–827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Wang, H.; Hua, C. Electroencephalography based fatigue detection using a novel feature fusion and extreme learning machine. Cogn. Syst. Res. 2018, 52, 715–728. [Google Scholar] [CrossRef]
- Lahiri, R.; Rakshit, P.; Konar, A. Evolutionary perspective for optimal selection of EEG electrodes and features. Biomed. Signal Process. Control 2017, 36, 113–137. [Google Scholar] [CrossRef]
- Haque, M.A.; Nasrollahi, K.; Moeslund, T.B.; Irani, R. Facial video-based detection of physical fatigue for maximal muscle activity. IET Comput. Vis. 2016, 10, 323–330. [Google Scholar] [CrossRef]
- Chang, W.-J.; Chen, L.-B.; Chiou, Y.-Z. Design and Implementation of a Drowsiness-Fatigue-Detection System Based on Wearable Smart Glasses to Increase Road Safety. IEEE Trans. Consum. Electron. 2018, 64, 461–469. [Google Scholar] [CrossRef]
- Sampei, K.; Ogawa, M.; Torres, C.; Sato, M.; Miki, N. Mental Fatigue Monitoring Using a Wearable Transparent Eye Detection System. Micromachines 2016, 7, 20. [Google Scholar] [CrossRef]
- Huang, S.; Li, J.; Zhang, P.; Zhang, W. Detection of mental fatigue state with wearable ECG devices. Int. J. Med. Inform. 2018, 119, 39–46. [Google Scholar] [CrossRef]
- Sharma, M.K.; Bundele, M.M. Design & analysis of K-means algorithm for cognitive fatigue detection in vehicular driver using Respiration signal. In Proceedings of the 2015 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), Coimbatore, India, 10–12 September 2015; pp. 1–6. [Google Scholar]
- Greco, A.; Valenza, G.; Bicchi, A.; Bianchi, M.; Scilingo, E.P. Assessment of muscle fatigue during isometric contraction using autonomic nervous system correlates. Biomed. Signal. Process. Control. 2019, 51, 42–49. [Google Scholar] [CrossRef]
- Wang, D.; Shen, P.; Wang, T.; Xiao, Z. Fatigue detection of vehicular driver through skin conductance, pulse oximetry and respiration: A random forest classifier. In Proceedings of the 2017 IEEE 9th International Conference on Communication Software and Networks (ICCSN), GuangZhou, China, 6–8 May 2017; pp. 1162–1166. [Google Scholar]
- Tiwari, A.; Falk, T.H. Fusion of Motif- and Spectrum-Related Features for Improved EEG-Based Emotion Recognition. Comput. Intell. Neurosci. 2019, 2019, 3076324. [Google Scholar] [CrossRef] [PubMed]
- Shu, L.; Xie, J.; Yang, M.; Li, Z.; Li, Z.; Liao, D.; Xu, X.; Yang, X. A Review of Emotion Recognition Using Physiological Signals. Sensors 2018, 18, 2074. [Google Scholar] [CrossRef] [PubMed]
- Benitez-Garcia, G.; Nakamura, T.; Kaneko, M. Multicultural Facial Expression Recognition Based on Differences of Western-Caucasian and East-Asian Facial Expressions of Emotions. IEICE Trans. Inf. Syst. 2018, E101.D, 1317–1324. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Lei, Z.; Wan, J.; Avots, E.; Hajarolasvadi, N.; Knyazev, B.; Kuharenko, A.; Jacques Junior, J.C.S.; Baro, X.; Demirel, H.; et al. Dominant and Complementary Emotion Recognition from Still Images of Faces. IEEE Access 2018, 6, 26391–26403. [Google Scholar] [CrossRef]
- Lan, Z.; Sourina, O.; Wang, L.; Liu, Y. Real-time EEG-based emotion monitoring using stable features. Vis. Comput. 2016, 32, 347–358. [Google Scholar] [CrossRef]
- García-Ramírez, J.; Olvera-López, J.A.; Olmos-Pineda, I.; Martín-Ortíz, M. Mouth and eyebrow segmentation for emotion recognition using interpolated polynomials. J. Intell. Fuzzy Syst. 2018, 34, 3119–3131. [Google Scholar] [CrossRef]
- Wei, W.; Jia, Q.; Feng, Y.; Chen, G. Emotion Recognition Based on Weighted Fusion Strategy of Multichannel Physiological Signals. Comput. Intell. Neurosci. 2018, 2018, 5296523. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, J.; Liao, P.; Pan, J. Fusion of Facial Expressions and EEG for Multimodal Emotion Recognition. Comput. Intell. Neurosci. 2017, 2017, 2107451. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, H.; Pirbhulal, S.; Mukhopadhyay, S.C.; Zhang, Y.-T. Assessment of Biofeedback Training for Emotion Management Through Wearable Textile Physiological Monitoring System. IEEE Sens. J. 2015, 15, 7087–7095. [Google Scholar] [CrossRef]
- Guo, H.-W.; Huang, Y.-S.; Lin, C.-H.; Chien, J.-C.; Haraikawa, K.; Shieh, J.-S. Heart Rate Variability Signal Features for Emotion Recognition by Using Principal Component Analysis and Support Vectors Machine. In Proceedings of the 2016 IEEE 16th International Conference on Bioinformatics and Bioengineering (BIBE), Taichung, Taiwan, 31 October–2 November 2016; pp. 274–277. [Google Scholar]
- Das, P.; Khasnobish, A.; Tibarewala, D.N. Emotion recognition employing ECG and GSR signals as markers of ANS. In Proceedings of the 2016 Conference on Advances in Signal Processing (CASP), Pune, India, 9–11 June 2016; pp. 37–42. [Google Scholar]
- Wen, W.; Liu, G.; Cheng, N.; Wei, J.; Shangguan, P.; Huang, W. Emotion Recognition Based on Multi-Variant Correlation of Physiological Signals. IEEE Trans. Affect. Comput. 2014, 5, 126–140. [Google Scholar] [CrossRef]
- Xu, Y.; Hubener, I.; Seipp, A.-K.; Ohly, S.; David, K. From the lab to the real-world: An investigation on the influence of human movement on Emotion Recognition using physiological signals. In Proceedings of the 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), Kona, HI, USA, 13–17 March 2017; pp. 345–350. [Google Scholar]
- Li, C.; Xu, C.; Feng, Z. Analysis of physiological for emotion recognition with the IRS model. Neurocomputing 2016, 178, 103–111. [Google Scholar] [CrossRef]
- Yin, Z.; Zhao, M.; Wang, Y.; Yang, J.; Zhang, J. Recognition of emotions using multimodal physiological signals and an ensemble deep learning model. Comput. Methods Programs Biomed. 2017, 140, 93–110. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Pirbhulal, S.; Zhang, H.; Mukhopadhyay, S.C. Quantitative Assessment for Self-Tracking of Acute Stress Based on Triangulation Principle in a Wearable Sensor System. IEEE J. Biomed. Health Inform. 2018, 23, 703–713. [Google Scholar] [CrossRef] [PubMed]
- Khezri, M.; Firoozabadi, M.; Sharafat, A.R. Reliable emotion recognition system based on dynamic adaptive fusion of forehead biopotentials and physiological signals. Comput. Methods Programs Biomed. 2015, 122, 149–164. [Google Scholar] [CrossRef] [PubMed]
- Chao, H.; Zhi, H.; Dong, L.; Liu, Y. Recognition of Emotions Using Multichannel EEG Data and DBN-GC-Based Ensemble Deep Learning Framework. Comput. Intell. Neurosci. 2018, 2018, 9750904. [Google Scholar] [CrossRef] [PubMed]
- Mert, A.; Akan, A. Emotion recognition based on time–frequency distribution of EEG signals using multivariate synchrosqueezing transform. Digit. Signal Process. 2018, 81, 106–115. [Google Scholar] [CrossRef]
- Nakisa, B.; Rastgoo, M.N.; Tjondronegoro, D.; Chandran, V. Evolutionary computation algorithms for feature selection of EEG-based emotion recognition using mobile sensors. Expert Syst. Appl. 2018, 93, 143–155. [Google Scholar] [CrossRef] [Green Version]
- Purnamasari, P.; Ratna, A.; Kusumoputro, B. Development of Filtered Bispectrum for EEG Signal Feature Extraction in Automatic Emotion Recognition Using Artificial Neural Networks. Algorithms 2017, 10, 63. [Google Scholar] [CrossRef]
- Li, X.; Hong, X.; Moilanen, A.; Huang, X.; Pfister, T.; Zhao, G.; Pietikainen, M. Towards Reading Hidden Emotions: A Comparative Study of Spontaneous Micro-Expression Spotting and Recognition Methods. IEEE Trans. Affect. Comput. 2018, 9, 563–577. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Choudhury, D.; Dey, D. Edge-enhanced bi-dimensional empirical mode decomposition-based emotion recognition using fusion of feature set. Soft Comput. 2018, 22, 889–903. [Google Scholar] [CrossRef]
- Valenza, G.; Citi, L.; Lanatá, A.; Scilingo, E.P.; Barbieri, R. Revealing Real-Time Emotional Responses: A Personalized Assessment based on Heartbeat Dynamics. Sci. Rep. 2015, 4, 4998. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Xu, X.; Shu, L.; Hu, B. Estimation of valence of emotion using two frontal EEG channels. In Proceedings of the 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Kansas City, MO, USA, 13–16 November 2017; pp. 1127–1130. [Google Scholar]
- Shin, D.; Shin, D.; Shin, D. Development of emotion recognition interface using complex EEG/ECG bio-signal for interactive contents. Multimed. Tools Appl. 2017, 76, 11449–11470. [Google Scholar] [CrossRef]
- Liu, L.; Lei, X.; Chen, B.; Shu, L. Human Action Recognition Based on Inertial Sensors and Complexity Classification. J. Inf. Technol. Res. 2019, 12, 18–35. [Google Scholar] [CrossRef]
- Heldt, T.; Oefinger, M.B.; Hoshiyama, M.; Mark, R.G. Circulatory response to passive and active changes in posture. In Proceedings of the Computers in Cardiology, 2003, Thessaloniki Chalkidiki, Greece, 21–24 September 2003; pp. 263–266. [Google Scholar]
- Aziz, O.; Musngi, M.; Park, E.J.; Mori, G.; Robinovitch, S.N. A comparison of accuracy of fall detection algorithms (threshold-based vs. machine learning) using waist-mounted tri-axial accelerometer signals from a comprehensive set of falls and non-fall trials. Med. Biol. Eng. Comput. 2017, 55, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Teufl, W.; Lorenz, M.; Miezal, M.; Taetz, B.; Fröhlich, M.; Bleser, G. Towards Inertial Sensor Based Mobile Gait Analysis: Event-Detection and Spatio-Temporal Parameters. Sensors 2018, 19, 38. [Google Scholar] [CrossRef] [PubMed]
- Tao, S.; Zhang, X.; Cai, H.; Lv, Z.; Hu, C.; Xie, H. Gait based biometric personal authentication by using MEMS inertial sensors. J. Ambient Intell. Humaniz. Comput. 2018, 9, 1705–1712. [Google Scholar] [CrossRef]
- Al-Okby, M.F.R.; Neubert, S.; Stoll, N.; Thurow, K. Complementary functions for intelligent wheelchair head tilts controller. In Proceedings of the 2017 IEEE 15th International Symposium on Intelligent Systems and Informatics (SISY), Subotica, Serbia, 14–16 September 2017; pp. 000117–000122. [Google Scholar]
- Scott, T.R.D.; Vare, V.A. A novel five degree of freedom user command controller in people with spinal cord injury and non-injured for full upper extremity neuroprostheses, wearable powered orthoses and prosthetics. Med. Biol. Eng. Comput. 2013, 51, 317–330. [Google Scholar] [CrossRef]
- Stančić, I.; Musić, J.; Grujić, T. Gesture recognition system for real-time mobile robot control based on inertial sensors and motion strings. Eng. Appl. Artif. Intell. 2017, 66, 33–48. [Google Scholar] [CrossRef]
- Lin, B.-S.; Lee, I.-J.; Yang, S.-Y.; Lo, Y.-C.; Lee, J.; Chen, J.-L. Design of an Inertial-Sensor-Based Data Glove for Hand Function Evaluation. Sensors 2018, 18, 1545. [Google Scholar] [CrossRef]
- Ko, H.K.; Lee, S.W.; Koo, D.H.; Lee, I.; Hyun, D.J. Waist-assistive exoskeleton powered by a singular actuation mechanism for prevention of back-injury. Robot. Auton. Syst. 2018, 107, 1–9. [Google Scholar] [CrossRef]
- Inose, H.; Mohri, S.; Arakawa, H.; Okui, M.; Koide, K.; Yamada, Y.; Kikutani, I.; Nakamura, T. Semi-endoskeleton-type waist assist AB-wear suit equipped with compressive force reduction mechanism. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 6014–6019. [Google Scholar]
- Kondo, S.; Ikeura, R.; Tachi, A.; Murakami, K.; Hayakawa, S.; Yasuda, K. Development and evaluation of waist assist device for shipbuilding tasks. In Proceedings of the 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), Macau, China, 5–8 December 2017; pp. 1642–1647. [Google Scholar]
- Ancillao, A.; Tedesco, S.; Barton, J.; O’Flynn, B. Indirect Measurement of Ground Reaction Forces and Moments by Means of Wearable Inertial Sensors: A Systematic Review. Sensors 2018, 18, 2564. [Google Scholar] [CrossRef] [PubMed]
- Abdul Razak, A.H.; Zayegh, A.; Begg, R.K.; Wahab, Y. Foot Plantar Pressure Measurement System: A Review. Sensors 2012, 12, 9884–9912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atrsaei, A.; Salarieh, H.; Alasty, A.; Abediny, M. Human Arm Motion Tracking by Inertial/Magnetic Sensors Using Unscented Kalman Filter and Relative Motion Constraint. J. Intell. Robot. Syst. 2018, 90, 161–170. [Google Scholar] [CrossRef]
- McGrath, T.; Fineman, R.; Stirling, L. An Auto-Calibrating Knee Flexion-Extension Axis Estimator Using Principal Component Analysis with Inertial Sensors. Sensors 2018, 18, 1882. [Google Scholar] [CrossRef] [PubMed]
- Pratt, K.; Sigward, S. Inertial Sensor Angular Velocities Reflect Dynamic Knee Loading during Single Limb Loading in Individuals Following Anterior Cruciate Ligament Reconstruction. Sensors 2018, 18, 3460. [Google Scholar] [CrossRef] [PubMed]
- Pires, I.M.; Felizardo, V.; Pombo, N.; Drobics, M.; Garcia, N.M.; Flórez-Revuelta, F. Validation of a method for the estimation of energy expenditure during physical activity using a mobile device accelerometer. J. Ambient Intell. Smart Environ. 2018, 10, 315–326. [Google Scholar] [CrossRef]
- Shu, Y.; Chen, C.; Shu, K.-I.; Zhang, H. Research on Human Motion Recognition Based on Wi-Fi and Inertial Sensor Signal Fusion. In Proceedings of the 2018 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Guangzhou, China, 8–12 October 2018; pp. 496–504. [Google Scholar]
- Sousa Lima, W.; de Souza Bragança, H.; Montero Quispe, K.; Pereira Souto, E. Human Activity Recognition Based on Symbolic Representation Algorithms for Inertial Sensors. Sensors 2018, 18, 4045. [Google Scholar] [CrossRef]
- Ding, R.; He, Q.; Liu, H.; Liu, M. Combining Adaptive Hierarchical Depth Motion Maps with Skeletal Joints for Human Action Recognition. IEEE Access 2019, 7, 5597–5608. [Google Scholar] [CrossRef]
- Tariq, M.; Majeed, H.; Beg, M.O.; Khan, F.A.; Derhab, A. Accurate detection of sitting posture activities in a secure IoT based assisted living environment. Future Gener. Comput. Syst. 2019, 92, 745–757. [Google Scholar] [CrossRef]
- Lin, H.-Y.; Hsuen, Y.-L.; Lie, W.-N. Convolutional Recurrent Neural Networks for Posture Analysis in Fall Detection. J. Inf. Sci. Eng. 2018, 34, 577–591. [Google Scholar]
- Hsu, Y.-L.; Yang, S.-C.; Chang, H.-C.; Lai, H.-C. Human Daily and Sport Activity Recognition Using a Wearable Inertial Sensor Network. IEEE Access 2018, 6, 31715–31728. [Google Scholar] [CrossRef]
- Rodriguez-Martin, D.; Samà, A.; Perez-Lopez, C.; Català, A.; Cabestany, J.; Rodriguez-Molinero, A. SVM-based posture identification with a single waist-located triaxial accelerometer. Expert Syst. Appl. 2013, 40, 7203–7211. [Google Scholar] [CrossRef]
- Prawiro, E.A.P.J.; Chou, N.-K.; Lee, M.-W.; Lin, Y.-H. A Wearable System That Detects Posture and Heart Rate: Designing an Integrated Device with Multiparameter Measurements for Better Health Care. IEEE Consum. Electron. Mag. 2019, 8, 78–83. [Google Scholar] [CrossRef]
- Rescio, G.; Leone, A.; Siciliano, P. Supervised machine learning scheme for electromyography-based pre-fall detection system. Expert Syst. Appl. 2018, 100, 95–105. [Google Scholar] [CrossRef]
- Abdalsalam, M.E.; Yusoff, M.Z.; Mahmoud, D.; Malik, A.S.; Bahloul, M.R. Discrimination of four class simple limb motor imagery movements for brain–computer interface. Biomed. Signal Process. Control 2018, 44, 181–190. [Google Scholar] [CrossRef]
- Samuel, O.W.; Asogbon, M.G.; Geng, Y.; Al-Timemy, A.H.; Pirbhulal, S.; Ji, N.; Chen, S.; Fang, P.; Li, G. Intelligent EMG Pattern Recognition Control Method for Upper-Limb Multifunctional Prostheses: Advances, Current Challenges, and Future Prospects. IEEE Access 2019, 7, 10150–10165. [Google Scholar] [CrossRef]
- Fujiwara, E.; Suzuki, C.K. Optical Fiber Force Myography Sensor for Identification of Hand Postures. J. Sens. 2018, 2018, 8940373. [Google Scholar] [CrossRef]
- Parrington, L.; Jehu, D.A.; Fino, P.C.; Pearson, S.; El-Gohary, M.; King, L.A. Validation of an Inertial Sensor Algorithm to Quantify Head and Trunk Movement in Healthy Young Adults and Individuals with Mild Traumatic Brain Injury. Sensors 2018, 18, 4501. [Google Scholar] [CrossRef]
- Huaroto, J.J.; Suarez, E.; Krebs, H.I.; Marasco, P.D.; Vela, E.A. A Soft Pneumatic Actuator as a Haptic Wearable Device for Upper Limb Amputees: Toward a Soft Robotic Liner. IEEE Robot. Autom. Lett. 2019, 4, 17–24. [Google Scholar] [CrossRef]
- Faber, G.S.; Kingma, I.; Martin Schepers, H.; Veltink, P.H.; van Dieën, J.H. Determination of joint moments with instrumented force shoes in a variety of tasks. J. Biomech. 2010, 43, 2848–2854. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, P.; Guo, J.; Li, X.; Wang, J.; Yang, F.; Wang, X. A New Method of High-Precision Positioning for an Indoor Pseudolite without Using the Known Point Initialization. Sensors 2018, 18, 1977. [Google Scholar] [CrossRef] [PubMed]
- Shieh, W.-Y.; Hsu, C.-C.J.; Lin, C.-H.; Wang, T.-H. Investigation of Vehicle Positioning by Infrared Signal-Direction Discrimination for Short-Range Vehicle-to-Vehicle Communications. IEEE Trans. Veh. Technol. 2018, 67, 11563–11574. [Google Scholar] [CrossRef]
- Lee, C.-W.; Chondro, P.; Ruan, S.-J.; Christen, O.; Naroska, E. Improving Mobility for the Visually Impaired: A Wearable Indoor Positioning System Based on Visual Markers. IEEE Consum. Electron. Mag. 2018, 7, 12–20. [Google Scholar] [CrossRef]
- Buffi, A.; Motroni, A.; Nepa, P.; Tellini, B.; Cioni, R. A SAR-Based Measurement Method for Passive-Tag Positioning with a Flying UHF-RFID Reader. IEEE Trans. Instrum. Meas. 2019, 68, 845–853. [Google Scholar] [CrossRef]
- Yin, Z.; Jiang, X.; Yang, Z.; Zhao, N.; Chen, Y. WUB-IP: A High-Precision UWB Positioning Scheme for Indoor Multiuser Applications. IEEE Syst. J. 2019, 13, 279–288. [Google Scholar] [CrossRef]
- Lu, C.; Uchiyama, H.; Thomas, D.; Shimada, A.; Taniguchi, R. Indoor Positioning System Based on Chest-Mounted IMU. Sensors 2019, 19, 420. [Google Scholar] [CrossRef]
- Huang, H.; Lee, D.H.; Chang, K.; Li, W.; Acharya, T.D. Development of mobile platform for indoor positioning reference map using geomagnetic field data. Comput. Electr. Eng. 2018, 68, 557–569. [Google Scholar] [CrossRef]
- Zhu, B.; Cheng, J.; Wang, Y.; Yan, J.; Wang, J. Three-Dimensional VLC Positioning Based on Angle Difference of Arrival with Arbitrary Tilting Angle of Receiver. IEEE J. Sel. Areas Commun. 2018, 36, 8–22. [Google Scholar] [CrossRef]
- Lopes, S.I.; Vieira, J.M.N.; Albuquerque, D. High Accuracy 3D Indoor Positioning Using Broadband Ultrasonic Signals. In Proceedings of the 2012 IEEE 11th International Conference on Trust, Security and Privacy in Computing and Communications, Liverpool, UK, 25–27 June 2012; pp. 2008–2014. [Google Scholar]
- Kanjo, E.; Younis, E.M.G.; Sherkat, N. Towards unravelling the relationship between on-body, environmental and emotion data using sensor information fusion approach. Inf. Fusion 2018, 40, 18–31. [Google Scholar] [CrossRef]
- Abdelzaher, T.; Ayanian, N.; Basar, T.; Diggavi, S.; Diesner, J.; Ganesan, D.; Govindan, R.; Jha, S.; Lepoint, T.; Marlin, B.; et al. Toward an Internet of Battlefield Things: A Resilience Perspective. Computer 2018, 51, 24–36. [Google Scholar] [CrossRef]
- Kutilek, P.; Volf, P.; Viteckova, S.; Smrcka, P.; Krivanek, V.; Lhotska, L.; Hana, K.; Doskocil, R.; Navratil, L.; Hon, Z.; et al. Wearable systems for monitoring the health condition of soldiers: Review and application. In Proceedings of the 2017 International Conference on Military Technologies (ICMT), Brno, Czech Republic, 31 May–2 June 2017; pp. 748–752. [Google Scholar]
- Moulik, S.; Misra, S.; Chakraborty, C. CAPCoS: Context-aware PAN coordinator selection for health monitoring of soldiers in battlefield. In Proceedings of the 2015 IEEE International Conference on Advanced Networks and Telecommuncations Systems (ANTS), Kolkata, India, 15–18 December 2015; pp. 1–6. [Google Scholar]
- Rozanowski, K.; Sondej, T.; Lewandowski, J. First approach for design of an autonomous measurement system to aid determination of the psychological profile of soldiers. In Proceedings of the 2015 22nd International Conference Mixed Design of Integrated Circuits & Systems (MIXDES), Torun, Poland, 25–27 June 2015; pp. 53–57. [Google Scholar]
Name | Research Unit | Type | Characteristic |
---|---|---|---|
LifeBEAM | LifeBEAM | Helmet | Uses an optical sensor to measure heart rate |
CombatConnect | The Army’s Program Executive Office | Wearable electronics system | Distributes data and power to and from devices via a smart hub integrated into the vest or plate carrier |
Black Hornet 3 | FLIR SYSTEM | Pocket-sized unmanned helicopter | An integrated camera that can be mounted on a squad member’s combat vest as an elevated set of binoculars |
Ground Warfare Acoustical Combat System | Gwacs Defense | A wearable tactical system | Identifies and locates hostile fire; detects and tracks Small UAVs |
ExoAtlet | ExoAtlet | Lower body powered exoskeletons | Provides mobility assistance and decreases the metabolic cost of movement |
SPaRK | SpringActive | Energy-scavenging exoskeletons | The collected energy can be turned into electricity to recharge a battery or directly power a device |
Research Direction | Specific Problem | Reference Scheme | Physiological Signal |
---|---|---|---|
Signal processing | Multi-component and nonstationary signals | [40] | EMG |
Information mining | Low-level muscle fatigue | [41] | EMG |
Local muscle analysis | [42] | EMG | |
Stereoscopic visual fatigue | [43] | EEG | |
Sensor optimization | Multichannel detection | [44,45] | EMG; EEG |
Disposable electrode | [46] | EMG | |
Detecting position | [47] | EEG | |
Function extension | Unloaded muscle effort | [48] | EMG |
Muscle recovery | [49] | EMG |
Research Direction | Specific Problem | Reference Scheme | Physiological Signal |
---|---|---|---|
Signal processing | Time frequency analysis | [77,78] | EEG |
Feature extraction | [60,79,80] | EEG | |
Information mining | Influence of movement | [72] | EMG, ECG, GSR |
Individual differences | [73] | ECG, GSR, PPG | |
Cross-cultural differences | [62] | Facial features | |
Micro-expression | [81,82] | Facial features | |
Real-time recognition | [83] | ECG | |
Sensor optimization | Multichannel detection | [84] | EEG |
Function extension | Control interface | [85] | ECG, EEG |
Body Parts | Function | Reference Scheme | Specific Problem | Sensor |
---|---|---|---|---|
Head | Monitoring | [116] | Movement characteristic | Inertial components |
Extension | [91,92] | Man–machine interaction | BNO 055 orientation modules; Six DOF position sensor | |
Hand | Monitoring | [94] | Hand function evaluation | Inertial components |
Extension | [93,115] | Man–machine interaction | Inertial components; Optical fiber force myography sensor | |
Arm | Monitoring | [100] | Movement characteristic | Inertial components |
Extension | [114,117] | Man–machine interaction | EMG sensor; Pressure sensor | |
Waist | Extension | [95,96,97] | Muscle fatigue and injury | Exoskeleton |
Lower limb | Monitoring | [101] | Movement characteristic | Inertial components |
Monitoring | [102] | Knee load | Inertial components | |
Foot | Monitoring | [90] | Gait recognition | Inertial components |
Extension | [118] | Injury (GRFs) | 3D force/moment sensors |
Range | Error | Cost | Applicability | Restriction | |
---|---|---|---|---|---|
Inertial components | 1–100 m | <1% [124] | Low | Strong anti-interference ability; high utilization rate | Data processing; errors accumulate over time |
Ultrasonic | 1–10 m | <20.2 cm [127] | High | Correction of inertial data; improvement of relative coordinates | Signal attenuates significantly in harsh environments |
UWB | 1–50 m | <2 cm [123] | High | High penetration; high precision | Miniaturization of positioning devices |
RFID | 1–50 m | <10 cm [122] | Low | Strong anti-interference ability | Hard to integrate with other systems |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, H.; Zhao, H.; Liu, Y.; Gao, W.; Dou, S.-C. Systematic Analysis of a Military Wearable Device Based on a Multi-Level Fusion Framework: Research Directions. Sensors 2019, 19, 2651. https://doi.org/10.3390/s19122651
Shi H, Zhao H, Liu Y, Gao W, Dou S-C. Systematic Analysis of a Military Wearable Device Based on a Multi-Level Fusion Framework: Research Directions. Sensors. 2019; 19(12):2651. https://doi.org/10.3390/s19122651
Chicago/Turabian StyleShi, Han, Hai Zhao, Yang Liu, Wei Gao, and Sheng-Chang Dou. 2019. "Systematic Analysis of a Military Wearable Device Based on a Multi-Level Fusion Framework: Research Directions" Sensors 19, no. 12: 2651. https://doi.org/10.3390/s19122651
APA StyleShi, H., Zhao, H., Liu, Y., Gao, W., & Dou, S.-C. (2019). Systematic Analysis of a Military Wearable Device Based on a Multi-Level Fusion Framework: Research Directions. Sensors, 19(12), 2651. https://doi.org/10.3390/s19122651