Interferometric SAR Phase Denoising Using Proximity-Based K-SVD Technique
Abstract
:1. Introduction
2. The Proximity-Based K-SVD Methods for SAR Interferogram Denoising
2.1. Fundamental of Denoising Problem in Interferometry
2.2. The Proximity-Based K–SVD Method
3. Results and Discussion
3.1. Simulated Data
3.2. Real Data
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rodriguez, E.; Martin, J.M. Theory and Design of Interferometric Synthetic Aperture Radars. IEE Proc. F 1992, 139, 147–159. [Google Scholar] [CrossRef]
- Pritt, M.D. Phase unwrapping by means of multigrid techniques for interferometric SAR. IEEE Trans. Geosci. Remote Sens. 1996, 34, 728–738. [Google Scholar] [CrossRef]
- Zebker, H.A.; Goldstein, R.M. Topographic Mapping from Interferometric Synthetic Aperture Radar Observations. J. Geophys. Res. B Solid Earth 1986, 91, 4993–4999. [Google Scholar] [CrossRef]
- Ghiglia, D.C.; Pritt, M.D. Two-Dimensional Phase Unwrapping: Theory, Algorithms and Software; WileyBlackwell: Hoboken, NJ, USA, 1998. [Google Scholar]
- Costantini, M. A novel phase unwrapping method based on network programming. IEEE Trans. Geosci. Remote Sens. 1998, 36, 813–821. [Google Scholar] [CrossRef]
- Massonnet, D.; Feigl, K.L. Radar Interferometry and its Application to Changes in the Earth’s Surface. Rev. Geophys. 1998, 36, 441–500. [Google Scholar] [CrossRef]
- Goldstein, R.M.; Werner, C.L. Radar Interferogram Filtering for Geophysical Applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef]
- Franceschetti, G.; Lanari, R. Synthetic Aperture Radar Processing; Electronic Engineering Systems; Taylor & Francis: Boca Raton, FL, USA, 1999. [Google Scholar]
- Rosen, P.A.; Hensley, S.; Joughin, I.; Li, F.K.; Madsen, S.N.; Rodriguez, E.; Goldstein, R.M. Synthetic Aperture Radar Interferometry. Proc. IEEE 2000, 88, 333–382. [Google Scholar] [CrossRef]
- Curlander, J.C.; McDonough, R.N. Synthetic Aperture Radar: Systems and Signal Processing; Series in Remote Sensing and Image Processing; Wiley: New York, NY, USA, 1992. [Google Scholar]
- Zebker, H.A.; Villasenor, J. Decorrelation in Interferometric Radar Echoes. IEEE Trans. Geosci. Remote Sens. 1992, 30, 950–959. [Google Scholar] [CrossRef]
- Lee, J.S.; Papathanassiou, K.P.; Ainsworth, T.L.; Grunes, M.R.; Reigber, A. A new technique for noise filtering of SAR interferometric phase images. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1456–1465. [Google Scholar]
- Baran, I.; Stewart, M.P.; Kampes, B.M.; Perski, Z.; Lilly, P. A modification to the Goldstein radar interferogram filter. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2114–2118. [Google Scholar] [CrossRef] [Green Version]
- Feng, Q.; Xu, H.; Wu, Z.; You, Y.; Liu, W.; Ge, S. Improved Goldstein Interferogram Filter Based on Local Fringe Frequency Estimation. Sensors 2016, 16, 1976. [Google Scholar] [CrossRef] [PubMed]
- Suo, Z.; Zhang, J.; Li, M.; Zhang, Q.; Fang, C. Improved InSAR Phase Noise Filter in Frequency Domain. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1185–1195. [Google Scholar] [CrossRef]
- López-Mártinez, C.; Fàbregas, X. Modeling and reduction of SAR interferometric phase noise in the wavelet domain. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2553–2566. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Ren, X. A filtering algorithm for InSAR interferogram based on wavelet transform and median filter. In Proceedings of the 2016 Progress in Electromagnetic Research Symposium (PIERS), Shanghai, China, 8–11 August 2016; pp. 2888–2892. [Google Scholar] [CrossRef]
- Suksmono, A.B.; Hirose, A. Adaptive noise reduction of InSAR images based on a complex-valued MRF model and its application to phase unwrapping problem. IEEE Trans. Geosci. Remote Sens. 2002, 40, 699–709. [Google Scholar] [CrossRef]
- Deledalle, C.A.; Denis, L.; Tupin, F. NL-InSAR: Nonlocal Interferogram Estimation. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1441–1452. [Google Scholar] [CrossRef]
- Baier, G.; Rossi, C.; Lachaise, M.; Zhu, X.X.; Bamler, R. Nonlocal InSAR filtering for high resolution DEM generation from TanDEM-X interferograms. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 103–106. [Google Scholar] [CrossRef]
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Donoho, D.L.; Johnstone, I.M. Ideal spatial adaptation by wavelet shrinkage. Biometrika 1994, 81, 425–455. [Google Scholar] [CrossRef]
- Donoho, D.L. De-noising by soft thresholding. IEEE Trans. Inf. Theory 1995, 41, 613–627. [Google Scholar] [CrossRef]
- Chambolle, A.; DeVore, R.A.; Lee, N.Y.; Lucier, B.J. Non-linear wavelet image processing: Variational problems, compression, and noise removal through wavelet shrinkage. IEEE Trans. Image Process. 1998, 7, 319–335. [Google Scholar] [CrossRef]
- Moulin, P.; Liu, J. Analysis of multi-resolution image denoising schemes using generalized Gaussian and complexity priors. IEEE Trans. Inf. Theory 1999, 45, 909–919. [Google Scholar] [CrossRef]
- Jansen, M. Noise Reduction by Wavelet Thresholding; Springer: Berlin, Germany, 2001. [Google Scholar]
- Candés, E.J.; Donoho, D.L. New tight frames of curvelets and the problem of approximating piecewise C2 images with piecewise C2 edges. Commun. Pure Appl. Math 2004, 57, 219–266. [Google Scholar] [CrossRef]
- Do, M.N.; Vetterli, M. Framing pyramids. IEEE Trans. Trans. Signal Process. 2003, 51, 329–2342. [Google Scholar] [CrossRef]
- Do, M.N. Wedgelets: Nearly minimax estimation of edges. Ann. Statist 1998, 27, 859–897. [Google Scholar]
- Mallat, S.; LePennec, E. Sparse geometric image representation with bandelets. IEEE Trans. Signal Process. 2005, 14, 423–438. [Google Scholar]
- Simoncelli, E.P.; Freeman, W.T.; Adelson, E.H.; Heeger, D.H. Shiftable multi-scale transforms. IEEE Trans Inf. Theory 1992, 38, 587–607. [Google Scholar] [CrossRef]
- Chen, S.S.; Donoho, D.L.; Saunders, M.A. Atomic decomposition by basis pursuit. SIAM Rev 2001, 43, 129–159. [Google Scholar] [CrossRef]
- Zhu, S.C.; Mumford, D. Prior learning and Gibbs reaction-diffusion. IEEE Trans. attern Anal. Mach. Intell. 1997, 19, 1236–1250. [Google Scholar]
- Elad, M.; Aharon, M. Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries. IEEE Trans. Img. Proc. 2006, 15, 3736–3745. [Google Scholar] [CrossRef]
- Si, X.; Jiao, L.; Yu, H.; Yang, D.; Feng, H. SAR images reconstruction based on compressive sensing. In Proceedings of the 2nd Asian-Pacific Conference on Synthetic Aperture Radar, Xian, China, 26–30 October 2009; pp. 1056–1059. [Google Scholar]
- Lin, Y.; Zhang, B.; Hong, W.; Wu, Y. Along-track interferometric sar imaging based on distributed compressed sensing. Electron. Lett. 2010, 46, 858–860. [Google Scholar] [CrossRef]
- Li, J.; Zhang, S.; Chang, J. Applications of compressed sensing for multiple transmitters multiple azimuth beams SAR imaging. Electron. Lett. 2010, 46, 858–860. [Google Scholar] [CrossRef]
- Anitori, L.; Rossum, W.V.; Otten, M.; Maleki, A.; Baraniuk, R. Compressive sensing radar: Simulation and experiments for target detection. In Proceedings of the 21st European Signal Processing Conference (EUSIPCO 2013), Marrakech, Morocco, 9–13 September 2013. [Google Scholar]
- Mary, D.; Bourguignon, S.; Theys, C.; Lanteri, H. Interferometric image reconstruction with sparse priors in union of bases. In Proceedings of the Sixth Conference on Astronomical Data Analysis, Monastir, Tunisia, 3–6 May 2010. [Google Scholar]
- Hongxing, H.; Bioucas-Dias, J.M.; Katkovnik, V. Interferometric Phase Image Estimation via Sparse Coding in the Complex Domain. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2587–2602. [Google Scholar] [CrossRef]
- Ojha, C.; Fusco, A.; Manunta, M. Denoising of full resolution differential SAR interferogram based on K-SVD technique. In Proceedings of the IEEE Proceedings IGARSS, Milan, Italy, 26–31 July 2015; pp. 2461–2464. [Google Scholar]
- Engan, K.; Aase, S.O.; Hakon-Husoy, J.H. Method of optimal directions for frame design. In Proceedings of the 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing, Phoenix, AZ, USA, 15–19 March 1999; Volume 5, pp. 2443–2446. [Google Scholar]
- Kreutz-Delgado, K.; Rao, B.D. Focuss-based dictionary learning algorithms. In Proceedings of the From Conference Wavelet Applications in Signal and Image Processing VIII, San Diego, CA, USA, 4 December 2000; Volume 4119. [Google Scholar]
- Mallat, S.; LePennec, E. Bandelet image approximation and compression. IAM J. Multiscale Model. Simul. 2005, 4, 992–1039. [Google Scholar]
- Aharon, M.; Elad, M.; Bruckstein, A. K -SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation. IEEE Trans. Signal Process 2006, 54, 4311–4322. [Google Scholar] [CrossRef]
- Aharon, M.; Elad, M.; Bruckstein, A.M. On the uniqueness of overcomplete dictionaries, and a practical way to retrieve them. Linear Algebra Appl. 2006, 416, 48–67. [Google Scholar] [CrossRef] [Green Version]
- Olshausen, B.A.; Fieldt, D.J. Sparse coding with an overcomplete basis set: A strategy employed by V1. Vis. Res. 1997, 37, 3311–3325. [Google Scholar] [CrossRef]
- Guleryuz, O.G. Weighted overcomplete denoising. In Proceedings of the Conference Record of the Thirty-Seventh Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 7–10 November 2004; Volume 2, pp. 1992–1996. [Google Scholar]
- Guleryuz, O.G. Nonlinear approximation based image recovery using adaptive sparse reconstructions and iterated denoising-part I: Theory. IEEE Trans. Image Process 2006, 15, 539–554. [Google Scholar] [CrossRef]
- Guleryuz, O.G. Nonlinear approximation based image recovery using adaptive sparse reconstructions and iterated denoising-part II: Adaptive algorithms. IEEE Trans. Image Process 2006, 15, 555–571. [Google Scholar] [CrossRef]
- Hanssen, R.F. Radar Interferometry: Data Interpretation and Error Analysis; Kluwer Academic: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Ojha, C.; Manunta, M.; Lanari, R.; Pepe, A. The Constrained-Network Propagation (C-NetP) Technique to Improve SBAS-DInSAR Deformation Time Series Retrieval. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4910–4921. [Google Scholar] [CrossRef]
- Rubinstein, R.; Zibulevsky, M.; Elad, M. Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal Matching Pursuit; No. CS Technion report CS-2008-08; Computer Science Department, Technion: Haifa, Israel, 2008. [Google Scholar]
- Rubinstein, R.; Peleg, T.; Elad, M. Analysis K-SVD: A Dictionary-Learning Algorithm for the Analysis Sparse Model. IEEE Trans. Signal Process 2013, 61, 661–677. [Google Scholar] [CrossRef]
- Sansosti, E. A simple and exact solution for the interferometric and stereo SAR geolocation problem. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1625–1634. [Google Scholar] [CrossRef]
- Winkler, S. Digital Video Quality—Vision Models and Metrics; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Montrésor, S.; Picart, P.; Karray, M. Reference-free metric for quantitative noise appraisal in holographic phase measurements. J. Opt. Soc. Am. A 2018, 35, A53–A60. [Google Scholar] [CrossRef] [PubMed]
- Memmolo, P.; Esnaola, I.; Finizio, A.; Paturzo, M.; Ferraro, P.; Tulino, A.M. SPADEDH: A sparsity-based denoising method of digital holograms without knowing the noise statistics. Opt. Express 2012, 20, 17250–17257. [Google Scholar] [CrossRef]
Noisy Interferogram | Denoised Interferogram | Denoised Interferogram |
from K-SVD | from ProK-SVD | |
PSNR(dB) | ||
10.5138 | 11.5843 | |
MSE(dB) | ||
−2.6650 | −3.7355 |
SENSORS | COSMO-SkyMed | ALOS | ENVISAT | ERS |
---|---|---|---|---|
Band | X | L | C | C |
Spatial resolution [m] | 3 | 10 | 30 | 30 |
1st acquisition [d/m/y] | 25/11/2009 | 30/01/2008 | 15/09/2004 | 24/11/2004 |
2nd acquisition [d/m/y] | 04/12/2009 | 01/05/2008 | 20/10/2004 | 07/06/2006 |
Perpendicular baseline [m] | 49.9241 | 840.309 | −19.0227 | −197.872 |
Time interval [days] | 10 | 122 | 35 | 545 |
ProK-SVD | KSVD | Goldstein | Non-Local | Wavelet | Median | Mean |
---|---|---|---|---|---|---|
SDR [dB] | ||||||
13.0450 | 12.9350 | −2.8505 | 9.6538 | 3.9728 | 3.7970 | 3.4605 |
Serial Nr. | Study Area | Data | SDR [dB] |
---|---|---|---|
1 | Etna Volcano | COSMO-SkyMed | 13.0617 |
2 | ALOS | 15.1970 | |
3 | ERS | 15.1383 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ojha, C.; Fusco, A.; Pinto, I.M. Interferometric SAR Phase Denoising Using Proximity-Based K-SVD Technique. Sensors 2019, 19, 2684. https://doi.org/10.3390/s19122684
Ojha C, Fusco A, Pinto IM. Interferometric SAR Phase Denoising Using Proximity-Based K-SVD Technique. Sensors. 2019; 19(12):2684. https://doi.org/10.3390/s19122684
Chicago/Turabian StyleOjha, Chandrakanta, Adele Fusco, and Innocenzo M. Pinto. 2019. "Interferometric SAR Phase Denoising Using Proximity-Based K-SVD Technique" Sensors 19, no. 12: 2684. https://doi.org/10.3390/s19122684
APA StyleOjha, C., Fusco, A., & Pinto, I. M. (2019). Interferometric SAR Phase Denoising Using Proximity-Based K-SVD Technique. Sensors, 19(12), 2684. https://doi.org/10.3390/s19122684