A Semi-Automatic Coupling Geophone for Tunnel Seismic Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Semi-Automatic Coupling Geophone
2.1.1. Piezoelectric Sensors
2.1.2. The Semi-Automatic Coupling Geophone
2.2. Field Comparison Experiment
2.3. Seismic Data Processing Combined with Forward Modeling
2.3.1. Numerical Calculation
2.3.2. Field Data Processing
3. Results and Discussion
3.1. Comparison Test between the Piezoelectric Sensor and the Electromagnetic Coiled Sensor
3.2. Field Comparison Experiment
3.3. Forward Modeling
3.4. Field Data Processing
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Du, B.; Du, Y.; Xu, F.; He, P. Conception and Exploration of Using Data as a Service in Tunnel Construction with the NATM. Engineering 2018, 4, 123–130. [Google Scholar] [CrossRef]
- Wang, G.; Yuan, M.; Ma, X.; Wu, J. Numberical study on the seismic response of the underground subway station-surrounding soil mass-ground adjacent building system. Front. Struct. Civ. Eng. 2017, 11, 424–435. [Google Scholar] [CrossRef]
- Li, S.; Nie, L.; Liu, B. The Practice of Forward Prospecting of Adverse Geology Applied to Hard Rock TBM Tunnel Construction: The Case of the Songhua River Water Conveyance Project in the Middle of Jilin Province. Engineering 2018, 4, 131–137. [Google Scholar] [CrossRef]
- Zhang, J.; Yuan, Y.; Yu, H. Shaking table tests on discrepant responses of shaft-tunnel junction in soft soil under transverse excitations. Soil Dyn. Earthq. Eng. 2019, 120, 345–359. [Google Scholar] [CrossRef]
- Zhao, H.; Yuan, Y.; Ye, Z.; Yu, H.; Zhang, Z. Response characteristics of an atrium subway station subjected to bidirectional ground shaking. Soil Dyn. Earthq. Eng. 2019, 125, 105737. [Google Scholar] [CrossRef]
- Zakian, P. An efficient stochastic dynamic analysis of soil media using radial basis function artificial neural network. Front. Struct. Civ. Eng. 2017, 11, 470–479. [Google Scholar] [CrossRef]
- Li, S.C.; Liu, B.; Sun, H.F.; Nie, L.C.; Zhong, S.H.; Su, M.X.; Li, X.; Xu, Z.H. State of art and trends of advanced geological prediction in tunnel construction. Chin. J. Rock Mech. Eng. 2014, 6, 1090–1113. [Google Scholar]
- Alimoradi, A.; Moradzadeh, A.; Naderi, R.; Salehi, M.Z.; Etemadi, A. Prediction of geological hazardous zones in front of a tunnel face using TSP-203 and artificial neural networks. Tunn. Undergr. Space Technol. 2008, 23, 711–717. [Google Scholar] [CrossRef]
- Zhao, Y.; Jiang, H.; Zhao, X. Tunnel seismic tomography method for geological prediction and its application. Appl. Geophys. 2006, 32, 69–74. [Google Scholar] [CrossRef]
- Cheng, F.; Liu, J.; Qu, N.; Mao, M.; Zhou, L. Two-dimensional pre-stack reverse time imaging based on tunnel space. J. Appl. Geophys. 2014, 104, 106–113. [Google Scholar] [CrossRef]
- Li, S.; Li, S.; Zhang, Q.; Xue, Y.; Liu, B.; Su, M.; Wang, Z.; Wang, S. Predicting geological hazards during tunnel construction. J. Rock Mech. Geotech. Eng. 2010, 2, 232–242. [Google Scholar] [CrossRef] [Green Version]
- Tzavaras, J.; Buske, S.; Groß, K.; Shapiro, S. Three-dimensional seismic imaging of tunnels. Int. J. Rock Mech. Min. Sci. 2012, 29, 12–20. [Google Scholar] [CrossRef]
- Li, S.; Liu, B.; Xu, X.; Nie, L.; Liu, Z.; Song, J.; Sun, H.; Chen, L.; Fan, K. An overview of ahead geological prospecting in tunneling. Tunn. Undergr. Space Technol. 2017, 63, 69–94. [Google Scholar] [CrossRef]
- Zhou, H.W.; Hu, H.; Zou, Z.; Wo, Y.; Youn, O. Reverse time migration: A prospect of seismic imaging methodology. Earth Sci. Rev. 2018, 179, 202–207. [Google Scholar] [CrossRef]
- Wei, J. Seismic velocity description: Velocity or acceleration. Oil Geophys. Prospect. 2019, 54, 243–253. [Google Scholar]
- David, N.S.; Larry, D.B.; James, H.K.; David, J.B. Comparison of explosive and vibroseis source energy penetration during COCORP deep seismic reflection profiling in the Williston Basin. Geophysics 1996, 61, 211–221. [Google Scholar]
- Wang, X.; Zhang, M.; Yang, L.; Chen, Y.; Zhang, J. Shooting Charge Selection in Carbonate Outcropped Area Based on Numerical Simulation of Explosive Source. In Proceedings of the CPS/SEG Beijing 2014 International Geophysical Conference, Beijing, China, 21–24 April 2014. [Google Scholar]
- Jidong, W. Comparing the MEMS accelerometer and analog geophone. Lead. Edge 2013, 10, 1206–1210. [Google Scholar]
- Lee, M.K.; Han, S.H.; Park, K.H.; Park, J.J.; Kim, W.W.; Hwang, W.J.; Lee, G.J. Design Optimization of Bulk Piezoelectric Acceleration Sensor for Enhanced Performance. Sensors 2019, 19, 3360. [Google Scholar] [CrossRef]
- Kabir, M.; Kazari, H.; Ozevin, D. Piezoelectric MEMS acoustic emission sensors. Sens. Actuators A Phsical. 2018, 279, 53–64. [Google Scholar] [CrossRef]
- Huo, L.; Cheng, H.; Kong, Q.; Chen, X. Bond-Slip Monitoring of Concrete Structures Using Smart Sensors—A Review. Sensors 2019, 19, 1231. [Google Scholar] [CrossRef]
- Huan, X.; Zhang, W.; Liu, Y.; Yu, W.; Li, W. The Seismic Adaptability Discussion by Different Sorts of Geophone in Marine Facies of West Sichuan Province Area. In Proceedings of the CPS/SEG Beijing 2014 International Geophysical Conference, Beijing, China, 21–24 April 2014. [Google Scholar]
- Yuan, S.; Chen, J.; Wang, Z.; Zhang, F.; Wu, L. The feasibility analyse of digital geophone for exploration of tight oil in marl reservoirs. In Proceedings of the CPS/SEG Beijing 2014 International Geophysical Conference, Beijing, China, 21–24 April 2014. [Google Scholar]
- Shang, X.M.; Liu, L.; Guan, J.; Zhu, J.; De Zhang, G. Development and application of single-point land piezoelectric sensor. In Proceedings of the SEG International Exposition and 86th Annual Meeting, Dallas, TX, USA, 16–21 October 2016. [Google Scholar]
- Daley, T.M.; Majer, E.L.; Peterson, J.E. Crosswell seismic imaging in a contaminated basalt aquifer. Geophysics 2004, 69, 16–24. [Google Scholar] [CrossRef]
- Balogh, W.T.; Owen, T.E.; Harris, J.M. New Piezoelectric Transducer for Hole-to-Hole Seismic Applications. In Proceedings of the SEG International Exposition and 75th Annual Meeting, Huston, TX, USA, 6–11 November 2005. [Google Scholar]
- Inazaki, T.; Lei, X. High-Frequency Seismic Measurements Using a Pizoelectric Type Accelerometer Array. In Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems, Philadelphia, PA, USA, 6–10 April 2008. [Google Scholar]
- Zhang, J.; Liu, S.; Wang, B.; Yang, H. Response of triaxial velocity and acceleration geophones to channel waves in a 1-m thick coal seam. J. Appl. Geophys. 2019, 166, 112–121. [Google Scholar] [CrossRef]
- Christine, E.K. Geophone ground, coupling. Lead. Edge 1985, 4, 56–60. [Google Scholar]
- Christine, E.K. Geophone ground coupling. Geophysics 1984, 49, 722–731. [Google Scholar]
- Liu, Y. Comparison and Contrast between TGP206 and TSP203 Advance Geology Prediction System: Advantages of TGP206. Tunn. Constr. 2014, 34, 198–204. [Google Scholar]
- Yokota, Y.; Yamamoto, T.; Shirasagi, S.; Koizumi, Y.; Descour, J.; Kohlhaas, M. Evaluation of geological conditions ahead of TBM tunnel using wireless seimic reflector tracing system. Tunn. Undergr. Space Technol. 2016, 57, 85–90. [Google Scholar] [CrossRef]
- Wang, Y.; Fu, N.; Lu, X.; Fu, Z. Application of a new geophone and geometry in tunnel seismic detection. Sensors 2019, 19, 1246. [Google Scholar] [CrossRef]
- Dong, L.; Ma, Z.; Cao, J.; Wang, H.; Geng, J.; Lei, B.; Xu, S. A staggered-grid high-order difference method of one-order elastic wave equation. Chin. J. Geophys. 2000, 43, 411–419. [Google Scholar]
- Dong, L.; Ma, Z.; Cao, J. A study on stability of the staggered-grid high-order difference method of first-order elastic wave equation. Chin. J. Geophys. 2000, 43, 856–864. [Google Scholar]
- Li, H.; Zhu, P.; Ji, G.; Zhang, Q. Modified image algorithm to simulate seismic channel waves in 3D tunnel model with rugged free surface. Geophys. Prospect. 2016, 64, 1259–1274. [Google Scholar] [CrossRef]
- Zhao, Y. Engineering Geophysics in China—The TST Tunnel Geological Prediction Technique. In Proceedings of the ASEG, Sydney, Australia, 22–26 August 2010. [Google Scholar]
- Esmersoy, C. Inversion of P and SV waves from multicomponent offset vertical seismic profiles. Geophysics 1990, 55, 39–50. [Google Scholar] [CrossRef]
- Ashida, Y. Seismic imaging ahead of a tunnel face with three-component geophones. Int. J. Rock Mech. Min. Sci. 2001, 38, 823–831. [Google Scholar] [CrossRef]
- Ashida, Y.; Sassa, K. Depth Transform of Seismic Data by Use of Equi-Travel Time Planes. Explor. Geophys. 1993, 24, 341–346. [Google Scholar] [CrossRef]
- Wei, Z.; Hall, M.A. Analyses of vibrator and ground behavior on hard and soft ground. Lead. Edge 2011, 2, 132–137. [Google Scholar] [CrossRef]
- Segarra, P.; Sanchidrián, J.A.; Castedo, R.; López, L.M.; del Castillo, I. Performance of some coupling methods for blast vibration monitoring. J. Appl. Geophys. 2015, 112, 129–135. [Google Scholar] [CrossRef]
- Zha, X.J.; Gao, X.; Wang, W.; Hou, X.H.; Yang, F.; Zhang, X.Y. Advanced prediction migration method research in tunnel engineering investigation. Chin. J. Geophy. 2018, 61, 1150–1156. (In Chinese) [Google Scholar]
Description | Value | |
---|---|---|
Sensitivity (mV/g) | X | 2810 |
Y | 2830 | |
Z | 2838 | |
Full scale (g) | 1.75 | |
Frequency bandwidth (Hz) | 10–5000 | |
Resolution (g) | 0.000006 | |
Resonance frequency (Hz) | 15,000 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Fu, N.; Fu, Z.; Lu, X.; Liao, X.; Wang, H.; Qin, S. A Semi-Automatic Coupling Geophone for Tunnel Seismic Detection. Sensors 2019, 19, 3734. https://doi.org/10.3390/s19173734
Wang Y, Fu N, Fu Z, Lu X, Liao X, Wang H, Qin S. A Semi-Automatic Coupling Geophone for Tunnel Seismic Detection. Sensors. 2019; 19(17):3734. https://doi.org/10.3390/s19173734
Chicago/Turabian StyleWang, Yao, Nengyi Fu, Zhihong Fu, Xinglin Lu, Xian Liao, Haowen Wang, and Shanqiang Qin. 2019. "A Semi-Automatic Coupling Geophone for Tunnel Seismic Detection" Sensors 19, no. 17: 3734. https://doi.org/10.3390/s19173734