Odometer Velocity and Acceleration Estimation Based on Tracking Differentiator Filter for 3D-Reduced Inertial Sensor System
Abstract
:1. Introduction
2. 3D RISS Mechanization and Error Analysis
2.1. 3D RISS Mechanization
2.2. Errors Analysis
2.2.1. Attitude Errors Analysis
2.2.2. Velocity Errors Analysis:
2.2.3. Position Errors Analysis
3. Tracking Differentiator Filter
3.1. TD Filter Principle
3.2. TD Filter Simulation Examples
3.1.1. Phase Compensation for Signal Filtering
3.1.2. Noise Reduction
3.1.3. Outliers Exclusion
4. Simulation Experiments
4.1. Validation of a 3D RISS with Velocity Filtered by TD
4.2. Anti-Interference Ability of a 3D RISS with Velocity Filtered by TD
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shen, Z.; Georgy, J.; Korenberg, M.J.; Noureldin, A. Low cost two dimension navigation using an augmented Kalman filter/Fast Orthogonal Search module for the integration of reduced inertial sensor system and Global Positioning System. Transp. Res. C Emerg. Technol. 2011, 19, 1111–1132. [Google Scholar] [CrossRef]
- Georgy, J.; Noureldin, A.; Korenberg, M.J.; Bayoumi, M.M. Low-cost three-dimensional navigation solutionfor RISS/GPS integration using mixture particle filter. IEEE Trans. Veh. Technol. 2010, 59, 599–615. [Google Scholar] [CrossRef]
- Noureldin, A.; El-Shafie, A.; Bayoumi, M. GPS/INS integration utilizing dynamic neural networks for vehicular navigation. Inf. Fusion 2011, 12, 48–57. [Google Scholar] [CrossRef]
- Iqbal, U.; Karamat, T.B.; Okou, A.F.; Noureldin, A. Experimental results on an integrated GPS and multisensory system for land vehicle positioning. Int. J. Navig. Obs. 2009, 2009, 1–18. [Google Scholar]
- Georgy, J.; Noureldin, A.; Korenberg, M.J.; Bayoumi, M.M. Modeling the stochastic drift of a MEMS-based gyroscope in gyro/odometer/GPS integrated navigation. IEEE Trans. Intell. Transp. Syst. 2010, 11, 856–872. [Google Scholar] [CrossRef]
- Iqbal, U.; Okou, A.F.; Noureldin, A. An integrated reduced inertial sensor system—RISS/GPS for land vehicle. In Proceedings of the Position, Location and Navigation Symposium (2008 IEEE/ION), Monterey, CA, USA, 5–8 May 2008; pp. 1014–1021. [Google Scholar]
- Iqbal, U.; Noureldin, A. Integrated Reduced Inertial Sensor System/GPS for Vehicle Navigation: Multi-Sensor Positioning System for Land Applications Involving Single-Axis Gyroscope-Vehicle Odometer and Integrated with GPS, 1st ed.; VDM Verlag Dr. Müller: Saarbrücken, Germany, 2009; pp. 3–10. [Google Scholar]
- Georgy, J.; Iqbal, U.; Bayoumi, M.; Noureldin, A. Reduced inertialsensor system (RISS)/GPS integration using particle filtering for landvehicles. In Proceedings of the ION GNSS 2008, Savannah, GA, USA, 16–19 September 2008; pp. 30–37. [Google Scholar]
- Han, S.; Wang, J. Land vehicle navigation with the integration of GPS and reduced INS: Performance improvement with velocity aiding. J. Navig. 2010, 63, 153–166. [Google Scholar] [CrossRef]
- Georgy, J.; Noureldin, A. Tightly Coupled Low Cost 3D RISS/GPS Integration Using a Mixture Particle Filter for Vehicular Navigation. Sensors 2011, 11, 4244–4276. [Google Scholar] [CrossRef]
- Li, X.; Xu, Q.; Li, B.; Song, X. A Highly Reliable and Cost-Efficient Multi-Sensor System for Land Vehicle Positioning. Sensors 2016, 16, 755. [Google Scholar] [CrossRef]
- Georgy, J.; Noureldin, A. Nonlinear filtering for tightly coupled RISS/GPS integration. In Proceedings of the ION PLANS 2010, Indian Wells, CA, USA, 4–6 May 2010; pp. 1014–1021. [Google Scholar]
- Chang, T.H.; Wang, L.S.; Chang, F.R. A solution to the ill-conditioned GPS positioning problem in an urbanenvironment. IEEE Trans. Intell. Transp. Syst. 2009, 10, 135–145. [Google Scholar] [CrossRef]
- Li, Q.; Chen, L.; Li, M.; Shih-Lung, S.; Nuchter, A. A sensor-fusion drivable-region and lane-detection systemfor autonomous vehicle navigation in challenging road scenarios. IEEE Trans. Veh. Technol. 2014, 63, 540–555. [Google Scholar] [CrossRef]
- Rose, C.; Britt, J.; Allen, J.; Bevly, D. An integrated vehicle navigation system utilizing lane-detection andlateral position estimation systems in difficult environments for GPS. IEEE Trans. Intell. Transp. Syst. 2014, 15, 2615–2629. [Google Scholar] [CrossRef]
- Liu, S.; Zheng, D.; Li, R. Compensation Method for Pipeline Centerline Measurement of in-Line Inspection during Odometer Slips Based on Multi-Sensor Fusion and LSTM Network. Sensors 2019, 19, 3740. [Google Scholar] [CrossRef] [PubMed]
- Mirabadi, A.; Khodadadi, A. Slip and Slide Detection and Compensation for Odometery System, UsingAdaptive Fuzzy Kalman Filter. Sens. Lett. 2009, 7, 84–90. [Google Scholar] [CrossRef]
- Caruso, D.; Eudes, A.; Sanfourche, M.; Vissière, D.; Le Besnerais, G. A Robust Indoor/Outdoor Navigation Filter Fusing Data from Vision and Magneto-Inertial Measurement Unit. Sensors 2017, 17, 2795. [Google Scholar] [CrossRef] [PubMed]
- Levant, A.; Livne, M. Exact differentiation of signals with unbounded higher derivatives. IEEE Trans. Autom. Control 2012, 57, 1076–1080. [Google Scholar] [CrossRef]
- Ang, K.; Chong, G.; Li, Y. PID control system analysis, design, and technology. IEEE Trans Control Syst Technol. 2005, 13, 559–576. [Google Scholar]
- Ahrens, J.; Khalil, H. High-gain observers in the presence of measurement noise: A switched-gain approach. Automatica 2009, 45, 936–943. [Google Scholar] [CrossRef]
- Zhu, Z.; Xiang, G.; Leilei, C. Analysis on the adaptive filter based on LMS algorithm. Optik 2016, 127, 4698–4704. [Google Scholar] [CrossRef]
- Ibrir, S. Linear time-derivative trackers. Automatica 2004, 40, 397–405. [Google Scholar] [CrossRef]
- Davila, J.; Fridman, L.; Levant, A. Second-order sliding-mode observer for mechanical systems. IEEE Trans Autom. Control 2005, 50, 1785–1789. [Google Scholar] [CrossRef]
- Jingqing, H.; Wei, W. Nonlinear tracking-differentiators. J. Syst. Sci. Math. Sci. 1994, 14, 177–183. (In Chinese) [Google Scholar]
- Jinping, F.; Wei, W.; Yu, C. An improved tracking-differentiator filter based on Taylor’s formula. Optik 2018, 158, 1026–1033. [Google Scholar]
- Hehong, Z.; Yunde, X.; Longhua, S. High-precision tracking differentiator via generalized discrete-time optimal control. ISA Trans. 2019, 5, 1–8. [Google Scholar]
- Liqiang, W.; Hao, L.; Jingqing, H. Study of tracking-differentiator on filtering. J. Syst. Simul. 2004, 16, 651–652, 670. (In Chinese) [Google Scholar]
- Yan, C.; Yongyuan, Q.; Qi, Z. Research on Application of Tracking Differentiator in Data Processing of Odometer. J. Projectiles Rockets Missiles Guidance 2010, 30, 52–54. [Google Scholar]
- Iqbal, U.; Georgy, J.; Abdelfatah, W.F. Enhancing Kalman Filtering–Based Tightly Coupled Navigation Solution Through Remedial Estimates for Pseudorange Measurements Using Parallel Instrum. Sci. Technol. 2012, 40, 530–566. [Google Scholar]
Error | 3D RISS with Original Odometer Velocity | 3D RISS with Original Odometer Velocity Filtered by TD |
---|---|---|
pitch | 0.88° | 1.16° |
roll | 0.32° | 0.36° |
VE | 2.40 m/s | 2.41 m/s |
VN | 2.13 m/s | 2.13 m/s |
VU | 0.28 m/s | 0.35 m/s |
latitude | 0.029107° | 0.029109° |
longitude | 0.052164° | 0.052155° |
Error | 3D RISS with Noisy Odometer Velocity | 3D RISS with Noisy Odometer Velocity Filtered by TD |
---|---|---|
pitch | 10.61° | 1.75° |
roll | 0.065° | 0.18° |
VE | 24.95 m/s | 0.26 m/s |
VN | 24.19 m/s | 0.25 m/s |
VU | 34.79 m/s | 0.64 m/s |
latitude | 0.0021° | 0.000039° |
longitude | 0.0029° | 0.000077° |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Guan, L.; Xu, D. Odometer Velocity and Acceleration Estimation Based on Tracking Differentiator Filter for 3D-Reduced Inertial Sensor System. Sensors 2019, 19, 4501. https://doi.org/10.3390/s19204501
Zhang Q, Guan L, Xu D. Odometer Velocity and Acceleration Estimation Based on Tracking Differentiator Filter for 3D-Reduced Inertial Sensor System. Sensors. 2019; 19(20):4501. https://doi.org/10.3390/s19204501
Chicago/Turabian StyleZhang, Qing, Lianwu Guan, and Dexin Xu. 2019. "Odometer Velocity and Acceleration Estimation Based on Tracking Differentiator Filter for 3D-Reduced Inertial Sensor System" Sensors 19, no. 20: 4501. https://doi.org/10.3390/s19204501
APA StyleZhang, Q., Guan, L., & Xu, D. (2019). Odometer Velocity and Acceleration Estimation Based on Tracking Differentiator Filter for 3D-Reduced Inertial Sensor System. Sensors, 19(20), 4501. https://doi.org/10.3390/s19204501