Data-Driven Calibration of Soil Moisture Sensor Considering Impacts of Temperature: A Case Study on FDR Sensors
Abstract
:1. Introduction
2. Analysis of Temperature Impacts on Measurement Accuracy
3. Methodology
- (1)
- Prepare the training dataset: Collect both the soil moisture sensor data and the actual soil moisture content via experiments.
- (2)
- Develop the calibration model: Train a regression model based on the multivariate adaptive regression splines (MARS) and Gaussian process regression (GPR) algorithms on the training dataset.
- (3)
- Model evaluation: Compute the calibration errors using the learned model and the test dataset.
- (4)
- Model application: Collect new sensor data and apply the calibration model to yield the calibrated soil moisture content.
3.1. Multivariate Adaptive Regression Splines
3.2. Gaussian Process Regression
4. Computational Experiments and Results
4.1. Performance Metrics
4.2. Experiment Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bandaranayake, W.M.; Kadyampakeni, D.M.; Parsons, L.R. Temporal Changes of Soil Water in Sandy Soils Amended with Pine Bark and Efficient Blueberry Irrigation. Soil Sci. Soc. Am. J. 2018, 82, 413–422. [Google Scholar] [CrossRef]
- Klotzsche, A.; Jonard, F.; Looms, M.C.; van der Kruk, J.; Huisman, J.A. Measuring Soil Water Content with Ground Penetrating Radar: A Decade of Progress. Vadose Zone J. 2018, 17. [Google Scholar] [CrossRef]
- Jalilvand, E.; Tajrishy, M.; Hashemi, S.A.G.Z.; Brocca, L. Quantification of irrigation water using remote sensing of soil moisture in a semi-arid region. Remote Sens. Environ. 2019, 231, 111226. [Google Scholar] [CrossRef]
- Bogena, H.R.; Huisman, J.A.; Oberdörster, C.; Vereecken, H. Evaluation of a low-cost soil water content sensor for wireless network applications. J. Hydrol. 2007, 344, 32–42. [Google Scholar] [CrossRef]
- Topp, G.C. State of the art of measuring soil water content. Hydrol. Process. 2003, 17, 2993–2996. [Google Scholar] [CrossRef]
- Lekshmi, S.U.S.; Singh, D.N.; Baghini, M.S. A critical review of soil moisture measurement. Measurement 2014, 54, 92–105. [Google Scholar] [CrossRef]
- Robinson, D.A.; Jones, S.B.; Wraith, J.M.; Or, D.; Friedman, S.P. A Review of Advances in Dielectric and Electrical Conductivity Measurement in Soils Using Time Domain Reflectometry. Vadose Zone J. 2003, 2, 444–475. [Google Scholar] [CrossRef]
- Iezzoni, H.M.; McCartney, J.S. Calibration of Capacitance Sensors for Compacted Silt in Non-Isothermal Applications. Geotech. Test. J. 2016, 39, 169–180. [Google Scholar] [CrossRef]
- Kellner, E.; Lundin, L.C. Calibration of time domain reflectometry for water content in peat soil. Hydrol. Res. 2001, 32, 315–332. [Google Scholar] [CrossRef]
- Bogena, H.; Huisman, J.; Schilling, B.; Weuthen, A.; Vereecken, H. Effective calibration of low-cost soil water content sensors. Sensors 2017, 17, 208. [Google Scholar] [CrossRef] [PubMed]
- Baumhardt, R.L.; Lascano, R.J.; Evett, S.R. Soil material, temperature, and salinity effects on calibration of multisensor capacitance probes. Soil Sci. Soc. Am. J. 2000, 64, 1940–1946. [Google Scholar] [CrossRef]
- Evett, S.R.; Tolk, J.A.; Howell, T.A. Soil profile water content determination. Vadose Zone J. 2006, 5, 894–907. [Google Scholar] [CrossRef]
- Kapilaratne, R.G.C.J.; Lu, M. Automated general temperature correction method for dielectric soil moisture sensors. J. Hydrol. 2017, 551, 203–216. [Google Scholar] [CrossRef]
- Chen, G.; Zhou, S.; Huang, H. An integrated moisture and temperature sensor with model based temperature-dependent nonlinearity compensation. IEICE Electron. Express 2018, 15, 20180200. [Google Scholar] [CrossRef]
- Friedman, J.H. Multivariate adaptive regression splines. Ann. Stat. 1991, 19, 1–67. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Z.J.; Long, H.; Xu, J.; Liu, R.H. Wind Turbine Gearbox Failure Identification With Deep Neural Networks. IEEE Trans. Ind. Inform. 2017, 13, 1360–1368. [Google Scholar] [CrossRef]
- Williams, C.K.I.; Rasmussen, C.E. Gaussian processes for machine learning. In Summer School on Machine Learning; Springer: Berlin/Heidelberg, Germany, 2003; pp. 63–71. [Google Scholar]
- Huang, C.; Wang, L. Gaussian process regression-based modelling of lithium-ion battery temperature-dependent open-circuit-voltage. Electron. Lett. 2017, 53, 1214–1216. [Google Scholar] [CrossRef]
- Shukla, A.; Panchal, H.; Mishra, M.; Patel, P.R.; Srivastava, H.S.; Patel, P.; Shukla, A.K. Soil moisture estimation using gravimetric technique and FDR probe technique: A comparative analysis. Am. Int. J. Res. Form. Appl. Nat. Sci. 2014, 8, 89–92. [Google Scholar]
- Huang, C.; Wang, L.; Lai, L.L. Data-Driven Short-Term Solar Irradiance Forecasting Based on Information of Neighboring Sites. IEEE Trans. Ind. Electron. 2019, 66, 9918–9927. [Google Scholar] [CrossRef]
Sensor | Type | Structure | Range (v/v) | Working Temperature (°C) |
---|---|---|---|---|
A | FDR | Probe | 0–100% | −20–60 |
B | FDR | Probe | 0–100% | −20–60 |
C | FDR | Tube | 0–100% | −20–60 |
D | FDR | Tube | 0–100% | −20–60 |
Soil Type | Sand Content (%) | Silty Content (%) | Clay Content (%) | Dry Bulk Density (g/cm3) | Withering Coefficient (v/v) | Field Capacity (v/v) | Saturated Water Content (v/v) |
---|---|---|---|---|---|---|---|
Sandy Clay Loam | 54.12 | 24.00 | 21.88 | 1.40 | 17.47% | 26.34% | 38.92% |
T (°C) | Sensor (v/v) | Actual (v/v) |
---|---|---|
0 | 11.80% | 9.77% |
5 | 31.00% | 18.25% |
10 | 32.50% | 18.25% |
15 | 33.30% | 18.25% |
Parameter | Sensor A | Sensor B | Sensor C | Sensor D |
---|---|---|---|---|
δ | 0.0028 | 0.0118 | 0.0068 | 0.0028 |
σf | 0.0688 | 0.1159 | 0.1193 | 0.0767 |
λT | 25.0311 | 67.0012 | 33.0755 | 46.1573 |
λr | 0.0356 | 0.1144 | 0.0630 | 0.0480 |
Sensor | Method | MBE (%) | MAE (%) | RMSE (%) |
---|---|---|---|---|
A | Reading | 12.93 | 12.93 | 13.58 |
MARS-1 | 2.95 × 10−3 | 1.21 | 1.48 | |
MARS-2 | 2.92 × 10−3 | 2.08 | 2.89 | |
GPR-1 | 00.15 | 0.70 | 1.03 | |
GPR-2 | −1.15 × 10−3 | 2.07 | 2.73 | |
B | Reading | 6.14 | 6.14 | 6.48 |
MARS-1 | −2.24 × 10−3 | 0.83 | 1.06 | |
MARS-2 | −9.13 × 10−3 | 1.17 | 1.92 | |
GPR-1 | −0.14 | 0.83 | 1.40 | |
GPR-2 | −0.16 | 1.15 | 1.93 | |
C | Reading | −7.11 | 7.49 | 8.80 |
MARS-1 | −3.48 × 10−3 | 0.80 | 1.02 | |
MARS-2 | −7.00 × 10−3 | 4.26 | 5.42 | |
GPR-1 | 4.71 × 10−3 | 0.57 | 0.78 | |
GPR-2 | −1.16 × 10−3 | 4.40 | 5.48 | |
D | Reading | 13.12 | 13.12 | 13.36 |
MARS-1 | 4.96 × 10−3 | 0.65 | 1.02 | |
MARS-2 | 3.75 × 10−3 | 0.84 | 1.37 | |
GPR-1 | −0.12 | 0.44 | 0.96 | |
GPR-2 | −0.28 | 0.91 | 1.98 |
Method | 0 °C | 10 °C | 20 °C | 30 °C | 40 °C |
---|---|---|---|---|---|
Reading | 12.05 | 10.70 | 8.92 | 6.30 | 2.80 |
MARS-1 | 1.19 | 0.55 | 0.84 | 0.60 | 0.97 |
MARS-2 | 6.02 | 4.40 | 3.07 | 3.72 | 7.24 |
GPR-1 | 0.28 | 0.54 | 0.78 | 0.62 | 0.94 |
GPR-2 | 5.99 | 4.54 | 3.37 | 3.62 | 7.41 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Zhangzhong, L.; Zheng, W.; Yu, J.; Wang, Z.; Wang, L.; Huang, C. Data-Driven Calibration of Soil Moisture Sensor Considering Impacts of Temperature: A Case Study on FDR Sensors. Sensors 2019, 19, 4381. https://doi.org/10.3390/s19204381
Chen L, Zhangzhong L, Zheng W, Yu J, Wang Z, Wang L, Huang C. Data-Driven Calibration of Soil Moisture Sensor Considering Impacts of Temperature: A Case Study on FDR Sensors. Sensors. 2019; 19(20):4381. https://doi.org/10.3390/s19204381
Chicago/Turabian StyleChen, Liping, Lili Zhangzhong, Wengang Zheng, JingXin Yu, Zehan Wang, Long Wang, and Chao Huang. 2019. "Data-Driven Calibration of Soil Moisture Sensor Considering Impacts of Temperature: A Case Study on FDR Sensors" Sensors 19, no. 20: 4381. https://doi.org/10.3390/s19204381
APA StyleChen, L., Zhangzhong, L., Zheng, W., Yu, J., Wang, Z., Wang, L., & Huang, C. (2019). Data-Driven Calibration of Soil Moisture Sensor Considering Impacts of Temperature: A Case Study on FDR Sensors. Sensors, 19(20), 4381. https://doi.org/10.3390/s19204381