M-ary Cyclic Shift Keying Spread Spectrum Underwater Acoustic Communications Based on Virtual Time-Reversal Mirror
Abstract
:1. Introduction
2. MCSK Communication Technique
2.1. Principle of MCSK
2.2. Performance Analysis
3. TRM Technique
3.1. Theory of TRM
3.2. Influence of Multipath Structure on TRM
3.3. Virtual Time-Reversal Mirror
Algorithm 1: Algorithm of VTRM. |
1: Input: The received signal 2: Intercept the detection sequence and the information sequence from the received signal which passes through the UWA channel. |
3: Use the detection sequence to estimate the UWA channel with an appropriate method. 4: Make time-reversal of the estimated channel. 5: Make the convolution of the information sequence with the estimated time-reversal channel. 6: Output: The information signal after VTRM |
3.4. Methods of Channel Estimation in VTRM
3.4.1. MP Algorithm
3.4.2. BPDN Algorithm
4. Analysis of the MCSK–VTRM System
4.1. Simulations
4.2. Experiments
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yao, J.L.; Sun, Y.Z.; Ren, H.P.; Grebogi, C. Experimental Wireless Communication Using Chaotic Baseband Waveform. IEEE Trans. Veh. Techn. 2019, 68, 578–591. [Google Scholar] [CrossRef]
- Stojanovic, M.; Preisig, J. Underwater Acoustic Communication Channels: Propagation Models and Statistical Characterization. IEEE Commun. Mag. 2009, 47, 84–89. [Google Scholar] [CrossRef]
- Stojanovic, M. On the Relationship Between Capacity and Distance in an Underwater Acoustic Channel. Acm Sigmob. Mob. Comput. Commun. Rev. 2007, 11, 34–43. [Google Scholar] [CrossRef]
- Rice, J.; Green, D. Underwater Acoustic Communications and Networks for the US Navy’s Seaweb Program. In Proceedings of the International Conference on Sensor Technologies & Applications, Cap Esterel, France, 25–31 August 2008; pp. 715–722. [Google Scholar]
- Bai, C.; Ren, H.P.; Baptista, M.S.; Grebogi, C. Digital Underwater Communication with Chaos. Commun. Nonlinear Sci. Numer. Simul. 2019, 73, 14–24. [Google Scholar] [CrossRef]
- Jiang, W.H.; Tong, F.; Wang, B.; Liu, S.G. Modulation Recognition Method of Non-Cooperation Underwater Acoustic Communication Signals Using Principal Component Analysis. Appl. Acoust. 2018, 138, 209–215. [Google Scholar] [CrossRef]
- Wang, W.; Su, N.; Liu, J. Channel Estimation and Compensation for Underwater Acoustic Pipeline Communication. J. Beijing Inst. Technol. 2017, 26, 252–258. [Google Scholar]
- Stojanovic, M.; Proarkis, J.G.; Rice, J.A.; Green, M.D. Spread Spectrum Underwater Acoustic Telemetry. In Proceedings of the IEEE Oceanic Engineering Society OCEANS’98 Conference Proceedings, Nice, France, 28 September–1 October 1998; pp. 650–654. [Google Scholar]
- Yang, S.; Guo, Z.; Ren, Q.; Guo, S. A Covert Underwater Acoustic Communication Method Based on Spread Spectrum Digital Watermarking. J. Acoust. Soc. Am. 2016, 140, 3230. [Google Scholar] [CrossRef]
- Pickholtz, R.L.; Schilling, D.L.; Milstein, L.B. Theory of Spread-Spectrum Communications—A Tutorial. IEEE Trans. Commun. 1982, 30, 855–884. [Google Scholar] [CrossRef]
- Zhou, F. The Study of the Key Technologies for Underwater Acoustic Spread-Spectrum Communication. Ph.D. Thesis, Harbin Engineering University, Harbin, China, 1 December 2011; pp. 10–13. [Google Scholar]
- Deshmukh, S.; Bhosle, U. Performance Evaluation of Spread Spectrum System Using Different Modulation Schemes. Procedia Comput. Sci. 2016, 85, 176–182. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Zhou, F.; Qiao, G. Orthogonal M-ary Code Shift Keying Spread Spectrum Underwater Acoustic Communication. Chin. J. Acoust. 2014, 62, 279–288. [Google Scholar]
- Yang, W.B.; Yang, T.C. High-Frequency Channel Characterization for M-ary Frequency-Shift-Keying Underwater Acoustic Communications. J. Acoust. Soc. Am. 2006, 120, 2615. [Google Scholar] [CrossRef]
- Zhang, G.; He, X.; Liu, J. A novel M-ary Differential Underwater Acoustic Direct Sequence Spread Spectrum Communication System. In Proceedings of the 11th ACM International Conference on Underwater Networks & Systems, Shanghai, China, 24–26 October 2016. [Google Scholar]
- Fink, M.; Prada, C.; Wu, F.; Cassereau, D. Self-focusing in Inhomogeneous Media with Time Reversal Acoustic Mirrors. In Proceedings of the IEEE Ultrasonics Symposium, Montreal, QC, Canada, 3–6 October 1989; pp. 681–686. [Google Scholar]
- Yu, Y.; Zhou, F.; Qiao, G. M-ary Code Shift Keying Spred Spectrum Underwater Acoustic Communication. Acta Phys. Sin. 2012, 61, 287–293. [Google Scholar]
- Yin, Y.; Zhou, F.; Qiao, G.; Liu, S.; Yu, Y. Burst Mode Hybrid Spread Spectrum Technology for Covert Acoustic Communication. In Proceedings of the 2013 OCEANS, San Diego, CA, USA, 23–27 September 2013; pp. 1–8. [Google Scholar]
- Cao, X.L.; Jiang, W.h.; Tong, F. Time Reversal MFSK Acoustic Communication in Underwater Channel with Large Multipath Spread. Ocean Eng. 2018, 152, 203–209. [Google Scholar] [CrossRef]
- He, C.; Jing, L.; Xi, R.; Li, Q.; Zhang, Q. Improving Passive Time Reversal Underwater Acoustic Communications Using Subarray Processing. Sensors 2017, 17, 937. [Google Scholar] [Green Version]
- Luan, Y.; Yan, S.; Ye, Q.; Xu, L. Doppler estimation using time reversal mirror for underwater acoustic time-varying multipath channel. In Proceedings of the IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Xiamen, China, 22–25 October 2017; pp. 1–9. [Google Scholar]
- Yuan, F.; Wei, Q.; Cheng, E. Joint Virtual Time Reversal Communications with an Orthogonal Chirp Spread Spectrum over Underwater Acoustic Channel. Appl. Acoust. 2016, 117, 122–131. [Google Scholar] [CrossRef]
- Khosla, S.R. Time-reversing Array Retrofocusing in Simple Dynamic Underwater Environments. J. Acoust. Soc. Am. 1998, 104, 3339–3350. [Google Scholar] [CrossRef]
- Yin, Y.; Qiao, G.; Liu, S. Underwater Acoustic OFDM Channel Equalization Based on Virtual Time Reversal Mirror. J. Commun. 2015, 36, 90–99. [Google Scholar]
- Bruckstein, A.M.; Donoho, D.L.; Elad, M. From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images. SIAM Rev. 2009, 51, 34–81. [Google Scholar] [CrossRef] [Green Version]
- Mallat, S.G.; Zhang, Z. Matching Pursuits with Time-frequency Dictionaries. IEEE Trans. Signal Process. 1993, 41, 3397–3415. [Google Scholar] [CrossRef]
- Chen, S.; Saunders, M.A.; Donoho, D.L. Atomic Decomposition by Basis Pursuit. Siam Rev. 2001, 43, 129–159. [Google Scholar] [CrossRef] [Green Version]
- Wright, S.J.; Nowak, R.D.; Figueiredo, M.A.T. Sparse Reconstruction by Separable Approximation. IEEE Trans. Signal Process. 2009, 57, 2479–2493. [Google Scholar] [CrossRef]
Communication System | Communication Rate |
---|---|
DSSS | 133.3 bps |
M-ary | 266.7 bps |
CSK | 399.0 bps |
MCSK | 665.0 bps |
Communication System | Communication Rate | The Length of Spread Spectrum Sequences |
---|---|---|
DSSS | 285.7 bps | 7 |
M-ary | 266.7 bps | 15 |
CSK | 258.1 bps | 31 |
MCSK | 253.9 bps | 63 |
Parameter Name | Value and Unit |
---|---|
sampling rate | 48 kHz |
carrier frequency | 10 kHz |
communication bandwidth | 4 kHz |
the length of spread spectrum sequences | 15 |
Communication System | Communication Rate | BER |
---|---|---|
DSSS | 133.3 bps | |
MCSK | 665 bps | |
MCSK-VTRM | 665 bps |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, F.; Liu, B.; Nie, D.; Yang, G.; Zhang, W.; Ma, D. M-ary Cyclic Shift Keying Spread Spectrum Underwater Acoustic Communications Based on Virtual Time-Reversal Mirror. Sensors 2019, 19, 3577. https://doi.org/10.3390/s19163577
Zhou F, Liu B, Nie D, Yang G, Zhang W, Ma D. M-ary Cyclic Shift Keying Spread Spectrum Underwater Acoustic Communications Based on Virtual Time-Reversal Mirror. Sensors. 2019; 19(16):3577. https://doi.org/10.3390/s19163577
Chicago/Turabian StyleZhou, Feng, Bing Liu, Donghu Nie, Guang Yang, Wenbo Zhang, and Dongdong Ma. 2019. "M-ary Cyclic Shift Keying Spread Spectrum Underwater Acoustic Communications Based on Virtual Time-Reversal Mirror" Sensors 19, no. 16: 3577. https://doi.org/10.3390/s19163577
APA StyleZhou, F., Liu, B., Nie, D., Yang, G., Zhang, W., & Ma, D. (2019). M-ary Cyclic Shift Keying Spread Spectrum Underwater Acoustic Communications Based on Virtual Time-Reversal Mirror. Sensors, 19(16), 3577. https://doi.org/10.3390/s19163577