Compact Viscometer Prototype for Remote In Situ Analysis of Sludge
Abstract
:1. Introduction
2. Materials and Methods
3. Device Development and Results
3.1. Description of Designed Device
3.2. Calibration Procedure
3.3. Measurements with TiO2 Suspension
3.4. ZM Suspension
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- NIRAB. The UK Civil Nuclear R&D Landscape Survey (February 2017). Available online: http://www.nirab.org.uk/media/10671/nirab-123-4.pdf (accessed on 19 March 2019).
- GOV.UK End of Reprocessing at Thorp Signals New Era for Sellafield. Available online: https://www.gov.uk/government/news/end-of-reprocessing-at-thorp-signals-new-era-for-sellafield (accessed on 19 March 2019).
- Sellafield Ltd. Corporate Plan 2016/17. Available online: https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/627566/SEL11098_corporate-plan_web.pdf (accessed on 19 March 2019).
- OECD. R&D and Innovation Needs for Decommissioning Nuclear Facilities; Radioactive Waste Management, OECD Publishing: Paris, France, 2014; ISBN 9789264222199. [Google Scholar]
- Keele, B.D.; Addleman, R.S.; Blewett, G.R.; Mcclellan, C.S.; Troyer, G.L. Non-destructive in situ measurement of radiological distributions in Hanford Site waste tanks. IEEE Trans. Nucl. Sci. 1996, 43, 1821–1826. [Google Scholar] [CrossRef]
- Maley, S.; Jones, H.; Whittaker, W. Novel Radiometry for In-Pipe Robotic Inspection of Holdup Deposits in Gaseous Diffusion Piping. In Proceedings of the WM2019 Conference, Phoenix, AZ, USA, 3–7 March 2019. [Google Scholar]
- Bird, B.; Griffiths, A.; Martin, H.; Codres, E.; Jones, J.; Stancu, A.; Lennox, B.; Watson, S.; Poteau, X. Radiological Monitoring of Nuclear Facilities: Using the Continuous Autonomous Radiation Monitoring Assistance Robot. IEEE Robot. Autom. Mag. 2018. [Google Scholar] [CrossRef]
- Tsitsimpelis, I.; Taylor, C.J.; Lennox, B.; Joyce, M.J. A review of ground-based robotic systems for the characterization of nuclear environments. Prog. Nucl. Energy 2019, 111, 109–124. [Google Scholar] [CrossRef]
- Baudelet, M. 17 Applications of laser spectroscopy in nuclear research and industry. In Laser Spectroscopy for Sensing; Woodhead Publishing: Sawston, UK, 2014; pp. 522–543. [Google Scholar]
- Martin, M.Z.; Allman, S.; Brice, D.J.; Martin, R.C.; Andre, N.O. Exploring laser-induced breakdown spectroscopy for nuclear materials analysis and in-situ applications. Spectrochim. Acta Part B At. Spectrosc. 2012, 74, 177–183. [Google Scholar] [CrossRef]
- Griffiths, A.; Dikarev, A.; Green, P.R.; Lennox, B.; Poteau, X.; Watson, S. AVEXIS-Aqua vehicle explorer for in-situ sensing. IEEE Robot. Autom. Lett. 2016, 1, 282–287. [Google Scholar] [CrossRef]
- Mould, S.; Barbas, J.; Machado, A.V.; Nóbrega, J.M.; Covas, J.A. Measuring the rheological properties of polymer melts with on-line rotational rheometry. Polym. Test. 2011, 30, 602–610. [Google Scholar] [CrossRef]
- Klein, C.O.; Spiess, H.W.; Calin, A.; Balan, C.; Wilhelm, M. Separation of the nonlinear oscillatory response into a superposition of linear, strain hardening, strain softening, and wall slip response. Macromolecules 2007, 40, 4250–4259. [Google Scholar] [CrossRef]
- Poulos, A.; Renou, F.; Jacob, A.; Koumakis, N.; Petekidis, G. Large amplitude oscillatory shear (LAOS) in model colloidal suspensions and glasses: Frequency dependence. Rheol. Acta 2015, 54, 715–724. [Google Scholar] [CrossRef]
- Schermeyer, M.; Sigloch, H.; Bauer, K.C.; Oelschlaeger, C.; Hubbuch, J. Squeeze flow rheometry as a novel tool for the characterization of highly concentrated protein solutions. Biotechnol. Bioeng. 2016, 113, 576–587. [Google Scholar] [CrossRef] [PubMed]
- Kádár, R.; Naue, I.F.C.; Wilhelm, M. First normal stress difference and in-situ spectral dynamics in a high sensitivity extrusion die for capillary rheometry via the ‘hole effect’. Polymer 2016, 104, 193–203. [Google Scholar] [CrossRef]
- Morita, A.T.; Toma, M.S.; Paoli, M.-A. De Low cost capillary rheometer, transfer molding and die-drawing module. Polym. Test. 2006, 25, 197–202. [Google Scholar] [CrossRef]
- Paul, N.; Biggs, S.; Edmondson, M.; Hunter, T.N.; Hammond, R.B. Characterising highly active nuclear waste simulants. Chem. Eng. Res. Des. 2013, 91, 742–751. [Google Scholar] [CrossRef]
- Pease, L.F.; Daniel, R.C.; Burns, C.A. Slurry rheology of Hanford sludge. Chem. Eng. Sci. 2019, 199, 628–634. [Google Scholar] [CrossRef]
- Paul, N. Characterisation of Highly Active Nuclear Waste Simulants; University of Leeds: Leeds, UK, 2014. [Google Scholar]
- Botha, J.A.; Ding, W.; Hunter, T.N.; Biggs, S.; Mackay, G.A.; Cowley, R.; Woodbury, S.E.; Harbottle, D. Quartz crystal microbalance as a device to measure the yield stress of colloidal suspensions. Colloids Surf. A Physicochem. Eng. Asp. 2018, 546, 179–185. [Google Scholar] [CrossRef]
- Paul, N.; Hammond, R.B.; Hunter, T.N.; Edmondson, M.; Maxwell, L.; Biggs, S. Synthesis of nuclear waste simulants by reaction precipitation: Formation of caesium phosphomolybdate, zirconium molybdate and morphology modification with citratomolybdate complex. Polyhedron 2015, 89, 129–141. [Google Scholar] [CrossRef] [Green Version]
- PLA|Professional 3D Printing Made Accessible|Ultimaker. Available online: https://ultimaker.com/en/resources/49911-pla#technical (accessed on 17 April 2019).
- XSTRANDTM GF30-PP-Owens Corning Composites. Available online: https://www.owenscorning.com/composites/product/xstrand-gf30-pp (accessed on 17 April 2019).
- British Standards Institution. Plastics—Polymers/Resins in the Liquid State or as Emulsions or Dispersions—Determination of Viscosity Using a Rotational Viscometer with Defined Shear Rate. EU Patent EN ISO 3219:1995, 15 March 1994. [Google Scholar]
- White, F.M. Fluid Mechanics, 7th ed.; McGraw-Hill: New York, NY, USA, 2011; ISBN 978-0-07-352934-9. [Google Scholar]
- Nancekievill, M.; Jones, A.R.; Joyce, M.J.; Lennox, B.; Watson, S.; Katakura, J.; Okumura, K.; Kamada, S.; Katoh, M.; Nishimura, K. Development of a Radiological Characterization Submersible ROV for Use at Fukushima Daiichi. IEEE Trans. Nucl. Sci. 2018, 65, 2565–2572. [Google Scholar] [CrossRef]
- Tibrea, S.; Nance, T.; Kriikk, E. Robotics in hazardous environments—Real deployments by the savannah river national laboratory. J. South Carol. Acad. Sci. 2011, 9, 5. [Google Scholar]
- Rood, M.; Kelly, D. Hanford Double Shell Tank Integrity Inspection–Integration of Customized Robotics. In Proceedings of the Waste Management Symposia, Phoenix, AZ, USA, 18–22 March 2018. [Google Scholar]
Ultimaker PLA | XSTRANDTM GF30-PP | |
---|---|---|
Tensile strength at yield (MPa) | 49.5 | 60.0 |
Flexural strength at yield (MPa) | 103.0 | 83.0 |
Maximum usable temperature (°C) | 50 | 120 |
Chemically resistant | No | Yes |
ISO Bob | ISO Vane | Vane 1 | Vane 2 | Vane 3 | |
---|---|---|---|---|---|
Cup Radius re (mm) | 13.75 | 13.75 | 16.50 | 22.00 | 33.00 |
Geometry Radius ri (mm) | 12.50 | 12.50 | 15.00 | 20.00 | 30.00 |
Geometry Length L (mm) | 37.50 | 37.50 | 30.00 | 20.00 | 15.00 |
L/ri (-) | 3.00 | 3.00 | 2.00 | 1.00 | 0.50 |
Necessary Sample Height (mm) | 52.50 | 52.50 | 42.50 | 32.50 | 27.50 |
ISO Bob | ISO Vane | Vane 1 | Vane 2 | Vane 3 | |
---|---|---|---|---|---|
R2 of raw data fit (-) | 0.9826 | 0.9970 | 0.9968 | 0.9786 | 0.9793 |
Slope of prototype raw data fit (-) | 502.73 | 218.72 | 276.74 | 285.94 | 633.86 |
Slope of commercial rheometer data fit (Pa) | 1.1614 | 0.7197 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fried, T.; Cheneler, D.; Monk, S.D.; Taylor, C.J.; Dodds, J.M. Compact Viscometer Prototype for Remote In Situ Analysis of Sludge. Sensors 2019, 19, 3299. https://doi.org/10.3390/s19153299
Fried T, Cheneler D, Monk SD, Taylor CJ, Dodds JM. Compact Viscometer Prototype for Remote In Situ Analysis of Sludge. Sensors. 2019; 19(15):3299. https://doi.org/10.3390/s19153299
Chicago/Turabian StyleFried, Tomas, David Cheneler, Stephen D. Monk, C. James Taylor, and Jonathan M. Dodds. 2019. "Compact Viscometer Prototype for Remote In Situ Analysis of Sludge" Sensors 19, no. 15: 3299. https://doi.org/10.3390/s19153299
APA StyleFried, T., Cheneler, D., Monk, S. D., Taylor, C. J., & Dodds, J. M. (2019). Compact Viscometer Prototype for Remote In Situ Analysis of Sludge. Sensors, 19(15), 3299. https://doi.org/10.3390/s19153299