Low Voltage High-Energy α-Particle Detectors by GaN-on-GaN Schottky Diodes with Record-High Charge Collection Efficiency
Abstract
:1. Introduction
2. Design of α-Particle Detector
3. Detector Fabrication and Measurement Setup
3.1. Detector Fabrication
3.2. α-Particle Measurement Setup
4. Results and Discussion
4.1. Current–Voltage (I–V) Characteristics
4.2. Capacitance–Voltage (C–V) Characteristics
4.3. Detection of α-Particle Spectra
4.3.1. Variation in α-Particle Spectra-Air vs. Vacuum
4.3.2. Low Voltage α-Particle Detection
4.3.3. High Voltage α-Particle Detection
4.4. Benchmarking
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ionascut-Nedelcescu, A.; Carlone, C.; Houdayer, A.; von Bardeleben, H.J.; Cantin, J.L.; Raymond, S. Radiation hardness of gallium nitride. IEEE Trans. Nucl. Sci. 2002, 49, 2733–2738. [Google Scholar]
- Weaver, B.D.; Anderson, T.J.; Koehler, A.D.; Greenlee, J.D.; Hite, J.K.; Shahin, D.I.; Kub, F.J.; Hobart, K.D. On the Radiation Tolerance of AlGaN/GaN HEMTs. ECS J. Solid State Sci. Tech. 2016, 5, Q208–Q212. [Google Scholar]
- Eastman, L.F.; Mishra, U.K. The Toughest Transistor Yet. IEEE Spectr. 2002, 39, 28–33. [Google Scholar]
- Vaitkus, J.; Cunningham, W.; Gaubas, E.; Rahman, M.; Sakai, S.; Smith, K.M.; Wang, T. Semi-insulating GaN and its evaluation for α particle detection. Nucl. Inst. Methods Phys. Res. A 2003, 509, 60–64. [Google Scholar]
- Polyakov, A.Y.; Smirnov, N.B.; Govorkov, A.V.; Markov, A.V.; Kozhukhova, E.A.; Gazizov, I.M.; Kolin, N.G.; Merkurisov, D.I.; Boiko, V.M.; Korulin, A.V.; et al. Alpha particle detection with GaN Schottky diodes. J. Appl. Phys. 2009, 106, 103708. [Google Scholar]
- Xu, Q.; Mulligan, P.; Wang, J.; Chuirazzi, W.; Cao, L. Bulk GaN alpha-particle detector with large depletion region and improved energy resolution. Nucl. Inst. Methods Phys. Res. A 2017, 849, 11–15. [Google Scholar]
- Lee, I.H.; Polyakov, A.Y.; Smirnov, N.B.; Govorkov, A.V.; Kozhukhova, E.A.; Zaletin, V.M.; Gazizov, I.M.; Kolin, N.G.; Pearton, S.J. Electrical properties and radiation detector performance of free-standing bulk n-GaN. J. Vac. Sci. Tech. B 2012, 30, 021205. [Google Scholar]
- Mulligan, P.; Wang, J.; Cao, L. Evaluation of freestanding GaN as an alpha and neutron detector. Nucl. Inst. Methods Phys. Res. A 2013, 719, 13–16. [Google Scholar]
- Wang, G.; Fu, K.; Yao, C.S.; Su, D.; Zhang, G.G.; Wang, J.Y.; Lu, M. GaN-based PIN alpha particle detectors. Nucl. Inst. Methods Phys. Res. A 2012, 663, 10–13. [Google Scholar]
- Grant, J.; Bates, R.; Cunningham, W.; Blue, A.; Melone, J.; McEwan, F.; Vaitkus, J.; Gaubas, E.; O’Shea, V. GaN as a radiation hard particle detector. Nucl. Inst. Methods Phys. Res. A 2007, 576, 60–65. [Google Scholar]
- Zhu, Z.; Zhang, H.; Liang, H.; Tang, B.; Peng, X.; Liu, J.; Yang, C.; Xia, X.; Tao, P.; Shen, R.; et al. High-temperature performance of gallium-nitride-based pin alpha-particle detectors grown on sapphire substrates. Nucl. Inst. Methods Phys. Res. A 2018, 893, 39–42. [Google Scholar]
- Lu, M.; Zhang, G.G.; Fu, K.; Yu, G.H. Gallium Nitride Room Temperature α Particle Detectors. Chin. Phys. Lett. 2010, 27, 052901. [Google Scholar]
- Pullia, A.; Bertuccio, G.; Maiocchi, D.; Caccia, S.; Zocca, F. High-resolution alpha-particle spectroscopy with an hybrid SiC/GaN detector/front-end detection system. In Proceedings of the IEEE Nuclear Science Symposium Conference Record, Honolulu, HI, USA, 26 October–3 November 2007; pp. 516–520. [Google Scholar]
- Melton, A.G. Development of wide bandgap solid-state neutron detectors. Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA, USA, May 2011. [Google Scholar]
- Wang, J.; Mulligan, P.; Brillson, L.; Cao, L.R. Review of using gallium nitride for ionizing radiation detection. Appl. Phys. Rev. 2015, 2, 031102. [Google Scholar]
- Polyakov, A.Y.; Smirnov, N.B.; Govorkov, A.V.; Markov, A.V.; Pearton, S.J.; Kolin, N.G.; Merkurisov, D.I.; Boiko, V.M. Neutron irradiation effects on electrical properties and deep-level spectra in undoped n- Al Ga N ∕ Ga N heterostructures. J. Appl. Phys. 2005, 98, 033529. [Google Scholar]
- Lin, C.H.; Katz, E.J.; Qiu, J.; Zhang, Z.; Mishra, U.K.; Cao, L.; Brillson, L.J. Neutron irradiation effects on gallium nitride-based Schottky diodes. Appl. Phys. Lett. 2013, 103, 162106. [Google Scholar]
- Wang, L.; Mohammed, F.M.; Adesida, I. Differences in the reaction kinetics and contact formation mechanisms of annealed Ti∕Al∕Mo∕Au Ohmic contacts on n GaN and AlGaN∕GaN epilayers. J. Appl. Phys. 2007, 101, 013702. [Google Scholar]
- Feng, Q.; Li, L.M.; Hao, Y.; Ni, J.Y.; Zhang, J.C. The improvement of ohmic contact of Ti/Al/Ni/Au to AlGaN/GaN HEMT by multi step annealing method. Solid-State Electron. 2009, 53, 955–958. [Google Scholar]
- Hwang, Y.H.; Ahn, S.; Dong, C.; Zhu, W.; Kim, B.J.; Ren, F.; Lind, A.G.; Jones, K.S.; Pearton, S.J.; Kravchenko, I. Effect of Buffer Oxide Etchant (BOE) on Ti/Al/Ni/Au Ohmic Contacts for AlGaN/GaN Based HEMT. ECS Trans. 2015, 69, 111–118. [Google Scholar]
- Yang, L. Planar and non gold metal stacks processes and conduction mechanism for AlGaN/GaN HEMTs on Si. Ph.D. Thesis, Nanyang Technological University, Singapore, 2016. [Google Scholar]
- Huang, Y.; Huang, Z.; Zhong, Z.; Yang, X.; Hong, Q.; Wang, H.; Huang, S.; Gao, N.; Chen, X.; Cai, D.; et al. Highly transparent light emitting diodes on graphene encapsulated Cu nanowires network. Sci. Rep. 2018, 8, 13721. [Google Scholar]
- Sandupatla, A.; Arulkumaran, S.; Ng, G.I.; Ranjan, K.; Deki, M.; Nitta, S.; Honda, Y.; Amano, H. Enhanced breakdown voltage in vertical Schottky diodes on compensated GaN drift layer grown on free-standing GaN. In Proceedings of the 13th International Conference on Nitride Semiconductors 2019 (ICNS-13), Bellevue, WA, USA, 7–12 July 2019. [Google Scholar]
- Sandupatla, A.; Arulkumaran, S.; Ng, G.I.; Ranjan, K.; Deki, M.; Nitta, S.; Honda, Y.; Amano, H. Effect of GaN drift-layer thicknesses in vertical Schottky Barrier Diodes on free-standing GaN substrates. In Proceedings of the 2018 International Conference on Solid State Devices and Materials (SSDM2018), Tokyo, Japan, 19–22 September 2018. [Google Scholar]
- Sandupatla, A.; Arulkumaran, S.; Ng, G.I.; Ranjan, K.; Deki, M.; Nitta, S.; Honda, Y.; Amano, H. GaN drift-layer thickness effects in vertical Schottky barrier diodes on free-standing HVPE GaN substrates. AIP Adv. 2019, 9, 045007. [Google Scholar]
- Hu, Z.; Nomoto, K.; Song, B.; Zhu, M.; Qi, M.; Pan, M.; Gao, X.; Protasenko, V.; Jena, D.; Xing, H.G. Near unity ideality factor and Shockley-Read-Hall lifetime in GaN-on-GaN p-n diodes with avalanche breakdown. Appl. Phys. Lett. 2015, 107, 243501. [Google Scholar]
- Tanaka, N.; Hasegawa, K.; Yasunishi, K.; Murakami, N.; Oka, T. 50 A vertical GaN Schottky barrier diode on a free-standing GaN substrate with blocking voltage of 790 V. Appl. Phys. Exp. 2015, 8, 071001. [Google Scholar]
- Tompkins, R.P.; Khan, M.R.; Green, R.; Jones, K.A.; Leach, J.H. IVT measurements of GaN power Schottky diodes with drift layers grown by HVPE on HVPE GaN substrates. J. Mater. Sci. Mater. Electron. 2016, 27, 6108–6114. [Google Scholar]
- Wang, J. Evaluation of GaN as a Radiation Detection Material. Master’s Thesis, Ohio State University, Columbus, OH, USA, 2012. [Google Scholar]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM—The stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. Sect. B 2010, 268, 1818–1823. [Google Scholar]
Si (ND) (/cm3) | Mg (NA) (/cm3) | CCD = ND − NA (/cm3) | |
---|---|---|---|
SIMS | Hall | ||
154.79 × 1014 | 147.09 × 1014 | 7.7 × 1014 | 7.5 × 1014 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sandupatla, A.; Arulkumaran, S.; Ranjan, K.; Ng, G.I.; Murmu, P.P.; Kennedy, J.; Nitta, S.; Honda, Y.; Deki, M.; Amano, H. Low Voltage High-Energy α-Particle Detectors by GaN-on-GaN Schottky Diodes with Record-High Charge Collection Efficiency. Sensors 2019, 19, 5107. https://doi.org/10.3390/s19235107
Sandupatla A, Arulkumaran S, Ranjan K, Ng GI, Murmu PP, Kennedy J, Nitta S, Honda Y, Deki M, Amano H. Low Voltage High-Energy α-Particle Detectors by GaN-on-GaN Schottky Diodes with Record-High Charge Collection Efficiency. Sensors. 2019; 19(23):5107. https://doi.org/10.3390/s19235107
Chicago/Turabian StyleSandupatla, Abhinay, Subramaniam Arulkumaran, Kumud Ranjan, Geok Ing Ng, Peter P. Murmu, John Kennedy, Shugo Nitta, Yoshio Honda, Manato Deki, and Hiroshi Amano. 2019. "Low Voltage High-Energy α-Particle Detectors by GaN-on-GaN Schottky Diodes with Record-High Charge Collection Efficiency" Sensors 19, no. 23: 5107. https://doi.org/10.3390/s19235107
APA StyleSandupatla, A., Arulkumaran, S., Ranjan, K., Ng, G. I., Murmu, P. P., Kennedy, J., Nitta, S., Honda, Y., Deki, M., & Amano, H. (2019). Low Voltage High-Energy α-Particle Detectors by GaN-on-GaN Schottky Diodes with Record-High Charge Collection Efficiency. Sensors, 19(23), 5107. https://doi.org/10.3390/s19235107