A Novel Sub-Bottom Profiler and Signal Processor
Abstract
:1. Introduction
2. Imaging Geometry and Signal Model without Motion Error
3. Influence of Motion Error on Imagery
3.1. Influence of Sway and Yaw
3.1.1. Influence of Sway
3.1.2. Influence of Yaw
3.2. Influence of Heave and Pitch
3.2.1. Influence of Heave
3.2.2. Influence of Pitch
3.3. Influence of Surge
4. Motion Estimation and Imagery
4.1. Estimation of Motion Error
4.2. Imagery with the MC
5. Simulation and Real Data Processing
5.1. Simulation Results
5.2. Real Data Processing
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Crocker, S.E.; Fratantonio, F.D.; Hart, P.E.; Foster, D.S.; Brien, T.F. Measurement of sounds emitted by certain high-resolution geophysical survey systems. IEEE J. Ocean. Eng. 2019, 44, 796–813. [Google Scholar] [CrossRef]
- Park, C.; Kim, W.; Shin, J.; Kim, H.; Jeong, J.B. Study on acoustic impedance conversion using an optimal chirplet analyzed in chirp SBP raw data. Mar. Geophys. Res. 2019, 40, 385–393. [Google Scholar] [CrossRef]
- Kim, Y.; Koo, N.; Cheong, S.; Kim, J.; Chun, J.; Shin, S.; Riedel, M.; Lee, H. A case study on pseudo 3-D cirp sub-bottom profiler (SBP) survey for the detection of a fault trace in shallow sedimentary layers at gas hydrate site in the ulleung basin, east sea. J. Appl. Geophys. 2016, 133, 98–115. [Google Scholar] [CrossRef]
- Stateczny, A.; Blaszcazk-Bak, W.; Sobieraj-Ziobinska, A.; Motyl, W.; Wisniewska, M. Methodology for processing of 3D multibeam sonar big data for comparative navigation. Remote Sens. 2019, 11, 2245. [Google Scholar] [CrossRef]
- Bennike, O.; Pedersen, N.N.; Jensen, J.B. The channels in Storebaelt, Denmark: Implications of new radiocarbon ages. Geol. Surv. Den. Greenl. 2019, 43, e2019430106. [Google Scholar] [CrossRef]
- Sotiri, K.; Hilgert, S.; Fuchs, S. Sediment classification in a brazillian reservoir: Pros and cons of parametric low frequencies. Adv. Oceanogr. Limnol. 2019, 10, 1–14. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, J.; Zhong, H. Chirp scaling imaging algorithm for synthetic aperture sonar based on data fusion of multi-receiver array. J. Harbin Eng. Univ. 2013, 34, 240–244. [Google Scholar]
- Zhang, X.; Tang, J.; Zhong, H. Multireceiver correction for the chirp scaling algorithm in synthetic aperture sonar. IEEE J. Ocean. Eng. 2014, 39, 472–481. [Google Scholar] [CrossRef]
- Varghese, S.; Kumar, A.; Nagendran, G. Synthetic Aperture Sonar image of seafloor. Curr. Sci. 2017, 113, 385. [Google Scholar]
- Zhang, X.; Tan, C.; Ying, W. An imaging algorithm for multireceiver synthetic aperture sonar. Remote Sens. 2019, 11, 672. [Google Scholar] [CrossRef]
- Asada, A.; Ura, T.; Maeda, F.; Maki, T.; Yamagata, Y.; Seiichi, T. Sub-bottom synthetic aperture imaging sonar system using an AUV and an autonomous surface tracking vehicle for searching for buried shells of toxic chemicals. In Proceedings of the International Waterside Security Conference, Carrara, Italy, 3–5 November 2010; pp. 1–3. [Google Scholar]
- Wang, B.; Xiang, M.; Chen, L. Motion compensation on baseline oscillations for distributed array SAR by combing interferograms and inertial measurement. IET Radar Sonar Navig. 2017, 11, 1285–1291. [Google Scholar] [CrossRef]
- Labowski, M.; Kaniewski, P.; Serafin, P. Motion compensation for radar terrain imaging based on INS/GPS system. Sensors 2019, 19, 3895. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Tang, J.; Zhang, S.; Bai, S.; Zhong, H. Four order polynomial based range-Doppler algorithm for multireceiver synthetic aperture sonar. J. Electron. Inf. Technol. 2014, 36, 1592–1598. [Google Scholar]
- Pailhas, Y.; Dugelay, S.; Capus, C.; Wang, H.; Xiao, J. Impact of temporal Doppler on synthetic aperture sonar imagery. J. Acoust. Soc. Am. 2018, 143, 318–329. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, J.; Zhong, H.; Zhang, S. Wavenumber-domain imaging algorithm for wide-beam multi-receiver synthetic aperture sonar. J. Harbin Eng. Univ. 2014, 35, 93–101. [Google Scholar]
- Zhou, R.; Sun, J.; Hu, Y.; Qi, Y. Multichannel high resolution wide swath SAR imaging for hypersonic air vehicle with curved trajectory. Sensors 2018, 18, 411. [Google Scholar] [CrossRef] [PubMed]
- Gough, P.T.; Miller, M.A. Displaced ping imaging autofocus for a multi-hydrophone SAS. IEE Proc. Radar Sonar Navig. 2004, 151, 163–170. [Google Scholar] [CrossRef]
- Wilkinson, D.R. Efficient Image Reconstruction Techniques for a Multiple-Receiver Synthetic Aperture Sonar. Master’s Thesis, University of Canterbury, Christchurch, New Zealand, June 2001. [Google Scholar]
- Liu, Z.; Li, Z.; Yu, H.; Wu, J.; Huang, Y.; Yang, J. Bistatic forward-looking SAR moving target detection method based on joint clutter cancellation in echo-image domain with three receiving channels. Sensors 2018, 18, 3835. [Google Scholar] [CrossRef]
- Hunter, A.J.; Dugelay, S.; Fox, W.L.J. Repeat-pass synthetic aperture sonar micronavigation using redundant phase enter arrays. IEEE J. Ocean. Eng. 2016, 41, 820–830. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, H.; Ying, W.; Wang, H.; Xiao, J. An indirect range-Doppler algorithm for multireceiver synthetic aperture sonar based on Lagrange inversion theorem. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3572–3587. [Google Scholar] [CrossRef]
- Zhang, H.; Tang, J.; Wang, R.; Deng, Y.; Wang, W.; Li, N. An accelerated backprojection algorithm for monostatic and bistatic SAR processing. Remote Sens. 2018, 10, 140. [Google Scholar] [CrossRef]
- Lin, C.; Tang, S.; Zhang, L.; Guo, P. Focusing high-resolution airborne SAR with topography variations using an extended BPA based on a time/frequency rotation principle. Remote Sens. 2018, 10, 1275. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, G.; Zhang, L. Precise aperture-dependent motion compensation with frequency domain fast back-projection algorithm. Sensors 2017, 17, 2454. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, P.; Tan, C.; Ying, W. BP algorithm for the multireceiver SAS. IET Radar Sonar Navig. 2019, 13, 830–838. [Google Scholar] [CrossRef]
- Kodituwakku, S.; Nguyen, V.K.; Turley, M.D. Strong clutter suppression in non-uniform PRF radar: Techniques based on interpolation and adaptive processing. IET Radar Sonar Navig. 2019, 13, 1540–1547. [Google Scholar] [CrossRef]
- Tan, W.; Xu, W.; Huang, P.; Huang, Z.; Qi, Y.; Han, K. Investigation of azimuth multichannel reconstruction for moving targets in high resolution wide swath SAR. Sensors 2017, 17, 1486. [Google Scholar] [CrossRef]
- Huang, Z.; Sun, J.; Tan, W.; Huang, P.; Han, K. Investigation of wavenumber domain imaging algorithm for ground-based arc array SAR. Sensors 2017, 17, 2950. [Google Scholar] [CrossRef]
- Ku, C.S.; Chen, K.S.; Chang, P.C.; Chang, Y.L. Imaging simulation for synthetic aperture radar: A full wave approach. Remote Sens. 2018, 10, 1404. [Google Scholar] [CrossRef]
- Yan, X.; Chen, J.; Nies, H.; Loffeld, O. Analytical approximation model for quadratic phase error introduced by orbit determination errors in real-time spaceborne SAR imaging. Remote Sens. 2019, 11, 1663. [Google Scholar] [CrossRef]
- Johnson, K.A.; Hayes, M.P.; Gough, P.T. A method for estimating the sub-wavelength sway of a sonar towfish. IEEE J. Ocean. Eng. 1995, 20, 258–267. [Google Scholar] [CrossRef]
Parameters | Value | Units |
---|---|---|
Center frequency | 15 | kHz |
Bandwidth | 7.0 | kHz |
Platform velocity | 2.0 | m/s |
Receiver length in along-track dimension | 0.08 | m |
Length of receiver array | 0.48 | m |
Transmitter length in along-track dimension | 0.16 | m |
Pulse repetition interval | 0.06 | s |
Ideal Case | Sawtooth Error | Sinusoidal Error | ||||||
---|---|---|---|---|---|---|---|---|
PSLR/dB | ISLR/dB | PSLR/dB | ISLR/dB | DAC/m | PSLR/dB | ISLR/dB | DAC/m | |
T1 | −15.10 | −5.15 | −15.08 | −5.15 | 0 | −15.03 | −5.15 | 0 |
T2 | −15.58 | −11.00 | −15.39 | −10.98 | 0 | −15.54 | −10.97 | 0 |
T3 | −15.58 | −11.02 | −15.44 | −11.01 | 0 | −15.52 | −11.02 | 0 |
T4 | −15.59 | −11.19 | −15.47 | −11.17 | 0 | −15.48 | −11.18 | 0 |
T5 | −15.18 | −6.27 | −15.14 | −6.27 | 0 | −15.08 | −6.26 | 0 |
Ideal Case | Sawtooth Error | Sinusoidal Error | ||||||
---|---|---|---|---|---|---|---|---|
PSLR/dB | ISLR/dB | PSLR/dB | ISLR/dB | DAC/m | PSLR/dB | ISLR/dB | DAC/m | |
T1 | −15.10 | −5.15 | −8.85 | −0.99 | 0 | −5.26 | 3.86 | 0.36 |
T2 | −15.58 | −11.00 | −4.60 | 4.08 | 0.04 | −0.88 | 7.95 | 0.28 |
T3 | −15.58 | −11.02 | −14.18 | −7.32 | 0.52 | −4.83 | 0.99 | 0.56 |
T4 | −15.59 | −11.19 | −1.55 | 2.93 | 0.44 | −2.32 | 4.34 | 0.36 |
T5 | −15.18 | −6.27 | −6.36 | 0.83 | 0 | −2.08 | 5.25 | 0.40 |
Ideal Case | Before MC | After MC | ||||||
---|---|---|---|---|---|---|---|---|
PSLR/dB | ISLR/dB | PSLR/dB | ISLR/dB | DAC/m | PSLR/dB | ISLR/dB | DAC/m | |
T1 | −15.45 | −5.23 | −9.31 | −3.93 | 0 | −15.12 | −5.17 | 0 |
T2 | −15.83 | −11.20 | −4.63 | 1.35 | 0.44 | −13.89 | −10.45 | 0 |
T3 | −15.89 | −11.18 | −17.29 | −7.38 | 0.52 | −15.46 | −11.06 | 0 |
T4 | −15.91 | −11.39 | −0.98 | 13.32 | 0.44 | −14.74 | −10.94 | 0 |
T5 | −15.30 | −6.33 | −7.61 | −0.52 | 0 | −14.71 | −6.28 | 0 |
Ideal Case | Before MC | After MC | ||||||
---|---|---|---|---|---|---|---|---|
PSLR/dB | ISLR/dB | PSLR/dB | ISLR/dB | DAC/m | PSLR/dB | ISLR/dB | DAC/m | |
T1 | −15.45 | −5.23 | −5.62 | 1.12 | 0.36 | −14.67 | −4.94 | 0 |
T2 | −15.83 | −11.20 | −1.10 | 5.76 | 0.28 | −14.15 | −11.19 | 0 |
T3 | −15.89 | −11.18 | −4.92 | −2.32 | 0.56 | −15.30 | −11.07 | 0 |
T4 | −15.91 | −11.39 | −2.43 | 1.86 | 0.64 | −15.50 | −10.69 | 0 |
T5 | −15.30 | −6.33 | −2.57 | 2.61 | 0.40 | −14.60 | −5.99 | 0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, C.; Zhang, X.; Yang, P.; Sun, M. A Novel Sub-Bottom Profiler and Signal Processor. Sensors 2019, 19, 5052. https://doi.org/10.3390/s19225052
Tan C, Zhang X, Yang P, Sun M. A Novel Sub-Bottom Profiler and Signal Processor. Sensors. 2019; 19(22):5052. https://doi.org/10.3390/s19225052
Chicago/Turabian StyleTan, Cheng, Xuebo Zhang, Peixuan Yang, and Miao Sun. 2019. "A Novel Sub-Bottom Profiler and Signal Processor" Sensors 19, no. 22: 5052. https://doi.org/10.3390/s19225052
APA StyleTan, C., Zhang, X., Yang, P., & Sun, M. (2019). A Novel Sub-Bottom Profiler and Signal Processor. Sensors, 19(22), 5052. https://doi.org/10.3390/s19225052