Estimation of the Precision of a Structured Light System in Oil Paintings on Canvas
Abstract
:1. Introduction
2. Theoretical Basis
3. Materials and Methods
3.1. Experimental System and Dataset
3.2. Characteristics of the Samples
3.3. Methodology
- (1)
- Calibrating the setup: Since DAVID SLS-1 does not have a fixed configuration, it needs to be calibrated each time it is assembled for measurement. To do that, the distance between the projector and the camera (baseline) must be previously determined according to the sample size. A first measurement should be made using the standard binary light patterns to obtain, firstly, the values of the parameters that define the photogrammetric triangulation and, secondly, the coordinates of the sample in a metric coordinate system. In this work, the values of the parameters were baseline 160 mm; distance from the scanner to the object 450 mm; and calibration template 240 mm.
- (2)
- Obtaining the point cloud: the video projector launches a series of 58 binary light patterns with different configurations and orientations which impinge on the sample and are deformed according to its orography. Each pattern is captured by the camera as an image and, knowing the geometry of the setup, the position of each point on the scanned object is measured, first as image coordinates and then transformed into ground coordinates. Using DAVID-Laserscanner Pro Edition software, the point cloud is triangulated, generating a 3DSDM. Finally, the video projector launches three color patterns (i.e., blue, green, and red) to obtain the texture of the object and to apply it to the 3DSDM.
- (3)
- 3DSDM noise filtering: using CloudCompare software, continuous 3DSDM data becomes discrete, selecting 1,000,000 points evenly distributed in the sample. Point cloud noise is filtered and removed.
- (4)
- Comparing point clouds: two point clouds are registered; one of them is assigned as the reference cloud and the other as the comparison cloud. The aim of the registration is to minimize the distance between both point clouds so that they locate in the same reference system and, therefore, become comparable.
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Abate, D.; Menna, F.; Remondino, F.; Gattari, M.G. 3D painting documentation: Evaluation of conservation conditions with 3D imaging and ranging techniques. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 45, 1–8. [Google Scholar] [CrossRef]
- Pelagotti, A.; Uccheddu, F.; Massa, E.; Carfagni, M. Comparing two 3D measurement techniques for documenting painted wooden panels surface deformations on a real test case: “Mystical Marriage of Saint Catherine” by Renaissance artist Piero di Cosimo. IOP Conf. Ser. Mater. Sci. Eng. 2018, 364, 1–8. [Google Scholar] [CrossRef]
- Ambrosini, D.; Daffara, C.; Di Biase, R.; Paoletti, D.; Pezzati, L.; Bellucci, R.; Bettini, F. Integrated reflectography and thermography for wooden paintings diagnostics. J. Cult. Herit. 2010, 11, 196–204. [Google Scholar] [CrossRef]
- Legrand, S.; Vanmeert, F.; Van der Snickt, G.; Alfeld, M.; De Nolf, W.; Dij, J.; Janssens, K. Examination of historical paintings by state-of-the-art hyperspectral imaging methods: From scanning infra-red spectroscopy to computed X-ray laminography. Herit. Sci. 2014, 2, 13. [Google Scholar] [CrossRef]
- Bravo, J.M.; Sánchez-Pérez, J.V.; Ferri, M.; Redondo, J.; Picó, R. Application of ultrasound phase-shift analysis to authenticate wooden panel paintings. Sensors 2014, 14, 7992–8002. [Google Scholar] [CrossRef] [PubMed]
- Remondino, F.; Rizzi, A.; Barazzetti, L.; Scaioni, M.; Fassi, F.; Brumana, R.; Pelagotti, A. Review of geometric and radiometric analyses of paintings. Photogramm. Rec. 2011, 26, 439–461. [Google Scholar] [CrossRef]
- Buchón-Moragues, F.; Bravo, J.M.; Ferri, M.; Redondo, J.; Sánchez-Pérez, J.V. Application of structured light system technique for authentication of wooden panel paintings. Sensors 2016, 16, 881. [Google Scholar] [CrossRef]
- Padfield, J.; Saunders, D. Polynomial texture mapping: A new tool for examining the surface of paintings. ICOM Comm. Conserv. 2005, 1, 504–510. [Google Scholar]
- Dietz, C.; Catanzariti, G.; Jimeno-Martínez, A. Infrared reflectography using 3D laser scanning. E-Conserv. Mag. 2011, 18, 32–42. [Google Scholar]
- Tian, G.Y.; Lu, R.S.; Gledhill, D. Surface Measurement Using Active Vision and Light Scattering. Opt. Lasers Eng. 2007, 45, 131–139. [Google Scholar] [CrossRef]
- Secher, J.J.; Darvann, T.A.; Pinholt, E.M. Accuracy and reproducibility of the DAVID SLS-2 scanner in three-dimensional facial imaging. J. Cranio Maxillo-Fac. Surg. 2017, 45, 1662–1670. [Google Scholar] [CrossRef] [PubMed]
- Luhmann, T. Close range photogrammetry for industrial applications. ISPRS J. Photogramm. Remote Sens. 2010, 65, 558–569. [Google Scholar] [CrossRef]
- Hui, Z.; Liyan, Z.; Hongtao, W.; Jianfu, C. Surface measurement based on instantaneous random ilumination. Chin. J. Aeronaut. 2008, 22, 316–324. [Google Scholar] [CrossRef]
- McPherron, S.P.; Gernat, T.; Hublin, J.J. Structured light scanning for high-resolution documentation of in situ archaeological finds. J. Archaeol. Sci. 2009, 36, 19–24. [Google Scholar] [CrossRef]
- Rocchini, C.; Cignoni, P.; Montani, C.; Pingi, C.; Scopigno, R. A low cost 3D scanner based on structured light. In Eurographics 2001; Chalmers, A., Rhyne, T.-M., Eds.; Blackwell Publishers: Oxford, UK, 2001. [Google Scholar]
- Arias, P.; Herraez, J.; Lorenzo, H.; Ordoñez, C. Control of structural problems in cultural heritage monuments using close-range photogrammetry and computer methods. Comput. Struct. 2005, 83, 1754–1766. [Google Scholar] [CrossRef]
- Patrucco, G.; Rinaudo, F.; Spreafico, A. A new handheld scanner for 3D survey of small artifacts: The Stonex F6. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2019, XLII-2/W15, 895–901. [Google Scholar] [CrossRef]
- Akça, D.; Grün, A.; Breuckmann, B.; Lahanier, C. High definition 3D-scanning of arts objects and paintings. In Proceedings of the Optical 3-D Measurement Techniques, Zurich, Switzerland, 9–12 July 2007; pp. 50–58. [Google Scholar]
- Guidi, G.; Atzeni, C.; Seracini, M.; Lazzari, S. Painting survey by 3D optical scanning. The case of adoration of the magi by Leonardo da Vinci. Stud. Conserv. 2004, 49, 1–12. [Google Scholar] [CrossRef]
- Palma, G.; Pingi, P.; Siotto, E.; Bellucci, R.; Guidi, G.; Scopigno, R. Deformation analysis of Leonardo da Vinci’s “Adorazione dei Magi” through temporal unrelated 3D digitization. J. Cult. Herit. 2019, 38, 174–185. [Google Scholar] [CrossRef]
- Georgopoulos, A.; Ioannidis, C.; Valanis, A. Assessing the performance of a structured light scanner. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2010, XXXVIII, 250–255. [Google Scholar]
- Triggs, B.; McLauchlan, P.; Hartley, R.; Fitzgibbon, A. Bundle Adjustment–A Modern Synthesis. In Proceedings of the International Workshop on Vision Algorithms: Theory and Practice, Corfu, Greece, 20–25 September 1999; pp. 298–372. [Google Scholar]
- Batlle, J.; Mouaddib, E.; Salvi, J. Recent progress in coded structured light as a technique to solve the correspondence problem: A survey. Pattern Recognit. 1998, 31, 963–982. [Google Scholar] [CrossRef]
- DAVID SLS-1. In User Manual; David Vision Systems GmbH: Koblenz, Germany, 2012; Available online: https://www.rapidobject.com/csdata/download/1/de/kurzanleitung_de_3_4_2012_07_06_113_5.pdf (accessed on 20 May 2019).
- Salvi, J.; Pagès, J.; Batlle, J. Pattern codification strategies in structured light systems. Pattern Recognit. 2004, 37, 827–849. [Google Scholar] [CrossRef]
- DAVID SLS-1 FLYER. Available online: http://kvejborg.dk/media/1245/flyer-web.pdf (accessed on 20 May 2019).
- CloudCompare (Version 2.6) [GPL Software]. 2016. Available online: http://www.cloudcompare.org/ (accessed on 20 May 2019).
- Best, P.J.; McKay, N.D. A method for registration of 3-D Shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256. [Google Scholar]
- Golyanik, V.; Ali, S.-A.; Stricker, D. Gravitational Approach for Point Set Registration. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 5802–5810. [Google Scholar]
- Myronenko, A.; Song, X.; Carreira-Perpiñán, M.-A. Non-rigid point set registration: Coherent Point Drift. Advances in neural information processing systems. Vancouver 2006, 19, 1009–1016. [Google Scholar]
- Gold, S.; Rangarajan, A.; Lu, C.-P.; Pappu, S.; Mjolsness, E. New algorithms for 2d and 3d point matching: Pose estimation and correspondence. Pattern Recognit. 1998, 38, 1019–1031. [Google Scholar] [CrossRef]
- Jian, B.; Vemuri, B.-C. Robust point set registration using gaussian mixture models. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 1633–1645. [Google Scholar] [CrossRef]
- Yuan, C.; Yu, X.; Luo, Z. 3D point cloud matching based on principal component analysis and iterative closest point algorithm. In Proceedings of the International Conference on Audio, Language and Image Processing (ICALIP), Shangai, China, 11–12 July 2016; pp. 404–408. [Google Scholar]
- Oomori, S.; Nishida, T.; Kurogi, S. Point cloud matching using singular value decomposition. Artif. Life Robot. 2016, 21, 149–154. [Google Scholar] [CrossRef]
- Nüchter, A.; Kingemann, K.; Hertzberg, J. Cached k-d tree search for ICP algorithms. In Proceedings of the Sixth International Conference on 3-D Digital Imaging and Modeling (3DIM), Montreal, QC, Canada, 21–23 August 2007; pp. 419–426. [Google Scholar]
- Zhu, H.; Guo, B.; Zou, K.; Li, Y.; Yuen, K.-V.; Mihaylova, L.; Leung, H. A review of point set registration: From pairwise registration to groupwise registration. Sensors 2019, 19, 1191. [Google Scholar] [CrossRef]
- Bellekens, B.; Spruyt, V.; Berkvens, R.; Penne, R.; Weyn, M. A benchmark survey of rigid 3D point cloud registration algorithms. Int. J. Adv. Intell. Syst. 2015, 8, 118–127. [Google Scholar]
- Agarwal, S.; Bhowmick, B. 3D Point cloud registration with shape constraint. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 2199–2203. [Google Scholar]
- Lin, C.-C.; Tai, Y.-C.; Lee, J.-J.; Chen, Y.-S. A novel point cloud registration using 2D image features. EURASIP J. Adv. Signal Process. 2017, 2017, 5. [Google Scholar]
- Abate, D. Documentation of paintings restoration through photogrammetry and change detection algorithms. Herit. Sci. 2019, 7, 13. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Jiménez, D.; Buchón-Moragues, F.; Bravo, J.M.; Sánchez-Pérez, J.V. Estimation of the Precision of a Structured Light System in Oil Paintings on Canvas. Sensors 2019, 19, 4966. https://doi.org/10.3390/s19224966
Sánchez-Jiménez D, Buchón-Moragues F, Bravo JM, Sánchez-Pérez JV. Estimation of the Precision of a Structured Light System in Oil Paintings on Canvas. Sensors. 2019; 19(22):4966. https://doi.org/10.3390/s19224966
Chicago/Turabian StyleSánchez-Jiménez, David, Fernando Buchón-Moragues, José M. Bravo, and Juan V. Sánchez-Pérez. 2019. "Estimation of the Precision of a Structured Light System in Oil Paintings on Canvas" Sensors 19, no. 22: 4966. https://doi.org/10.3390/s19224966
APA StyleSánchez-Jiménez, D., Buchón-Moragues, F., Bravo, J. M., & Sánchez-Pérez, J. V. (2019). Estimation of the Precision of a Structured Light System in Oil Paintings on Canvas. Sensors, 19(22), 4966. https://doi.org/10.3390/s19224966