An Efficient Electrochemical Sensor Driven by Hierarchical Hetero-Nanostructures Consisting of RuO2 Nanorods on WO3 Nanofibers for Detecting Biologically Relevant Molecules
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Synthesis of Hybrid Nanostructures of RuO2 Nanorods on Electrospun WO3 Nanofibers
3.2. Electrochemical Properties for Capacitive Behaviors of RuO2 NRs-WO3 NFs
3.3. Applications to Electrochemical Sensing of AA and H2O2
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kim, Y.L.; Choi, H.-A.; Lee, N.-S.; Son, B.; Kim, H.J.; Baik, J.M.; Lee, Y.; Lee, C.; Kim, M.H. RuO2–ReO3 composite nanofibers for efficient electrocatalytic responses. Phys. Chem. Chem. Phys. 2015, 17, 7435–7442. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-J.; Cho, Y.K.; Seok, J.; Lee, N.-S.; Son, B.; Lee, J.W.; Baik, J.M.; Lee, C.; Lee, Y.; Kim, M.H. Highly Branched RuO2 Nanoneedles on Electrospun TiO2 Nanofibers as an Efficient Electrocatalytic Platform. ACS Appl. Mater. Interfaces 2015, 7, 15321–15330. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.S.; Yang, Y.; Lee, N.-S.; Son, B.; Lee, Y.; Lee, C.; Kim, M.H. Electrospun RuO2–Co3O4 hybrid nanotubes for enhanced electrocatalytic activity. Mater. Lett. 2015, 139, 405–408. [Google Scholar] [CrossRef]
- Sugimoto, W.; Iwata, H.; Yokoshima, K.; Murakami, Y.; Takasu, Y. Proton and Electron Conductivity in Hydrous Ruthenium Oxides Evaluated by Electrochemical Impedance Spectroscopy: The Origin of Large Capacitance. J. Phys. Chem. B 2005, 109, 7330–7338. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.-C.; Chang, K.-H.; Lin, M.-C.; Wu, Y.-T. Design and Tailoring of the Nanotubular Arrayed Architecture of Hydrous RuO2 for Next Generation Supercapacitors. Nano Lett. 2006, 6, 2690–2695. [Google Scholar] [CrossRef]
- Zang, J.; Bao, S.-J.; Li, C.M.; Bian, H.; Cui, X.; Bao, Q.; Sun, C.Q.; Guo, J.; Lian, K. Well-Aligned Cone-Shaped Nanostructure of Polypyrrole/RuO2 and Its Electrochemical Supercapacitor. J. Phys. Chem. C 2008, 112, 14843–14847. [Google Scholar] [CrossRef]
- Xia, H.; Meng, Y.S.; Yuan, G.; Cui, C.; Lu, L. A Symmetric RuO2/RuO2 Supercapacitor Operating at 1.6 V by Using a Neutral Aqueous Electrolyte. Electrochem. Solid-State Lett. 2012, 15, A60–A63. [Google Scholar] [CrossRef]
- Lee, J.-B.; Jeong, S.-Y.; Moon, W.-J.; Seong, T.-Y.; Ahn, H.-J. Preparation and characterization of electro-spun RuO2–Ag2O composite nanowires for electrochemical capacitors. J. Alloys Compd. 2011, 509, 4336–4340. [Google Scholar] [CrossRef]
- Wang, Y.-G.; Zhang, X.-G. Preparation and electrochemical capacitance of RuO2/TiO2 nanotubes composites. Electrochim. Acta 2004, 49, 1957–1962. [Google Scholar]
- Wang, Y.-G.; Wang, Z.-D.; Xia, Y.-Y. An asymmetric supercapacitor using RuO2/TiO2 nanotube composite and activated carbon electrodes. Electrochim. Acta 2005, 50, 5641–5646. [Google Scholar] [CrossRef]
- Rack Ahn, Y.; Park, C.; Mu Jo, S.; Young Kim, D. Enhanced charge-discharge characteristics of RuO2 supercapacitors on heat-treated TiO2 nanorods. Appl. Phys. Lett. 2007, 90, 122106. [Google Scholar]
- Lokhande, C.; Park, B.-O.; Park, H.-S.; Jung, K.-D.; Joo, O.-S. Electrodeposition of TiO2 and RuO2 thin films for morphology-dependent applications. Ultramicroscopy 2005, 105, 267–274. [Google Scholar] [CrossRef]
- Kim, S.-J.; Cho, Y.K.; Lee, C.; Kim, M.H.; Lee, Y. Real-time direct electrochemical sensing of ascorbic acid over rat liver tissues using RuO2 nanowires on electrospun TiO2 nanofibers. Biosens. Bioelectron. 2016, 77, 1144–1152. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.L.; Ha, Y.; Lee, N.-S.; Kim, J.G.; Baik, J.M.; Lee, C.; Yoon, K.; Lee, Y.; Kim, M.H. Hybrid architecture of rhodium oxide nanofibers and ruthenium oxide nanowires for electrocatalysts. J. Alloys Compd. 2016, 663, 574–580. [Google Scholar] [CrossRef]
- Huang, Z.-F.; Song, J.; Pan, L.; Zhang, X.; Wang, L.; Zou, J.-J. Tungsten Oxides for Photocatalysis, Electrochemistry, and Phototherapy. Adv. Mater. 2015, 27, 5309–5327. [Google Scholar] [CrossRef] [PubMed]
- Janáky, C.; Chanmanee, W.; Rajeshwar, K. On the Substantially Improved Photoelectrochemical Properties of Nanoporous WO3 Through Surface Decoration with RuO2. Electrocatalysis 2013, 4, 382–389. [Google Scholar] [CrossRef]
- Baruffaldi, C.; Cattarin, S.; Musiani, M. Deposition of non-stoichiometric tungsten oxides+MO2 composites (M = Ru or Ir) and study of their catalytic properties in hydrogen or oxygen evolution reactions. Electrochim. Acta 2003, 48, 3921–3927. [Google Scholar] [CrossRef]
- Zheng, H.; Ou, J.Z.; Strano, M.S.; Kaner, R.B.; Mitchell, A.; Kalantar-zadeh, K. Nanostructured Tungsten Oxide—Properties, Synthesis, and Applications. Adv. Funct. Mater. 2011, 21, 2175–2196. [Google Scholar] [CrossRef]
- Zhou, X.; Qiu, Y.; Yu, J.; Yin, J.; Bai, X. High electrochemical activity from hybrid materials of electrospun tungsten oxide nanofibers and carbon black. J. Mater. Sci. 2012, 47, 6607–6613. [Google Scholar] [CrossRef]
- Wei, H.; Ding, D.; Yan, X.; Guo, J.; Shao, L.; Chen, H.; Sun, L.; Colorado, H.A.; Wei, S.; Guo, Z. Tungsten Trioxide/Zinc Tungstate Bilayers: Electrochromic Behaviors, Energy Storage and Electron Transfer. Electrochim. Acta 2014, 132, 58–66. [Google Scholar] [CrossRef]
- Yoon, S.; Kang, E.; Kim, J.K.; Lee, C.W.; Lee, J. Development of high-performance supercapacitor electrodes using novel ordered mesoporous tungsten oxide materials with high electrical conductivity. Chem. Commun. 2011, 47, 1021–1023. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Shi, J.; Pu, Z.; Liu, Q.; Asiri, A.M.; Hu, J.; Sun, X. Tungsten nitride nanorods array grown on carbon cloth as an efficient hydrogen evolution cathode at all pH values. Electrochim. Acta 2015, 154, 345–351. [Google Scholar] [CrossRef]
- Shin, J.; Choi, S.-J.; Youn, D.-Y.; Kim, I.-D. Exhaled VOCs sensing properties of WO3 nanofibers functionalized by Pt and IrO2 nanoparticles for diagnosis of diabetes and halitosis. J. Electroceram. 2012, 29, 106–116. [Google Scholar] [CrossRef]
- Shim, J.; Lee, C.-R.; Lee, H.-K.; Lee, J.-S.; Cairns, E.J. Electrochemical characteristics of Pt–WO3/C and Pt–TiO2/C electrocatalysts in a polymer electrolyte fuel cell. J. Power Sources 2001, 102, 172–177. [Google Scholar] [CrossRef]
- Jayaraman, S.; Jaramillo, T.F.; Baeck, S.-H.; McFarland, E.W. Synthesis and Characterization of Pt–WO3 as Methanol Oxidation Catalysts for Fuel Cells. J. Phys. Chem. B 2005, 109, 22958–22966. [Google Scholar] [CrossRef] [PubMed]
- Rajesh, B.; Karthik, V.; Karthikeyan, S.; Ravindranathan Thampi, K.; Bonard, J.M.; Viswanathan, B. Pt–WO3 supported on carbon nanotubes as possible anodes for direct methanol fuel cells. Fuel 2002, 81, 2177–2190. [Google Scholar] [CrossRef]
- Kuo, L.-M.; Chen, K.-N.; Chuang, Y.-L.; Chao, S. A Flexible pH-Sensing Structure Using WO3/IrO2 Junction with Al2O3 Encapsulation Layer. ECS Solid State Lett. 2013, 2, P28–P30. [Google Scholar] [CrossRef][Green Version]
- Jeong, Y.U.; Manthiram, A. Amorphous Tungsten Oxide/Ruthenium Oxide Composites for Electrochemical Capacitors. J. Electrochem. Soc. 2001, 148, A189–A193. [Google Scholar] [CrossRef]
- Chen, K.Y.; Sun, Z.; Tseung, A.C.C. Preparation and Characterization of High-Performance Pt-Ru/WO3-C Anode Catalysts for the Oxidation of Impure Hydrogen. Electrochem. Solid-State Lett. 2000, 3, 10–12. [Google Scholar] [CrossRef]
- Yang, L.X.; Bock, C.; MacDougall, B.; Park, J. The role of the WOx ad-component to Pt and PtRU catalysts in the electrochemical CH3OH oxidation reaction. J. Appl. Electrochem. 2004, 34, 427–438. [Google Scholar] [CrossRef]
- Ruzgas, T.; Csöregi, E.; Emnéus, J.; Gorton, L.; Marko-Varga, G. Peroxidase-modified electrodes: Fundamentals and application. Anal. Chim. Acta 1996, 330, 123–138. [Google Scholar] [CrossRef]
- Ames, B.N.; Gold, L.S.; Willett, W.C. The causes and prevention of cancer. Proc. Natl. Acad. Sci. USA 1995, 92, 5258–5265. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-J.; Kim, Y.L.; Yu, A.; Lee, J.; Lee, S.C.; Lee, C.; Kim, M.H.; Lee, Y. Electrospun iridium oxide nanofibers for direct selective electrochemical detection of ascorbic acid. Sens. Actuators B 2014, 196, 480–488. [Google Scholar] [CrossRef]
- Park, J.; Lee, J.W.; Ye, B.U.; Chun, S.H.; Joo, S.H.; Park, H.; Lee, H.; Jeong, H.Y.; Kim, M.H.; Baik, J.M. Structural Evolution of Chemically-Driven RuO2 Nanowires and 3-Dimensional Design for Photo-Catalytic Applications. Sci. Rep. 2015, 5, 11933. [Google Scholar] [CrossRef] [PubMed]
- Habazaki, H.; Hayashi, Y.; Konno, H. Characterization of electrodeposited WO3 films and its application to electrochemical wastewater treatment. Electrochim. Acta 2002, 47, 4181–4188. [Google Scholar] [CrossRef]
- Shi, J.; Allara, D.L. Characterization of High-Temperature Reactions at the BaO/W Interface. Langmuir 1996, 12, 5099–5108. [Google Scholar] [CrossRef]
- Morgan, D.J. Resolving ruthenium: XPS studies of common ruthenium materials. Surf. Interface Anal. 2015, 47, 1072–1079. [Google Scholar] [CrossRef]
- Karlsson, R.K.B.; Cornell, A.; Pettersson, L.G.M. Structural Changes in RuO2 during Electrochemical Hydrogen Evolution. J. Phys. Chem. C 2016, 120, 7094–7102. [Google Scholar] [CrossRef]
- Zhang, W.; Tan, Y.; Gao, Y.; Wu, J.; Tang, B.; Zhao, J. Amorphous nickel–boron and nickel–manganese–boron alloy as electrochemical pseudocapacitor materials. RSC Adv. 2014, 4, 27800–27804. [Google Scholar] [CrossRef]
- El-Kady, M.F.; Strong, V.; Dubin, S.; Kaner, R.B. Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors. Science 2012, 335, 1326. [Google Scholar] [CrossRef]
- Jo, A.; Kang, M.; Cha, A.; Jang, H.S.; Shim, J.H.; Lee, N.S.; Kim, M.H.; Lee, Y.; Lee, C. Nonenzymatic amperometric sensor for ascorbic acid based on hollow gold/ruthenium nanoshells. Anal. Chim. Acta 2014, 819, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Zare, H.R.; Chatraei, F. Preparation and electrochemical characteristics of electrodeposited acetaminophen on ruthenium oxide nanoparticles and its role as a sensor for simultaneous determination of ascorbic acid, dopamine and N-acetyl-l-cysteine. Sens. Actuators B 2011, 160, 1450–1457. [Google Scholar] [CrossRef]
- Wu, J.; Suls, J.; Sansen, W. Amperometric determination of ascorbic acid on screen-printing ruthenium dioxide electrode. Electrochem. Commun. 2000, 2, 90–93. [Google Scholar] [CrossRef]
- Prakash, P.; Wei Ting, S.; Chen, S.-M. Amperometric and Impedimetric H2O2 Biosensor Based on Horseradish Peroxidase Covalently Immobilized at Ruthenium Oxide Nanoparticles Modified Electrode. Int. J. Electrochem. Sci. 2011, 6, 2688–2709. [Google Scholar]
- Anjalidevi, C.; Dharuman, V.; Shankara Narayanan, J. Non enzymatic hydrogen peroxide detection at ruthenium oxide–gold nano particle–Nafion modified electrode. Sens. Actuators B 2013, 182, 256–263. [Google Scholar] [CrossRef]
Electrodes | Methods | Solutions | Potential /V | Sensitivity /μAmM−1 cm2 | Linear Range /μM |
---|---|---|---|---|---|
RuO2 NRs-WO3 NFs 1 | Amperometry | PBS (pH 7.4) | 0 | 171.7 | 5–2000 |
RuO2-Co3O4 hybrid nanotubes 2 | Amperometry | PBS (pH 7.4) | 0.05 | 204 | ~500 |
RuO2NWs-TiO2NFs 3 | Amperometry | PBS (pH 7.4) | 0.018 | 268.2 | 10–1500 |
hAu-Ru nanoshells 4 | Amperometry | PBS (pH 7.4) | 0.05 | 426 | 5–2000 |
AC-RuON-GCE 5 | DPV | PBS (pH 7.0) | −0.053 | 85.9 | 47–181.8 |
Screen-printing RuO2 6 | Amperometry | PBS (pH 7.4) | 0.058 | 2.79 | 0–4000 |
Electrodes | Methods | Solutions | Potential /V | Sensitivity /μA mM−1 cm−2 | Linear Range /μM |
---|---|---|---|---|---|
RuO2 NRs-WO3 NFs 1 | Amperometry | 0.1 M PBS | −0.2 | 619.7 | 5–2000 |
RuO2-ReO3 (0.11) 2 | Amperometry | 0.1 M PBS | −0.2 | 667.8 | 0–5000 |
RuO2NNs-TiO2 NRs 3 | Amperometry | 0.05M PBS | 0 | 53.8 | 1–1000 |
RuO2 NWs-Rh2O3 NF 4 | Amperometry | 0.05 M PBS | 0.12 | 283.1 | 0–1000 |
HRP/Chi-GAD/RuNPs 5 | Amperometry | Saturated PBS | −0.3 | 0.798 | 5090–15,000 |
Nafion-RuO2-AuNP flim 6 | Amperometry | PBS | −0.4 | 15.44 | 0.001–30,000 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.; Kim, Y.; Yu, A.; Jin, D.; Jo, A.; Lee, Y.; Kim, M.H.; Lee, C. An Efficient Electrochemical Sensor Driven by Hierarchical Hetero-Nanostructures Consisting of RuO2 Nanorods on WO3 Nanofibers for Detecting Biologically Relevant Molecules. Sensors 2019, 19, 3295. https://doi.org/10.3390/s19153295
Lee H, Kim Y, Yu A, Jin D, Jo A, Lee Y, Kim MH, Lee C. An Efficient Electrochemical Sensor Driven by Hierarchical Hetero-Nanostructures Consisting of RuO2 Nanorods on WO3 Nanofibers for Detecting Biologically Relevant Molecules. Sensors. 2019; 19(15):3295. https://doi.org/10.3390/s19153295
Chicago/Turabian StyleLee, Hyerim, Yeomin Kim, Areum Yu, Dasol Jin, Ara Jo, Youngmi Lee, Myung Hwa Kim, and Chongmok Lee. 2019. "An Efficient Electrochemical Sensor Driven by Hierarchical Hetero-Nanostructures Consisting of RuO2 Nanorods on WO3 Nanofibers for Detecting Biologically Relevant Molecules" Sensors 19, no. 15: 3295. https://doi.org/10.3390/s19153295
APA StyleLee, H., Kim, Y., Yu, A., Jin, D., Jo, A., Lee, Y., Kim, M. H., & Lee, C. (2019). An Efficient Electrochemical Sensor Driven by Hierarchical Hetero-Nanostructures Consisting of RuO2 Nanorods on WO3 Nanofibers for Detecting Biologically Relevant Molecules. Sensors, 19(15), 3295. https://doi.org/10.3390/s19153295