Sensitivity Improvement to Active Piezoresistive AFM Probes Using Focused Ion Beam Processing
Abstract
1. Introduction
2. Theoretical Background
3. Modelling and Simulation
4. Fabrication
5. FIB Modifications
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Binnig, G.; Quate, C.F.; Gerber, C. Atomic force microscope. Phys. Rev. Lett. 1986, 56, 930. [Google Scholar] [CrossRef] [PubMed]
- Rangelow, I.W.; Skocki, S.; Dumania, P. Plasma etching for micromechanical sensor applications. Microelectron. Eng. 1994, 23, 365–368. [Google Scholar] [CrossRef]
- Linnemann, R.; Gotszalk, T.; Hadjiiski, L.; Rangelow, I.W. Characterization of a cantilever with an integrated deflection sensor. Thin Solid Films 1995, 264, 159–164. [Google Scholar] [CrossRef]
- Rangelow, I.W.; Grabiec, P.; Gotszalk, T.; Edinger, K. Piezoresistive SXM sensors. Surf. Interface Anal. 2002, 33, 59–64. [Google Scholar] [CrossRef]
- Thaysen, J.; Boisen, A.; Hansen, O.; Bouwstra, S. Atomic force microscopy probe with piezoresistive read-out and a highly symmetrical Wheatstone bridge arrangement. Sens. Actuators A 2000, 83, 47–53. [Google Scholar] [CrossRef]
- Loui, A.; Elhadj, S.; Sirbuly, D.J.; McCall, S.K.; Hart, B.R.; Ratto, T.V. An analytic model of thermal drift in piezoresistive microcantilever sensors. J. Appl. Phys. 2010, 107, 054508. [Google Scholar] [CrossRef]
- Ivanov, T. Piezoresistive cantilevers with an integrated bimorph actuator. PhD Thesis, Physics Department of University Kassel, Kassel, Germany, 2004. [Google Scholar]
- Ahmad, A.; Ivanov, T.; Angelov, T.; Rangelow, I.W. Fast atomic force microscopy with self-transduced, self-sensing cantilever. J. Micro/Nanolithogr. MEMS MOEMS 2015, 14, 031209. [Google Scholar] [CrossRef]
- Smith, C.S. Piezoresistance effect in germanium and silicon. Phys. Rev. 1954, 94, 42. [Google Scholar] [CrossRef]
- Pedrak, R.; Ivanov, T.; Ivanova, K.; Gotszalk, T.; Abedinov, N.; Rangelow, I.W.; Edinger, K.; Tomerov, E.; Schenkel, T.; Hudek, P. Micromachined atomic force microscopy sensor with integrated piezoresistive sensor and thermal bimorph actuator for high-speed tapping-mode atomic force microscopy phase-imaging in higher eigenmodes. J. Vac. Sci. Technol. B 2003, 21, 3102–3107. [Google Scholar] [CrossRef]
- Jóźwiak, G.; Kopiec, D.; Zawierucha, P.; Gotszalk, T.; Janus, P.; Grabiec, P.; Rangelow, I.W. The spring constant calibration of the piezoresistive cantilever based biosensor. Sens. Actuators B 2012, 170, 201–206. [Google Scholar]
- Michels, T.; Rangelow, I.W. Review of scanning probe micromachining and its applications within nanoscience. Microelectron. Eng. 2014, 126, 191–203. [Google Scholar] [CrossRef]
- Hofer, M.; Ivanov, T.; Rudek, M.; Kopiec, D.; Guliyev, E.; Gotszalk, T.P.; Rangelow, I.W. Fabrication of self-actuated piezoresistive thermal probes. Microelectron. Eng. 2015, 145, 32–37. [Google Scholar] [CrossRef]
- Ivanov, T.; Gotszalk, T.; Sulzbach, T.; Rangelow, I.W. Quantum size aspects of the piezoresistive effect in ultra thin piezoresistors. Ultramicroscopy 2003, 97, 377–384. [Google Scholar] [CrossRef]
- Gotszalk, T.; Grabiec, P.; Rangelow, I.W. Calibration and examination of piezoresistive Wheatstone bridge cantilevers for scanning probe microscopy. Ultramicroscopy 2003, 97, 385–389. [Google Scholar] [CrossRef]
Parameter | Al | SiO2 | Si3N4 | Si |
---|---|---|---|---|
Elastic modulus, E (MPa) | 70 × 103 | 70 × 103 | 250 × 103 | 170 × 103 |
Poisson’s ratio, ν | 0.35 | 0.17 | 0.23 | 0.28 |
Mass density, ρ (kg/m3) | 2700 | 2200 | 3100 | 2329 |
Electrical conductivity, ∑ (S/m) | 35.5 × 106 | --- | 1 × 10−15 | 1 × 10−12 |
Thermal conductivity, k (W/mK) | 237 | 1.4 | 20 | 130 |
Coefficient of thermal expansion, α (1/K) | 23.1 × 10−6 | 0.5 × 10−6 | 2.3 × 10−6 | 2.6 × 10−6 |
Parameter | Dimension |
---|---|
Length of cantilever, L | 350 μm |
Width of cantilever, B | 140 μm |
Thickness of thermal actuator layer, theater | 0.7 μm |
Thickness of insulation layer, tins | 0.5 μm |
Parameter | Step 0 | Step 1 | Step 2 | Step 3 |
---|---|---|---|---|
Resonance frequency (kHz) | 95.279 | 94.393 | 91.673 | 91.033 |
Resonance frequency shift (Hz) | 0 | 886 | 2720 | 640 |
Stiffness (N/m) | 119.94 | 117.71 | 111.03 | 109.49 |
Relative piezo signal (V\V) | 1 | 1.3 | 2.05 | 2.54 |
Stress concentration simulation (N/m2/N/m2) | 1 | 2.64 | 2.82 | 3.32 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kunicki, P.; Angelov, T.; Ivanov, T.; Gotszalk, T.; Rangelow, I. Sensitivity Improvement to Active Piezoresistive AFM Probes Using Focused Ion Beam Processing. Sensors 2019, 19, 4429. https://doi.org/10.3390/s19204429
Kunicki P, Angelov T, Ivanov T, Gotszalk T, Rangelow I. Sensitivity Improvement to Active Piezoresistive AFM Probes Using Focused Ion Beam Processing. Sensors. 2019; 19(20):4429. https://doi.org/10.3390/s19204429
Chicago/Turabian StyleKunicki, Piotr, Tihomir Angelov, Tzvetan Ivanov, Teodor Gotszalk, and Ivo Rangelow. 2019. "Sensitivity Improvement to Active Piezoresistive AFM Probes Using Focused Ion Beam Processing" Sensors 19, no. 20: 4429. https://doi.org/10.3390/s19204429
APA StyleKunicki, P., Angelov, T., Ivanov, T., Gotszalk, T., & Rangelow, I. (2019). Sensitivity Improvement to Active Piezoresistive AFM Probes Using Focused Ion Beam Processing. Sensors, 19(20), 4429. https://doi.org/10.3390/s19204429