Chipless-RFID: A Review and Recent Developments
Abstract
:1. Introduction
2. Chipless-RFID Tags Based on Time Domain
2.1. Time Domain Reflectometry Based Tags (TDR)
2.1.1. On-Off Keying (OOK)
2.1.2. Pulse Position Modulation
2.1.3. Phase Modulation
2.2. Time Division Multiplexing Based Tags
3. Chipless-RFID Tags Based on Frequency Domain
3.1. Retransmission-Based Tags
3.2. Backscattered-Based Tags
4. Hybrid Tags
5. Comparative Analysis between Coding Techniques
Author Contributions
Funding
Conflicts of Interest
References
- Rance, O.; Perret, E.; Siragusa, R.; Lemaître-Auger, P. RCS Synthesis for Chipless RFID: Theory and Design; Elsevier: Atlanta, GA, USA, 2017. [Google Scholar]
- Perret, E. Radio Frequency Identification and Sensors: From RFID to Chipless RFID; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014. [Google Scholar]
- Vena, A.; Perret, E.; Tedjini, S. Chipless RFID Based on RF Encoding Particle: Realization, Coding and Reading System; ISTE Press—Elsevier: Atlanta, GA, USA, 2016. [Google Scholar]
- Karmakar, N.C.; Amin, E.M.; Saha, J.K. Chipless RFID Sensors; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016. [Google Scholar]
- Karmakar, N.C. (Ed.) Handbook of Smart Antennas for RFID Systems; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010. [Google Scholar]
- Rezaiesarlak, R.; Manteghi, M. Chipless RFID: Design Procedure and Detection Techniques; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Finkenzeller, K. RFID Handbook: Fundamentals and Applications in Contactless Smart Cards, Radio Frequency Identification and Near-Field Communication; Wiley-Blackwell: Hoboken, NJ, USA, 2010. [Google Scholar]
- Karmakar, N.C.; Kalansuriya, P.; Azim, R.E.; Koswatta, R. Chipless Radio Frequency Identification Reader Signal Processing; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016. [Google Scholar]
- Hunt, V.D.; Puglia, A.; Puglia, M. RFID: A Guide to Radio Frequency Identification; Wiley-Interscience: Hoboken, NJ, USA, 2007. [Google Scholar]
- Karmakar, N.C.; Zomorrodi, M.; Divarathne, C. Advanced Chipless RFID; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016. [Google Scholar]
- Preradovic, S.; Karmakar, N. Multiresonator-Based Chipless RFID: Barcode of the Future; Springer: New York, NY, USA, 2012. [Google Scholar]
- Karmakar, N.C.; Amin, E.M.; Saha, J.K. Chipless RFID Reader Architecture; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013. [Google Scholar]
- Schussler, M.; Mandel, C.; Maasch, M.; Giere, A.; Jakoby, R. Phase modulation scheme for chipless RFID- and wireless sensor tags. In Proceedings of the 2009 Asia Pacific Microwave Conference, Singapore, 7–10 December 2009; IEEE: Singapore, 2009; pp. 229–232. [Google Scholar]
- Nysen, P.A.; Skeie, H.; Armstrong, D. System for Interrogating a Passive Transponder Carrying Phase-Encoded Information. U.S. Patent No. 4,725,841, 16 February 1988. [Google Scholar]
- Hartmann, C.S. A global SAW ID tag with large data capacity. In Proceedings of the Proceedings 2002 IEEE Ultrasonics Symposium, Munich, Germany, 8–11 October 2002; IEEE: Munich, Germany, 2002; Volume 1, pp. 65–69. [Google Scholar]
- Saldanha, N.; Malocha, D.C. Design parameters for SAW multi-tone frequency coded reflectors. In Proceedings of the IEEE Ultrasonics Symposium, New York, NY, USA, 28–31 October 2007; pp. 2087–2090. [Google Scholar]
- Härmä, S.; Plessky, V.P.; Hartmann, C.S.; Steichen, W. Z-path SAW RFID tag. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2008, 55, 208–212. [Google Scholar] [CrossRef]
- Han, T.; Wang, W.; Wu, H.; Shui, Y. Reflection and scattering characteristics of reflectors in SAW tags. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2008, 55, 1387–1390. [Google Scholar] [CrossRef] [PubMed]
- Härmä, S.; Plessky, V.P.; Li, X.; Hartogh, P. Feasibility of ultra-wideband SAW RFID tags meeting FCC rules. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2009, 56, 812–820. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, C.; Hartmann, P.; Brown, P.; Bellamy, J.; Claiborne, L.; Bonner, W. Anti-collision methods for Global SAW RFID Tag systems. In Proceedings of the IEEE Ultrasonics Symposium, Montreal, QC, Canada, 23–27 August 2004; Volume 2, pp. 805–808. [Google Scholar]
- Zhang, L.; Rodriguez, S.; Tenhunen, H.; Zheng, L.-R. An innovative fully printable RFID technology based on high speed time-domain reflections. In Proceedings of the Conference on High Density Microsystem Design and Packaging and Component Failure Analysis, 2006 (HDP’06), Shanghai, China, 27–28 June 2006; pp. 166–170. [Google Scholar]
- Zheng, L.; Rodriguez, S.; Zhang, L.; Shao, B.; Zheng, L.-R. Design and implementation of a fully reconfigurable chipless RFID tag using Inkjet printing technology. In Proceedings of the 2008 IEEE International Symposium on Circuits and Systems, Seattle, WA, USA, 18–21 May 2008; pp. 1524–1527. [Google Scholar]
- Shao, B.; Chen, Q.; Amin, Y.; Mendoza, D.S.; Liu, R.; Zheng, L.R. An ultra-low-cost RFID tag with 1.67 Gbps data rate by ink-jet printing on paper substrate. In Proceedings of the 2010 IEEE Asian Solid-State Circuits Conference, A-SSCC 2010, Beijing, China, 8–10 November 2010. [Google Scholar]
- Chamarti, A.; Varahramyan, K. Transmission delay line based ID generation circuit for RFID applications. IEEE Microw. Compon. Lett. 2006, 16, 588–590. [Google Scholar] [CrossRef]
- Vemagiri, J.; Chamarti, A.; Agarwal, M.; Varahramyan, K. Transmission line delay-based radio frequency identification (RFID) tag. Microw. Opt. Technol. Lett. 2007, 49, 1900–1904. [Google Scholar] [CrossRef]
- Herraiz-Martínez, F.J.; Paredes, F.; Zamora, G.; Martín, F.; Bonache, J. Printed magnetoinductive-wave (MIW) delay lines for chipless RFID applications. IEEE Trans. Antennas Propag. 2012, 60, 5075–5082. [Google Scholar] [CrossRef]
- Javier, F.; Martínez, H.; Paredes, F.; Zamora, G.; Martín, F. Chipless RFID Tags and Wireless Sensors Based on Planar Magnetoinductive-Wave (MIW) Delay Lines. In Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation, Chicago, IL, USA, 8–14 July 2012. [Google Scholar] [CrossRef]
- Martinez-Martinez, J.J.; Herraiz-Martinez, F.J.; Galindo-Romera, G. A contactless RFID system based on chipless MIW tags. IEEE Trans. Antennas Propag. 2018, 66, 5064–5071. [Google Scholar] [CrossRef]
- Shamonina, E.; Kalinin, V.A.; Ringhofer, K.H.; Solymar, L. Magneto-inductive waveguide. Electron. Lett. 2002, 38, 371. [Google Scholar] [CrossRef]
- Syms, R.R.A.; Floume, T.; Solymar, L.; Young, I.R. Parametric Amplification of Magneto-Inductive Waves. In Nonlinear, Tunable and Active Metamaterials; Shadrivov, I.V., Lapine, M., Kivshar, Y.S., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 35–38. ISBN 978-3-319-08386-5. [Google Scholar]
- Gupta, S.; Nikfal, B.; Caloz, C. RFID system based on pulse-position modulation using group delay engineered microwave C-sections. In Proceedings of the 2010 Asia-Pacific Microwave Conference, Yokohama, Japan, 7–10 December 2010; pp. 203–206. [Google Scholar]
- Nair, R.; Perret, E.; Tedjini, S. Chipless RFID based on group delay encoding. In Proceedings of the 2011 IEEE International Conference on RFID-Technologies and Applications, Sitges, Spain, 15–16 September 2011; Volume 1, pp. 214–218. [Google Scholar]
- Cristal, E.G. Analysis and exact synthesis of cascaded commensurate transmission-line C-Section all-pass networks. IEEE Trans. Microw. Theory Tech. 1966, 14, 285–291. [Google Scholar] [CrossRef]
- Forouzandeh, M.; Karmakar, N.C. Chipless RFID tags and sensors: A review on time-domain techniques. Wirel. Power Transf. 2015, 2, 62–77. [Google Scholar] [CrossRef]
- Gupta, S.; Nikfal, B.; Caloz, C. Chipless RFID system based on group delay engineered dispersive delay structures. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 1366–1368. [Google Scholar] [CrossRef]
- Nair, R.; Perret, E.; Tedjini, S. Temporal multi-frequency encoding technique for chipless RFID applications. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest, Montreal, QC, Canada, 17–22 June 2012; pp. 1–3. [Google Scholar]
- Nair, R.S.; Perret, E.; Tedjini, S. Group delay modulation for pulse position coding based on periodically coupled C-sections. Ann. Telecommun. 2013, 68, 447–457. [Google Scholar] [CrossRef]
- Mandel, C.; Schussler, M.; Maasch, M.; Jakoby, R. A novel passive phase modulator based on LH delay lines for chipless microwave RFID applications. In Proceedings of the 2009 IEEE MTT-S International Microwave Workshop on Wireless Sensing, Local Positioning, and RFID, Cavtat, Croatia, 24–25 September 2009; pp. 1–4. [Google Scholar]
- Jimenez-Saez, A.; Schussler, M.; Nickel, M.; Jakoby, R. Hybrid Time-Frequency Modulation Scheme for Chipless Wireless Identification and Sensing. IEEE Sens. J. 2018, 18, 7850–7859. [Google Scholar] [CrossRef]
- Schüßler, M.; Damm, C.; Maasch, M.; Jakoby, R. Performance evaluation of left-handed delay lines for RFID backscatter applications. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest, Atlanta, GA, USA, 15–20 June 2008; pp. 177–180. [Google Scholar]
- Herrojo, C.; Mata-Contreras, J.; Paredes, F.; Martin, F. Near-field chipless RFID encoders with sequential bit reading and high data capacity. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest, Honololu, HI, USA, 4–9 June 2017. [Google Scholar]
- Herrojo, C.; Mata-Contreras, J.; Paredes, F.; Martín, F. Microwave Encoders for Chipless RFID and Angular Velocity Sensors Based on S-Shaped Split Ring Resonators. IEEE Sens. J. 2017, 17, 4805–4813. [Google Scholar] [CrossRef] [Green Version]
- Herrojo, C.; Mata-Contreras, J.; Nunez, A.; Paredes, F.; Ramon, E.; Martin, F. Near-Field Chipless-RFID System with High Data Capacity for Security and Authentication Applications. IEEE Trans. Microw. Theory Tech. 2017, 65, 5298–5308. [Google Scholar] [CrossRef]
- Herrojo, C.; Mata-Contreras, J.; Paredes, F.; Núñez, A.; Ramon, E.; Martín, F. Near-field chipless-RFID tags with sequential bit reading implemented in plastic substrates. J. Magn. Magn. Mater. 2017, 459, 322–327. [Google Scholar] [CrossRef]
- Herrojo, Cristian; Mata-Contreras, Javier; Paredes, Ferran; Martín, Ferran High data density and capacity in chipless radiofrequency identification (chipless-RFID) tags based on double-chains of S-shaped split ring resonators (S-SRRs). EPJ Appl. Metamat. 2017, 4, 8. [CrossRef]
- Herrojo, C.; Mata-Contreras, J.; Paredes, F.; Nunez, A.; Ramon, E.; Martin, F. Near-Field Chipless-RFID System With Erasable/Programmable 40-bit Tags Inkjet Printed on Paper Substrates. IEEE Microw. Wirel. Components Lett. 2018, 28, 272–274. [Google Scholar] [CrossRef]
- Herrojo, C.; Moras, M.; Paredes, F.; Núñez, A.; Mata-Contreras, J.; Ramon, E.; Martín, F. Time-Domain Signature Chipless- RFID tags. IEEE Microw. Mag. Underprocessing.
- Herrojo, C.; Moras, M.; Paredes, F.; Núñez, A.; Ramon, E.; Mata-Contreras, J.; Martín, F. Very Low-Cost 80-Bit Chipless-RFID Tags Inkjet Printed on Ordinary Paper. Technologies 2018, 6, 52. [Google Scholar] [CrossRef]
- Paredes, F.; Herrojo, C.; Mata-Contreras, J.; Moras, M.; Núñez, A.; Ramon, E.; Martín, F. Near-field chipless radio-frequency identification (RFID) sensing and identification system with switching reading. Sensors 2018, 18, 1148. [Google Scholar] [CrossRef]
- Herrojo, C.; Muela, F.; Mata-Contreras, J.; Paredes, F.; Martin, F. High-Density Microwave Encoders for Motion Control and Near-Field Chipless-RFID. IEEE Sens. J. 2019, 19, 3673–3682. [Google Scholar] [CrossRef]
- Havlicek, J.; Herrojo, C.; Paredes, F.; Mata-Contreras, J.; Martin, F. Enhancing the Per-Unit-Length Data Density in Near-Field Chipless-RFID Systems with Sequential Bit Reading. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 89–92. [Google Scholar] [CrossRef]
- Herrojo, C.; Paredes, F.; Martín, F. Double-Stub Loaded Microstrip Line Reader for Very High Data Density Microwave Encoders. Accepted.
- Herrojo, C.; Vélez, P.; Paredes, F.; Mata-contreras, J.; Martín, F. All-dielectric Electromagnetic Encoders based on Permittivity Contrast for Displacement/Velocity Sensors and Chipless-RFID Tags. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest, Boston, MA, USA, 2–7 June 2019; pp. 2–5. [Google Scholar]
- Preradovic, S.; Balbin, I.; Karmakar, N.C.; Swiegers, G. A novel chipless RFID system based on planar multiresonators for barcode replacement. In Proceedings of the 2008 IEEE International Conference on RFID, Las Vegas, NV, USA, 16–17 April 2008; pp. 289–296. [Google Scholar]
- Preradovic, S.; Karmakar, N. Chipless RFID: Bar code of the future. IEEE Microw. Mag. 2010, 11, 87–97. [Google Scholar] [CrossRef]
- Preradovic, S.; Balbin, I.; Karmakar, N.; Swiegers, G.F. Multiresonator-based chipless RFID system for low-cost item tracking. IEEE Trans. Microw. Theory Tech. 2009, 57, 1411–1419. [Google Scholar] [CrossRef]
- Preradovic, S.; Karmakar, N. Design of chipless RFID tag for operation on flexible laminates. IEEE Antennas Wirel. Propag. Lett. 2010, 9, 207–210. [Google Scholar] [CrossRef]
- Bhuiyan, S.; Azad, A.K.M.; Karmakar, N. Dual-band modified complementary split ring resonator (MCSRR) based multi-resonator circuit for chipless RFID Tag. In Proceedings of the IEEE 8th International Conference on Intelligent Sensors, Sensor Networks, Melbourne, Australia, 2–5 April 2013; pp. 277–281. [Google Scholar]
- Girbau, D.; Lorenzo, J.; Lazaro, A.; Ferrater, C.; Villarino, R. Frequency-coded chipless RFID tag based on dual-band resonators. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 126–128. [Google Scholar] [CrossRef]
- Naqui, J.; Durán-Sindreu, M.; Martín, F. Selective mode suppression in coplanar waveguides using metamaterial resonators. Appl. Phys. A Mater. Sci. Process. 2012, 109, 1053–1058. [Google Scholar] [CrossRef]
- Naqui, J.; Durán-Sindreu, M.; Martin, F. Strategies for the implementation of sensors and RF barcodes based on transmission lines loaded with symmetric resonators. In Proceedings of the 2013 Conference Proceedings: 21st International Conference on Applied Electromagnetics and Communications, Dubrovnik, Croatia, 14–16 October 2013. [Google Scholar]
- Preradovic, S. Chipless RFID System for Barcode Replacement; Monash University: Melbourne, Australia, 2010. [Google Scholar]
- Preradovic, S.; Karmakar, N. Chipless RFID tag with integrated sensor. Proc. IEEE Sensors 2010, 1277–1281. [Google Scholar]
- Preradovic, S.; Karmakar, N. 4th generation multiresonator-based chipless RFID tag utilizing spiral EBGs. In Proceedings of the 2010 European Microwave Conference, Paris, France, 27–28 September 2010; pp. 1746–1749. [Google Scholar]
- Jalaly, I.; Robertson, I.D. RF barcodes using multiple frequency bands. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest, Long Beach, CA, USA, 13–17 June 2005; pp. 139–142. [Google Scholar]
- Jalaly, I.; Robertson, I.D. Capacitively-tuned split microstrip resonators for RFID barcodes. In Proceedings of the 2005 European Microwave Conference, Paris, France, 4–6 October 2005; Volume 2, pp. 1161–1164. [Google Scholar]
- Balbin, I.; Karmakar, N.C. Phase-encoded chipless RFID transponder for large scale low cost applications. IEEE Microw. Compon. Lett. 2009, 19, 509–511. [Google Scholar] [CrossRef]
- Nijas, C.M.; Dinesh, R.; Deepak, U.; Rasheed, A.; Mridula, S.; Vasudevan, K.; Mohanan, P. Chipless RFID tag using multiple microstrip open stub resonators. IEEE Trans. Antennas Propag. 2012, 60, 4429–4432. [Google Scholar] [CrossRef]
- Vena, A.; Perret, E.; Tedjini, S. A fully printable Chipless RFID tag with detuning correction technique. IEEE Microw. Compon. Lett. 2012, 22, 209–211. [Google Scholar] [CrossRef]
- Jang, H.S.; Lim, W.G.; Oh, K.S.; Moon, S.M.; Yu, J.W. Design of low-cost chipless system using printable chipless tag with electromagnetic code. IEEE Microw. Compon. Lett. 2010, 20, 640–642. [Google Scholar] [CrossRef]
- McVay, J.; Hoorfar, A.; Engheta, N. Space-filling curve RFID tags. In Proceedings of the 2006 IEEE Radio and Wireless Symposium, San Diego, CA, USA, 17–19 October 2006; pp. 199–202. [Google Scholar]
- Rezaiesarlak, R.; Manteghi, M. Complex-natural-resonance-based design of chipless RFID tag for high-density data. IEEE Trans. Antennas Propag. 2014, 62, 898–904. [Google Scholar] [CrossRef]
- Nijas, C.M.; Suseela, S.; Deepak, U.; Wahid, P.; Mohanan, P. Low cost chipless tag with multi-bit encoding technique. In Proceedings of the IEEE MTT-S International Microwave and RF Conference, New Delhi, India, 14–16 December 2013; pp. 1–4. [Google Scholar]
- Machac, J.; Polivka, M. Influence of mutual coupling on performance of small scatterers for chipless RFID tags. In Proceedings of the 2014 24th International Conference Radioelektronika, Bratislava, Slovakia, 15–16 April 2014. [Google Scholar]
- Machac, J.; Polivka, M.; Svanda, M.; Havlicek, J. Frequency-domain chipless RFID transponders: Improvement the reading response. In Proceedings of the MIKON 2018—22nd International Microwave and Radar Conference, Poznan, Poland, 14–17 May 2018; pp. 704–707. [Google Scholar]
- Svanda, M.; Machac, J.; Polivka, M.; Havlicek, J. A comparison of two ways to reducing the mutual coupling of chipless RFID tag scatterers. In Proceedings of the 2016 21st International Conference on Microwave, Radar and Wireless Communications, MIKON 2016, Krakow, Poland, 9–11 May 2016; pp. 2–5. [Google Scholar]
- Svanda, M.; Havlicek, J.; Machac, J.; Polivka, M. Polarisation independent chipless RFID tag based on circular arrangement of dual-spiral capacitively-loaded dipoles with robust RCS response. IET Microw. Antennas Propag. 2018, 12, 2167–2171. [Google Scholar] [CrossRef]
- Polivka, M.; Svanda, M.; Havlicek, J.; Machac, J. Semi-Platform Tolerant 20-bit Chipless RFID Tag Composed of Dipole Array Closely Coupled to Plate. In Proceedings of the 12th European Conference on Antennas and Propagation (EuCAP 2018), London, UK, 9–13 April 2018; p. 123. [Google Scholar]
- Wang, L.; Liu, T.; Siden, J.; Wang, G. Design of Chipless RFID Tag by Using Miniaturized Open-Loop Resonators. IEEE Trans. Antennas Propag. 2018, 66, 618–626. [Google Scholar] [CrossRef]
- Vena, A.; Perret, E.; Tedjini, S. High-capacity chipless RFID tag insensitive to the polarization. IEEE Trans. Antennas Propag. 2012, 60, 4509–4515. [Google Scholar] [CrossRef]
- Vena, A.; Perret, E.; Tedjini, S. Design of compact and auto-compensated single-layer chipless RFID tag. IEEE Trans. Microw. Theory Tech. 2012, 60, 2913–2924. [Google Scholar] [CrossRef]
- Khaliel, M.; El-Awamry, A.; Fawky, A.; El-Hadidy, M.; Kaiser, T. A novel co/cross-polarizing chipless RFID tags for high coding capacity and robust detection. In Proceedings of the 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Vancouver, BC, Canada, 19–24 July 2015; pp. 159–160. [Google Scholar]
- Chen, Y.S.; Jiang, T.Y.; Lai, F.P. Automatic Topology Generation of 21 Bit Chipless Radio Frequency Identification Tags Using a Noniterative Technique. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 293–297. [Google Scholar] [CrossRef]
- Chen, Y.-S.; Jiang, T.-Y.; Lai, F.-P. Design rule development for frequency-coded chipless radiofrequency identification with high capacity. IET Microw. Antennas Propag. 2019, 1255–1261. [Google Scholar] [CrossRef]
- Ni, Y.; Huang, X.; Lv, Y.; Cheng, C. Hybrid coding chipless tag based on impedance loading. IET Microw. Antennas Propag. 2017, 11, 1325–1331. [Google Scholar] [CrossRef]
- Herrojo, C.; Paredes, F.; Mata-Contreras, J.; Zuffanelli, S.; Martin, F. Multistate Multiresonator Spectral Signature Barcodes Implemented by Means of S-Shaped Split Ring Resonators (S-SRRs). IEEE Trans. Microw. Theory Tech. 2017, 65. [Google Scholar] [CrossRef]
- Rance, O.; Siragusa, R.; Lemaitre-Auger, P.; Perret, E. RCS magnitude coding for chipless RFID based on depolarizing tag. In Proceedings of the 2015 IEEE MTT-S International Microwave Symposium, Phoenix, AZ, USA, 17–22 May 2015; pp. 2–5. [Google Scholar]
- Vena, A.; Babar, A.A.; Sydanheimo, L.; Tentzeris, M.M.; Ukkonen, L. A novel near-transparent ask-reconfigurable inkjet-printed chipless RFID tag. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 753–756. [Google Scholar] [CrossRef]
- Rance, O.; Siragusa, R.; Lemaitre-Auger, P.; Perret, E. Toward RCS magnitude level coding for chipless RFID. IEEE Trans. Microw. Theory Tech. 2016, 64, 2315–2325. [Google Scholar] [CrossRef]
- Vena, A.; Perret, E.; Tedjini, S. Chipless RFID tag using hybrid coding technique. IEEE Trans. Microw. Theory Tech. 2011, 59, 3356–3364. [Google Scholar] [CrossRef]
- El-Awamry, A.; Khaliel, M.; Fawky, A.; El-Hadidy, M.; Kaiser, T. Novel notch modulation algorithm for enhancing the chipless RFID tags coding capacity. In Proceedings of the 2015 IEEE International Conference on RFID, San Diego, CA, USA, 15–17 April 2015; pp. 25–31. [Google Scholar]
- Islam, M.A.; Karmakar, N.C. Compact printable chipless RFID systems. IEEE Trans. Microw. Theory Tech. 2015, 63, 3785–3793. [Google Scholar] [CrossRef]
- Islam, M.A.; Karmakar, N. A novel compact printable dual-polarized chipless RFID system. IEEE Trans. Microw. Theory Tech. 2012, 60, 2142–2151. [Google Scholar] [CrossRef]
- Vena, A.; Perret, E.; Tedjini, S. A compact chipless RFID tag using polarization diversity for encoding and sensing. In Proceedings of the 2012 IEEE International Conference on RFID, RFID 2012, Orlando, FL, USA, 3–5 April 2012; pp. 191–197. [Google Scholar]
- Babaeian, F.; Karmakar, N.C. Hybrid chipless RFID Tags- A pathway to EPC global standard. IEEE Access 2018, 6, 67415–67426. [Google Scholar] [CrossRef]
Ref./Year | BW (GHz) | Bits | Area (cm2) | DPF (bit/GHz) | DPS (bit/cm2) | DPS (bits/λg2) | RR (cm) |
---|---|---|---|---|---|---|---|
Time Domain (Pulsed Interrogation Signal) | |||||||
[21]/2006 | --- | 4 | --- | --- | --- | --- | --- |
[22]/2008 | --- | 8 | --- | --- | --- | --- | --- |
[24]/2006 | --- | 4 | 59.4 | --- | 0.07 | --- | --- |
[26]/2012 | 0.05 ** | 2 | --- | 40 | --- | --- | --- |
[32]/2011 | --- | 2 | 8.75 | --- | 0.23 | --- | --- |
[36]/2012 | --- | 2 | 70.0 | --- | 0.03 | --- | --- |
[38]/2009 | 0.8 ** | 5 | 26 | 6.25 | 0.19 | --- | --- |
Time Domain (Harmonic Interrogation Signal) | |||||||
[48]/2018 | * | 80 | 9.44 | * | 8.47 | 153.3 | 0.025 |
[42]/2017 | * | 40 | 5.40 | * | 7.40 | 117.3 | 0.05 |
[52]/2019 | * | 100 | 3.84 | * | 26.04 | 412.6 | 0.05 |
Frequency Domain | |||||||
[56]/2009 | 3.1–10.6 | 35 | 57.2 | 8.97 | 0.61 | 4.790 | 5 |
[65]/2005 | 5–6 | 5 | 6.48 | 11.1 | 0.77 | 10.43 | 150 |
[76]/2016 | 1.9–3.1 | 20 | 17.5 | 16.7 | 1.14 | 48.69 | 20 |
[69]/2012 | 2–4 | 20 | 17.5 | 10.0 | 1.14 | 24.84 | 50 |
[71]/2006 | 0.7–0.9 | 5 | 50.1 | 25.0 | 0.10 | 60.23 | 30 |
[72]/2014 | 3.1–10.6 | 24 | 5.76 | 3.20 | 4.17 | 36.33 | 60 |
[81]/2012 | 2–5.5 | 9 | 3.00 | 2.57 | 3.00 | 41.74 | 65 |
Hybrid | |||||||
[89]/2016 | 2–5 | 9 | 7.20 | 3.00 | 1.25 | 18.01 | 60 |
[86]/2017 | 2–3 | 16 | 6.75 | 16.0 | 2.37 | 96.15 | *** |
[90]/2011 | 2.5–7.5 | 22.9 | 8.00 | 4.58 | 2.86 | 22.40 | 45 |
[93]/2012 | 3.2–9.6 | 64 | 10.9 | 10.0 | 5.88 | 52.66 | 5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrojo, C.; Paredes, F.; Mata-Contreras, J.; Martín, F. Chipless-RFID: A Review and Recent Developments. Sensors 2019, 19, 3385. https://doi.org/10.3390/s19153385
Herrojo C, Paredes F, Mata-Contreras J, Martín F. Chipless-RFID: A Review and Recent Developments. Sensors. 2019; 19(15):3385. https://doi.org/10.3390/s19153385
Chicago/Turabian StyleHerrojo, Cristian, Ferran Paredes, Javier Mata-Contreras, and Ferran Martín. 2019. "Chipless-RFID: A Review and Recent Developments" Sensors 19, no. 15: 3385. https://doi.org/10.3390/s19153385