Piezoelectric Transducer-Based Structural Health Monitoring for Aircraft Applications
Abstract
:1. Introduction
- (1)
- Optimized sensor layout: Most SHM systems require an expert with years of experience to know where and how to install sensors for optimal damage detection for every new application.
- (2)
- Self-diagnostics: Most SHM systems do not have built-in self-diagnostics and thus cannot distinguish between damage to the structure and damage to the sensors themselves.
- (3)
- Environmental compensation: Most SHM systems are overly sensitive to environmental changes and do not have effective compensation techniques to allow practical field use.
- (4)
- Probability of detection: Most SHM systems cannot easily provide quantifiable specifications for resolution or probability of detection (POD) for every new application or sensor configuration.
- (5)
- Damage quantification: Most SHM systems do not output quantitative damage sizes with associated uncertainty values.
- (6)
- Airworthiness compliance: the SHM technology needs to meet not only the intended functions for a specific application, but also the requirements of airworthiness compliance
2. Piezoelectric Transducer Based SHM System
2.1. Sensor Network
2.2. Diagnostic Hardware and Principles of Monitoring
2.2.1. Wave Propagation-Based SHM
2.2.2. EMI-Based SHM
2.2.3. Impact Monitoring
2.2.4. Integrated Passive-Active Monitoring
3. Identification Algorithms of Damage and Impact
3.1. Algorithms for Wave Propagation-Based Damage Detection
3.2. Algorithms for EMI-Based Damage Detection
3.3. Algorithms for Impact Monitoring
4. Requirements for Practical Implementation of SHM
4.1. Design Principles of SHM System
4.1.1. Definition of System Function
4.1.2. Composition of SHM systems
4.1.3. Airworthiness Compliance
- (1)
- As an electric device on the aircraft, the SHM system must meet the electronic and electrical regulations for airworthiness, which include requirements about power supply, anti-static protection, fireproofing, high-intensity radiated fields (HIRF) protection, lightning protection, and anti-burst of oil tank, etc.
- (2)
- The integrated SHM system shall meet electrical wiring interconnection system (EWIS) regulations. The design and installation of wires, cables, connectors and switching devices shall satisfy with the requirements of electrical grounding, physical isolation, line shield and protection, and material flame-retardant, etc.
- (3)
- As an installed structure on the aircraft, the sensor network of SHM system shall meet the installation regulations for airworthiness, which include the requirements concerning weight, load distribution, material compatibility of sensor and adhesive layer with the aircraft structure, applicability and durability of sensor network, accessibility and detectability of the overall system, etc.
4.2. Some Key Issues for Implementation of SHM System
4.2.1. Capability of Large Sensor Network
4.2.2. Environmental Adaptability
4.2.3. Self-Diagnosis
4.2.4. Quantitative Monitoring Results
5. Development Trends of Structural Health Monitoring Technology
- (1)
- The sensing technology is developing to the multi-field coupling sensing technology.
- (2)
- Sensors are developing towards miniaturization, intellectualization and in-situ integration, and then can be seamlessly integrated with composite structures.
- (3)
- The monitoring process is developing to the life cycle of structure design, manufacture, service and maintenance of aircraft structure, especially aircraft composite structure.
- (4)
- Monitoring methods are developing from linearity to nonlinearity, from low frequency to high frequency, while diagnosis results are developing from qualitative to quantitative.
- (5)
- The performance of SHM systems is developing from detection of event, location and size of damage to the detection of effects.
6. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aliabadi, M.H.F.; Khodaei, Z.S. Structural Health Monitoring for Advanced Composite Structures; World Scientific Publishing Europe Ltd.: London, UK, 2017. [Google Scholar]
- Chang, F. Ultra reliable and super safe structures for the new century. In Proceedings of the 1st European workshop on structural health monitoring, Paris, France, 10–12 July 2002; DEStech Publications: Lancaster, PA, USA, 2002; pp. 3–12. [Google Scholar]
- Staszewski, W.; Boller, C.; Tomlinson, G.R. Health Monitoring of Aerospace Structures: Smart Sensor Technologies and Signal Processing; John Wiley & Sons: Chichester, UK, 2003. [Google Scholar]
- Giurgiutiu, V.; Zagrai, A.; Bao, J.J. Piezoelectric wafer embedded active sensors for aging aircraft structural health monitoring. Struct. Health Monit. 2002, 1, 41–61. [Google Scholar] [CrossRef]
- Ihn, J.B.; Chang, F.K. Detection and monitoring of hidden fatigue crack growth using a built-in piezoelectric sensor/actuator network: I. Diagnostics. Smart Mater. Struct. 2004, 13, 609. [Google Scholar] [CrossRef]
- Staszewski, W.; Mahzan, S.; Traynor, R. Health monitoring of aerospace composite structures–Active and passive approach. Compos. Sci. Technol. 2009, 69, 1678–1685. [Google Scholar] [CrossRef]
- Tracy, M.; Chang, F.K. Identifying impacts in composite plates with piezoelectric strain sensors, part I: Theory. J. Intell. Mater. Syst. Struct. 1998, 9, 920–928. [Google Scholar] [CrossRef]
- Qing, X.; Chan, H.; Beard, S.; Kumar, A. An active diagnostic system for structural health monitoring of rocket engines. J. Intell. Mater. Syst. Struct. 2006, 17, 619–628. [Google Scholar] [CrossRef]
- Qiu, L.; Yuan, S.; Boller, C. An adaptive guided wave-Gaussian mixture model for damage monitoring under time-varying conditions: Validation in a full-scale aircraft fatigue test. Struct. Health Monit. 2017, 16, 501–517. [Google Scholar] [CrossRef]
- Grave, J.H.L.; Håheim, M.L.; Echtermeyer, A.T. Measuring changing strain fields in composites with Distributed Fiber-Optic Sensing using the optical backscatter reflectometer. Compos. Part. B-Eng. 2015, 74, 138–146. [Google Scholar] [CrossRef]
- Roach, D. Real time crack detection using mountable comparative vacuum monitoring sensors. Smart Struct. Syst. 2009, 5, 317–328. [Google Scholar] [CrossRef]
- Tserpes, K.; Karachalios, V.; Giannopoulos, I.; Prentzias, V.; Ruzek, R. Strain and damage monitoring in CFRP fuselage panels using fiber Bragg grating sensors. Part I: Design, manufacturing and impact testing. Compos. Struct. 2014, 107, 726–736. [Google Scholar] [CrossRef]
- Sun, H.; Wang, T.; Liu, Q.; Qing, X. A novel eddy current array sensing film for quantitatively monitoring hole-edge crack growth in bolted joints. Struct. Mater. Struct. 2018, 28, 015018. [Google Scholar] [CrossRef]
- Beard, S.; Liu, B.; Qing, P.; Zhang, D. Challenges in implementation of SHM. In Proceedings of the 6th International Workshop on Structural Health Monitoring, Stanford University, Stanford, CA, USA, 11–13 September 2007. [Google Scholar]
- Lin, M.; Qing, X.; Kumar, A.; Beard, S.J. Smart layer and smart suitcase for structural health monitoring applications. In Proceedings of the SPIE’s 8th Annual International Symposium on Smart Structures and Materials, Newport Beach, CA, USA, 14 June 2001. [Google Scholar]
- Qing, X.P.; Beard, S.J.; Amrita, K.; Li, I.; Lin, M.; Chang, F.K. Stanford Multiactuator–Receiver Transduction (SMART) Layer Technology and Its Applications. In Encyclopedia of Structural Health Monitoring; Christian, B., Chang, F.K., Fujino, Y., Eds.; John Wiley & Sons: Chichester, UK, 2009. [Google Scholar]
- Qing, X.; Chang, F.-K. Method of Manufacturing a Structural Health Monitoring Layer. U.S. Patent No. 7413919, 20 June 2008. [Google Scholar]
- Qing, X.P.; Beard, S.J.; Kumar, A.; Ooi, T.K.; Chang, F.-K. Built-in sensor network for structural health monitoring of composite structure. J. Intell. Mater. Syst. Struct. 2007, 18, 39–49. [Google Scholar] [CrossRef]
- Qing, X.P.; Beard, S.J.; Kumar, A.; Chan, H.-L.; Ikegami, R. Advances in the development of built-in diagnostic system for filament wound composite structures. Compos. Sci. Technol. 2006, 66, 1694–1702. [Google Scholar] [CrossRef]
- Bekas, D.G.; Sharif-Khodaei, Z.; Aliabadi, M.H.F. An innovative diagnostic film for structural health monitoring of metallic and composite structures. Sensors 2018, 18, 2084. [Google Scholar] [CrossRef] [PubMed]
- Qing, X.P.; Beard, S.J.; Kumar, A.; Sullivan, K.; Aguilar, R.; Merchant, M.; Taniguchi, M. The performance of a piezoelectric-sensor-based SHM system under a combined cryogenic temperature and vibration environment. Smart Mater. Struct. 2008, 17, 055010. [Google Scholar] [CrossRef]
- Liang, C.; Sun, F.; Rogers, C. An impedance method for dynamic analysis of active material systems. J. Vib. Acoust. 1994, 116, 120–128. [Google Scholar] [CrossRef]
- Farrar, C.; Park, G.; Sohn, H.; Inman, D.J. Overview of piezoelectric impedance-based health monitoring and path forward. Shock Vib. Digest 2003, 35, 451–463. [Google Scholar]
- Budoya, D.E.; Baptista, F.G. A comparative study of impedance measurement techniques for structural health monitoring applications. IEEE. Trans. Instrum. Meas. 2018, 67, 912–924. [Google Scholar] [CrossRef]
- Annamdas, V.G.M.; Soh, C.K. Three-dimensional electromechanical impedance model. II: Damage analysis and PZT characterization. J. Aerosp. Eng. 2007, 20, 63–71. [Google Scholar] [CrossRef]
- Annamdas, V.G.M.; Soh, C.K. Three-dimensional electromechanical impedance model. I: Formulation of directional sum impedance. J. Aerosp. Eng. 2007, 20, 53–62. [Google Scholar] [CrossRef]
- Bhalla, S.; Kumar, P.; Gupta, A.; Datta, T.K. Simplified impedance model for adhesively bonded piezo-impedance transducers. J. Aerosp. Eng. 2009, 22, 373–382. [Google Scholar] [CrossRef]
- Sepehry, N.; Bakhtiari-Nejad, F.; Shamshirsaz, M. Discrete singular convolution and spectral finite element method for predicting electromechanical impedance applied on rectangular plates. J. Intell. Mater. Syst. Struct. 2017, 28, 2473–2488. [Google Scholar] [CrossRef]
- Zou, F.; Aliabadi, M. A Dual Boundary Element Model for Electromechanical Impedance Based Damage Detection Applications. Key Eng. Mater. 2015, 665, 265–268. [Google Scholar]
- Zhu, J.; Wang, Y.; Qing, X. A real-time electromechanical impedance-based active monitoring for composite patch bonded repair structure. Compos. Struct. 2019, 212, 513–523. [Google Scholar] [CrossRef]
- Na, W.S.; Baek, J. Impedance-based non-destructive testing method combined with unmanned aerial vehicle for structural health monitoring of civil infrastructures. Appl. Sci. 2016, 7, 15. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, G. A modified electro-mechanical impedance model of piezoelectric actuator-sensors for debonding detection of composite patches. J. Intell. Mater. Syst. Struct. 2002, 13, 389–396. [Google Scholar] [CrossRef]
- Beard, S.J.; Qing, X.; Chan, H.L.; Zhang, C.; Chang, F.-K. Method and apparatus for detecting a load change upon a structure and analyzing characteristics of resulting damage. U.S. Patent No. 7458266, 2 December 2008. [Google Scholar]
- Nasrollahi, A.; Deng, W.; Ma, Z.; Rizzo, P. Multimodal structural health monitoring based on active and passive sensing. Struct. Health Monit. 2018, 17, 395–409. [Google Scholar] [CrossRef]
- Su, Z.; Ye, L.; Lu, Y. Guided Lamb waves for identification of damage in composite structures: A review. J. Sound Vib. 2006, 295, 753–780. [Google Scholar] [CrossRef]
- Willberg, C.; Duczek, S.; Vivar-Perez, J.M.; Ahmad, Z. Simulation methods for guided wave- based structural health monitoring: A review. Appl. Mech. Rev. 2015, 67, 10803. [Google Scholar] [CrossRef]
- Sohn, H.; Farrar, C.R. Damage diagnosis using time series analysis of vibration signals. Smart Mater. Struct. 2001, 10, 446. [Google Scholar] [CrossRef]
- Koh, Y.; Chiu, W.; Rajic, N. Effects of local stiffness changes and delamination on Lamb wave transmission using surface-mounted piezoelectric transducers. Compos. Struct. 2002, 57, 437–443. [Google Scholar] [CrossRef]
- Kim, Y.Y.; Kim, E.-H. Effectiveness of the continuous wavelet transform in the analysis of some dispersive elastic waves. J. Acoust. Soc. Am. 2001, 110, 86–94. [Google Scholar] [CrossRef]
- Kessler, S.S.; Spearing, S.M.; Soutis, C. Damage detection in composite materials using Lamb wave methods. Smart Mater. Struct. 2002, 11, 269. [Google Scholar] [CrossRef]
- Keilers Jr, C.H.; Chang, F.-K. Identifying delamination in composite beams using built-in piezoelectrics: Part I—experiments and analysis. J. Intell. Mater. Syst. Struct. 1995, 6, 649–663. [Google Scholar] [CrossRef]
- Leonard, K.R.; Malyarenko, E.V.; Hinders, M.K. Ultrasonic Lamb wave tomography. Inverse Probl. 2002, 18, 1795. [Google Scholar] [CrossRef]
- Giurgiutiu, V.; Bao, J. Embedded-ultrasonics structural radar for in situ structural health monitoring of thin-wall structures. Struct. Health Monit. 2004, 3, 121–140. [Google Scholar] [CrossRef]
- Peng, H.; Meng, G.; Li, F. Modeling of wave propagation in plate structures using three-dimensional spectral element method for damage detection. J. Sound Vib. 2009, 320, 942–954. [Google Scholar] [CrossRef]
- Kudela, P.; Zak, A.; Krawczuk, M.; Ostachowicz, W. Modelling of wave propagation in composite plates using the time domain spectral element method. J. Sound Vib. 2007, 302, 728–745. [Google Scholar] [CrossRef]
- Sun, H.; Zhou, L. Modeling and parameter study of PWAS-induced Lamb wave based on spectral finite element. Chin. J. Solid Mech. 2014, 35, 21–29. [Google Scholar]
- Velichko, A.; Wilcox, P.D. Post-processing of guided wave array data for high resolution pipe inspection. J. Acoust. Soc. Am. 2009, 126, 2973–2982. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Giurgiutiu, V. Combined analytical FEM approach for efficient simulation of Lamb wave damage detection. Ultrasonics 2016, 69, 116–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambroziński, Ł.; Stepinski, T.; Uhl, T. Efficient tool for designing 2D phased arrays in lamb waves imaging of isotropic structures. J. Intell. Mater. Syst. Struct. 2015, 26, 2283–2294. [Google Scholar] [CrossRef]
- Engholm, M.; Stepinski, T. Direction of arrival estimation of Lamb waves using circular arrays. Struct. Health Monit. 2011, 10, 467–480. [Google Scholar] [CrossRef]
- Giridhara, G.; Rathod, V.; Naik, S.; Mahapatra, D.R.; Gopalakrishnan, S. Rapid localization of damage using a circular sensor array and Lamb wave based triangulation. Mech. Syst. Signal Process. 2010, 24, 2929–2946. [Google Scholar] [CrossRef]
- Li, F.; Peng, H.; Meng, G. Quantitative damage image construction in plate structures using a circular PZT array and lamb waves. Sens. Actuat. A-Phys. 2014, 214, 66–73. [Google Scholar] [CrossRef]
- Qiu, L.; Liu, B.; Yuan, S.; Su, Z.; Ren, Y. A scanning spatial-wavenumber filter and PZT 2-D cruciform array based on-line damage imaging method of composite structure. Sens. Actuat. A-Phys. 2016, 248, 62–72. [Google Scholar] [CrossRef]
- Yu, L.; Giurgiutiu, V. In situ 2-D piezoelectric wafer active sensors arrays for guided wave damage detection. Ultrasonics 2008, 48, 117–134. [Google Scholar] [CrossRef] [PubMed]
- Lei, Q.; Bin, L.; Shenfang, Y.; Qiao, B. A spatial filter and two linear PZT arrays based composite structure imaging method. Vibroeng. Procedia 2015, 17, 1218–1231. [Google Scholar]
- Malinowski, P.; Wandowski, T.; Trendafilova, I.; Ostachowicz, W. A phased array-based method for damage detection and localization in thin plates. Struct. Health Monit. 2009, 8, 5–15. [Google Scholar] [CrossRef]
- He, J.; Yuan, F.-G. Lamb wave-based subwavelength damage imaging using the DORT-MUSIC technique in metallic plates. Struct. Health Monit. 2016, 15, 65–80. [Google Scholar] [CrossRef] [Green Version]
- Leleux, A.; Micheau, P.; Castaings, M. Long range detection of defects in composite plates using Lamb waves generated and detected by ultrasonic phased array probes. J. Nondestruct. Eval. 2013, 32, 200–214. [Google Scholar] [CrossRef]
- Purekar, A.; Pines, D. Damage detection in thin composite laminates using piezoelectric phased sensor arrays and guided Lamb wave interrogation. J. Intell. Mater. Syst. Struct. 2010, 21, 995–1010. [Google Scholar] [CrossRef]
- Rajagopalan, J.; Balasubramaniam, K.; Krishnamurthy, C. A phase reconstruction algorithm for Lamb wave based structural health monitoring of anisotropic multilayered composite plates. J. Acoust. Soc. Am. 2006, 119, 872–878. [Google Scholar] [CrossRef]
- Yan, F.; Rose, J.L. Guided wave phased array beam steering in composite plates. In Proceedings of the Health Monitoring of Structural and Biological Systems, Portland, OR, USA, 25 March 2007. [Google Scholar]
- Yu, L.; Tian, Z. Guided wave phased array beamforming and imaging in composite plates. Ultrasonics 2016, 68, 43–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.H.; Rose, J.T.; Chang, F.-K. A synthetic time-reversal imaging method for structural health monitoring. Smart Mater. Struct. 2004, 13, 415. [Google Scholar] [CrossRef]
- Michaels, J.E. Detection, localization and characterization of damage in plates with an in situ array of spatially distributed ultrasonic sensors. Smart Mater. Struct. 2008, 17, 035035. [Google Scholar] [CrossRef]
- Michaels, J.E.; Michaels, T.E. Guided wave signal processing and image fusion for in situ damage localization in plates. Wave Motion 2007, 44, 482–492. [Google Scholar] [CrossRef]
- Hall, J.S.; Michaels, J.E. Minimum variance ultrasonic imaging applied to an in situ sparse guided wave array. IEEE Trans. Ultrason. Ferroelectr. 2010, 57, 2311–2323. [Google Scholar] [CrossRef]
- Qiu, L.; Liu, M.; Qing, X.; Yuan, S. A quantitative multidamage monitoring method for large-scale complex composite. Struct. Health Monit. 2013, 12, 183–196. [Google Scholar] [CrossRef]
- Ng, C.-T.; Veidt, M. A Lamb-wave-based technique for damage detection in composite laminates. Smart Mater. Struct. 2009, 18, 074006. [Google Scholar] [CrossRef] [Green Version]
- Cai, J.; Shi, L.; Yuan, S.; Shao, Z. High spatial resolution imaging for structural health monitoring based on virtual time reversal. Smart Mater. Struct. 2011, 20, 055018. [Google Scholar] [CrossRef]
- Zhao, X.; Royer, R.L.; Owens, S.E.; Rose, J.L. Ultrasonic Lamb wave tomography in structural health monitoring. Smart Mater. Struct. 2011, 20, 105002. [Google Scholar] [CrossRef]
- Hou, J.; Leonard, K.R.; Hinders, M.K. Automatic multi-mode Lamb wave arrival time extraction for improved tomographic reconstruction. Inverse Prob. 2004, 20, 1873. [Google Scholar] [CrossRef]
- Khare, S.; Razdan, M.; Munshi, P.; Sekhar, B.; Balasubramaniam, K. Defect detection in carbon-fiber composites using lamb-wave tomographic methods. Res. Nondestruct. Eval. 2007, 18, 101–119. [Google Scholar] [CrossRef]
- Chan, E.; Rose, L.F.; Wang, C.H. An extended diffraction tomography method for quantifying structural damage using numerical Green’s functions. Ultrasonics 2015, 59, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Koduru, J.P.; Rose, J.L. Mode controlled guided wave tomography using annular array transducers for SHM of water loaded plate like structures. Smart Mater. Struct. 2013, 22, 125021. [Google Scholar] [CrossRef]
- Hay, T.; Royer, R.; Gao, H.; Zhao, X.; Rose, J. A comparison of embedded sensor Lamb wave ultrasonic tomography approaches for material loss detection. Smart Mater. Struct. 2006, 15, 946. [Google Scholar] [CrossRef]
- Wang, D.; Ye, L.; Su, Z.; Lu, Y.; Li, F.; Meng, G. Probabilistic damage identification based on correlation analysis using guided wave signals in aluminum plates. Struct. Health Monit. 2010, 9, 133–144. [Google Scholar] [CrossRef]
- Wang, D.; Ye, L.; Lu, Y.; Su, Z. Probability of the presence of damage estimated from an active sensor network in a composite panel of multiple stiffeners. Compos. Sci. Technol. 2009, 69, 2054–2063. [Google Scholar] [CrossRef]
- Hua, J.; Lin, J.; Zeng, L. High-resolution damage detection based on local signal difference coefficient model. Struct. Health Monit. 2015, 14, 20–34. [Google Scholar] [CrossRef]
- Liu, K.; Ma, S.; Wu, Z.; Zheng, Y.; Qu, X.; Wang, Y.; Wu, W. A novel probability-based diagnostic imaging with weight compensation for damage localization using guided waves. Struct. Health Monit. 2016, 15, 162–173. [Google Scholar] [CrossRef]
- Gao, D.; Wu, Z.; Yang, L.; Zheng, Y. Guide waves-based multi-damage identification using a local probability-based diagnostic imaging method. Smart Mater. Struct. 2016, 25, 045009. [Google Scholar] [CrossRef]
- Lu, Y.; Michaels, J.E. A methodology for structural health monitoring with diffuse ultrasonic waves in the presence of temperature variations. Ultrasonics 2005, 43, 717–731. [Google Scholar] [CrossRef] [PubMed]
- Konstantinidis, G.; Drinkwater, B.; Wilcox, P. The temperature stability of guided wave structural health monitoring systems. Smart Mater. Struct. 2006, 15, 967. [Google Scholar] [CrossRef]
- Croxford, A.J.; Moll, J.; Wilcox, P.D.; Michaels, J.E. Efficient temperature compensation strategies for guided wave structural health monitoring. Ultrasonics 2010, 50, 517–528. [Google Scholar] [CrossRef] [PubMed]
- Clarke, T.; Cawley, P.; Wilcox, P.D.; Croxford, A.J. Evaluation of the damage detection capability of a sparse-array guided-wave SHM system applied to a complex structure under varying thermal conditions. IEEE Trans. Ultrason. Ferroelectr. 2009, 56, 2666–2678. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gao, L.; Yuan, S.; Qiu, L.; Qing, X. An adaptive filter–based temperature compensation technique for structural health monitoring. J. Intell. Mater. Syst. Struct. 2014, 25, 2187–2198. [Google Scholar] [CrossRef]
- Michaels, J.E.; Lee, S.J.; Michaels, T.E. Impact of applied loads on guided wave structural health monitoring. In Proceedings of the AIP Conference, San Diego, CA, USA, 18–23 July 2010. [Google Scholar]
- Gandhi, N.; Michaels, J.E.; Lee, S.J. Acoustoelastic Lamb wave propagation in a homogeneous, isotropic aluminum plate. In Proceedings of the AIP Conference, San Diego, CA, USA, 18–23 July 2010. [Google Scholar]
- Roy, S.; Ladpli, P.; Chang, F.-K. Load monitoring and compensation strategies for guided-waves based structural health monitoring using piezoelectric transducers. J. Sound Vib. 2015, 351, 206–220. [Google Scholar] [CrossRef]
- Salmanpou, M.; Khodaei, Z.S.; Aliabadi, M.H.F. Impact damage localisation with piezoelectric sensors under operational and environmental conditions. Sensors 2017, 17, 1178. [Google Scholar] [CrossRef]
- Wang, Q.; Yuan, S. Baseline-free Imaging Method based on New PZT Sensor Arrangements. J. Intell. Mater. Syst. Struct. 2009, 20, 1663–1673. [Google Scholar]
- Sohn, H.; Park, H.W.; Law, K.H.; Farrar, C.R. Damage detection in composite plates by using an enhanced time reversal method. J. Aerosp. Eng. 2007, 20, 141–151. [Google Scholar] [CrossRef]
- Poddar, B.; Kumar, A.; Mitra, M.; Mujumdar, P.M. Time reversibility of a Lamb wave for damage detection in a metallic plate. Smart Mater. Struct. 2011, 20, 25001. [Google Scholar] [CrossRef]
- Bijudas, C.R.; Mitra, M.; Mujumdar, P.M. Time reversed Lamb wave for damage detection in a stiffened aluminum plate. Smart Mater. Struct. 2013, 22, 105026. [Google Scholar] [CrossRef]
- Lim, H.J.; Sohn, H.; Yeum, C.; Kim, K. Reference-free damage detection, localization, and quantification in composites. J. Acoust. Soc. Am. 2013, 133, 3838–3845. [Google Scholar] [PubMed]
- Thiene, M.; Khodaei, Z.S.; Abliabadi, M.H. Optimal sensor placement for maximum area coverage (MAC) for damage localization in composite structures. Smart Mater. Struct. 2016, 25, 095037. [Google Scholar] [CrossRef]
- Annamdas, V.G.M.; Soh, C.K. Application of electromechanical impedance technique for engineering structures: Review and future issues. J. Intell. Mater. Syst. Struct. 2010, 21, 41–59. [Google Scholar] [CrossRef]
- Annamdas, V.G.; Radhika, M.A. Electromechanical impedance of piezoelectric transducers for monitoring metallic and non-metallic structures: A review of wired, wireless and energy-harvesting methods. J. Intell. Mater. Syst. Struct. 2013, 24, 1021–1042. [Google Scholar] [CrossRef]
- Na, W.; Baek, J. A review of the piezoelectric electromechanical impedance based structural health monitoring technique for engineering structures. Sensors 2018, 18, 1307. [Google Scholar] [CrossRef]
- Soh, C.-K.; Lim, Y. Fatigue damage diagnosis and prognosis using electromechanical impedance technique. In Structural Health Monitoring (SHM) in Aerospace Structures; Elsevier: Amsterdam, The Netherlands, 2016; pp. 429–446. [Google Scholar]
- Boukabache, H.; Escriba, C.; Zedek, S.; Medale, D.; Rolet, S.; Fourniols, J.Y. System-on-Chip integration of a new electromechanical impedance calculation method for aircraft structure health monitoring. Sensors 2012, 12, 13617–13635. [Google Scholar] [CrossRef]
- Na, W.S. Low cost technique for detecting adhesive debonding damage of glass epoxy composite plate using an impedance based non-destructive testing method. Compos. Struct. 2018, 189, 99–106. [Google Scholar] [CrossRef]
- Zhuang, Y.; Kopsaftopoulos, F.; Dugnani, R.; Chang, F.-K. Integrity monitoring of adhesively bonded joints via an electromechanical impedance-based approach. Struct. Health Monit. 2018, 17, 1031–1045. [Google Scholar] [CrossRef]
- Simmers, G.E.; Sodano, H.A.; Park, G.; Inman, D.J. Detection of corrosion using piezoelectric impedance-based structural health monitoring. AIAA. J. 2006, 44, 2800–2803. [Google Scholar] [CrossRef]
- Martowicz, A.; Sendecki, A.; Salamon, M.; Rosiek, M.; Uhl, T. Application of electromechanical impedance-based SHM for damage detection in bolted pipeline connection. Nondestruct. Test. Eval. 2016, 31, 17–44. [Google Scholar] [CrossRef]
- Tseng, K.K.; Naidu, A. Non-parametric damage detection and characterization using smart piezoceramic material. Smart Mater. Struct. 2002, 11, 317. [Google Scholar] [CrossRef]
- Tinoco, H.A.; Marulanda, D. A new index for damage identification in active beams with electromechanical impedance technique (EMI) approach to SHM. In Proceedings of the II International Conference on Advanced Mechatronics, Design, and Manufacturing Technology, Bogota, Colombia, 13–15 October 2014. [Google Scholar]
- Giurgiutiu, V. Structural Health Monitoring with Piezoelectric Wafer Active Sensors: With Piezoelectric Wafer Active Sensors; Academic Press: Burlington, MA, USA, 2007. [Google Scholar]
- Tawie, R.; Lee, H.-K. Monitoring the strength development in concrete by EMI sensing technique. Constr. Build. Mater. 2010, 24, 1746–1753. [Google Scholar] [CrossRef]
- Hu, X.; Zhu, H.; Wang, D. A study of concrete slab damage detection based on the electromechanical impedance method. Sensors 2014, 14, 19897–19909. [Google Scholar] [CrossRef] [PubMed]
- Wandowski, T.; Opoka, S.; Malinowski, P.; Ostachowicz, W. The performance of three Electromechanical Impedance damage indicators on structural element with bolted joints. In Proceedings of the International Symposiumon NDT in Aerospace, Bremen, Germany, 16–18 November 2015. [Google Scholar]
- Raju, V. Implementing Impedance-Based Health Monitoring. Ph.D. Thesis, Virginia Tech, Blacksburg, VA, USA, 1997. [Google Scholar]
- Ai, D.; Zhu, H.; Luo, H.; Yang, J. An effective electromechanical impedance technique for steel structural health monitoring. Constr. Build. Mater. 2014, 73, 97–104. [Google Scholar] [CrossRef]
- Tinoco, H.A.; Robledo-Callejas, L.; Marulanda, D.J.; Serpa, A.L. Damage detection in plates using the electromechanical impedance technique based on decoupled measurements of piezoelectric transducers. J. Sound Vib. 2016, 384, 146–162. [Google Scholar] [CrossRef]
- de Oliveira, M.A.; Vieira Filho, J.; Lopes Jr, V.; Inman, D.J. Damage detection based on electromechanical impedance principle and principal components. In Topics in Modal Analysis; Springer: Basel, Switzerland, 2014; Volume 7, pp. 307–315. [Google Scholar]
- Vieira Filho, J.; Baptista, F.G.; Inman, D.J. Time-domain analysis of piezoelectric impedance-based structural health monitoring using multilevel wavelet decomposition. Mech. Syst. Sig. Process. 2011, 25, 1550–1558. [Google Scholar] [CrossRef]
- Zahedi, F.; Huang, H. Time–frequency analysis of electro-mechanical impedance (EMI) signature for physics-based damage detections using piezoelectric wafer active sensor (PWAS). Smart Mater. Struct. 2017, 26, 055010. [Google Scholar] [CrossRef]
- Giurgiutiu, V.; Postolache, C.; Tudose, M. Radiation, temperature, and vacuum effects on piezoelectric wafer active sensors. Smart Mater. Struct. 2016, 25, 035024. [Google Scholar] [CrossRef]
- Campeiro, L.M.; da Silveira, R.Z.; Baptista, F.G. Impedance-based damage detection under noise and vibration effects. Struct. Health Monit. 2018, 17, 654–667. [Google Scholar] [CrossRef]
- Islam, M.; Huang, H. Understanding the effects of adhesive layer on the electromechanical impedance (EMI) of bonded piezoelectric wafer transducer. Smart Mater. Struct. 2014, 23, 125037. [Google Scholar] [CrossRef]
- Wandowski, T.; Malinowski, P.H.; Ostachowicz, W.M. Temperature and damage influence on electromechanical impedance method used for carbon fibre–reinforced polymer panels. J. Intell. Mater. Syst. Struct. 2017, 28, 782–798. [Google Scholar] [CrossRef]
- Sepehry, N.; Shamshirsaz, M.; Abdollahi, F. Temperature variation effect compensation in impedance-based structural health monitoring using neural networks. J. Intell. Mater. Syst. Struct. 2011, 22, 1975–1982. [Google Scholar] [CrossRef]
- Gao, D.; Wu, Z.; Yang, L.; Zheng, Y. Integrated impedance and Lamb wave–based structural health monitoring strategy for long-term cycle-loaded composite structure. Struct. Health Monit. 2018, 17, 763–776. [Google Scholar] [CrossRef]
- Hoshyarmanesh, H.; Abbasi, A. Structural health monitoring of rotary aerospace structures based on electromechanical impedance of integrated piezoelectric transducers. J. Intell. Mater. Syst. Struct. 2018, 29, 1799–1817. [Google Scholar] [CrossRef]
- Na, W.S.; Lee, H. Experimental investigation for an isolation technique on conducting the electromechanical impedance method in high-temperature pipeline facilities. J. Sound Vib. 2016, 383, 210–220. [Google Scholar] [CrossRef]
- Gaul, L.; Hurlebaus, S. Identification of the impact location on a plate using wavelets. Mech. Syst. Sig. Process. 1998, 12, 783–795. [Google Scholar] [CrossRef]
- Meo, M.; Zumpano, G.; Piggott, M.; Marengo, G. Impact identification on a sandwich plate from wave propagation responses. Compos. Struct. 2005, 71, 302–306. [Google Scholar] [CrossRef]
- Zhang, C.; Ji, H.; Qiu, J.; Wu, Y.; Hu, N. Impact identification using a passive imaging method. Int. J. Appl. Electrom. 2014, 46, 835–844. [Google Scholar] [CrossRef]
- Choi, K.; Chang, F.-K. Identification of impact force and location using distributed sensors. AIAA. J. 1996, 34, 136–142. [Google Scholar] [CrossRef]
- Tracy, M.J.; Chang, F.-K. Identifying impact load in composite plates based on distributed piezoelectric sensor measurements. In Proceedings of the 1996 Symposium on Smart Structures and Materials, San Diego, CA, USA, 1 May 1996. [Google Scholar]
- Seydel, R.; Chang, F.-K. Impact identification of stiffened composite panels: I. System development. Smart Mater. Struct. 2001, 10, 354. [Google Scholar] [CrossRef]
- Seydel, R.; Chang, F.-K. Impact identification of stiffened composite panels: II. Implementation studies. Smart Mater. Struct. 2001, 10, 370. [Google Scholar] [CrossRef]
- Park, J.; Chang, F.-K. System identification method for monitoring impact events. In Proceedings of the SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, San Diego, CA, USA, 16 May 2005. [Google Scholar]
- Mueller, I.; Das, S.; Roy, S.; Janapati, V.; Vonnieda, K.; Zhang, D.; Chang, F.-K. An integrated health management system for real-time impact monitoring and prediction of impact-induced damage on composite structures. Health Monitoring of Structural and Biological Systems. In Proceedings of the SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, San Diego, CA, USA, 8 April 2010. [Google Scholar]
- Ahmari, S.; Yang, M. Impact location and load identification through inverse analysis with bounded uncertain measurements. Smart Mater. Struct. 2013, 22, 085024. [Google Scholar] [CrossRef]
- Yang, M.; Ahmari, S. Impact event identification through real-time strain measurements. In Proceedings of the SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, San Diego, CA, USA, 8 March 2014. [Google Scholar]
- Worden, K.; Staszewski, W. Impact location and quantification on a composite panel using neural networks and a genetic algorithm. Strain 2000, 36, 61–68. [Google Scholar] [CrossRef]
- Staszewski, W.J.; Worden, K.; Wardle, R.; Tomlinson, G.R. Fail-safe sensor distributions for impact detection in composite materials. Smart Mater. Struct. 2000, 9, 298. [Google Scholar] [CrossRef]
- Worden, K.; Dulieu-Barton, J.M. An overview of intelligent fault detection in systems and structures. Struct. Health Monit. 2004, 3, 85–98. [Google Scholar] [CrossRef]
- LeClerc, J.; Worden, K.; Staszewski, W.J.; Haywood, J. Impact detection in an aircraft composite panel—A neural-network approach. J. Sound Vib. 2007, 299, 672–682. [Google Scholar] [CrossRef]
- Chen, C.; Li, Y.; Yuan, F.-G. Impact source identification in finite isotropic plates using a time-reversal method: Experimental study. Smart Mater. Struct. 2012, 21, 105025. [Google Scholar] [CrossRef]
- Markmiller, J.F.; Chang, F.-K. Sensor network optimization for a passive sensing impact detection technique. Struct. Health Monit. 2010, 9, 25–39. [Google Scholar] [CrossRef]
- De Marchi, L.; Marzani, A.; Speciale, N.; Viola, E. A passive monitoring technique based on dispersion compensation to locate impacts in plate-like structures. Smart Mater. Struct. 2011, 20, 035021. [Google Scholar] [CrossRef]
- Kundu, T.; Nakatani, H.; Takeda, N. Acoustic source localization in anisotropic plates. Ultrasonics 2012, 52, 740–746. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, N.; Meruane, V.; Ortiz-Bernardin, A. A novel impact identification algorithm based on a linear approximation with maximum entropy. Smart Mater. Struct. 2016, 25, 095050. [Google Scholar] [CrossRef]
- Fu, H.; Vong, C.M.; Wong, P.K. Fast detection of impact location using kernel extreme learning machine. Neural Comput. Appl. 2016, 27, 121–130. [Google Scholar] [CrossRef]
- Merlo, E.M.; Bulletti, A.; Giannelli, P.; Calzolai, M.; Capineri, L. A novel differential time-of-arrival estimation technique for impact localization on carbon fiber laminate sheets. Sensors 2017, 17, 2270. [Google Scholar] [CrossRef]
- Zhu, K.; Qing, X.P.; Liu, B. A two-step impact localization method for composite structures with a parameterized laminate model. Compos. Struct. 2018, 192, 500–506. [Google Scholar] [CrossRef]
- Khodaei, Z.S.; Ghajari, M.; Aliabadi, M.H. Determination of impact location on composite stiffened panels. Smart Mater. Struct. 2012, 21, 105026. [Google Scholar] [CrossRef]
- Hodge, V.J.; O’Keefe, S.; Weeks, M.; Moulds, A. Wireless sensor networks for condition monitoring in the railway industry: A survey. IEEE Trans. Intell. Transp. Syst. 2015, 16, 1088–1106. [Google Scholar] [CrossRef]
- Cheong, P.; Chang, K.-F.; Lai, Y.-H.; Ho, S.-K.; Sou, I.-K.; Tam, K.-W. A ZigBee-based wireless sensor network node for ultraviolet detection of flame. IEEE Trans. Ind. Electron. 2011, 58, 5271–5277. [Google Scholar] [CrossRef]
- Bouzid, O.M.; Tian, G.Y.; Cumanan, K.; Moore, D. Structural health monitoring of wind turbine blades: Acoustic source localization using wireless sensor networks. J. Sens. 2015, 2015, 139695. [Google Scholar] [CrossRef]
- 152 Liu, P.; Yuan, S.; Qiu, L. Development of a PZT-based wireless digital monitor for composite impact monitoring. Smart Mater. Struct. 2012, 21, 035018. [Google Scholar] [CrossRef]
- Yuan, S.; Wang, Z.; Qiu, L.; Wang, Y.; Liu, M. A multi-radio sink node designed for wireless SHM applications. Smart. Struct. Syst. 2013, 11, 261–282. [Google Scholar] [CrossRef]
- Yuan, S.; Ren, Y.; Qiu, L.; Mei, H. A multi-response-based wireless impact monitoring network for aircraft composite structures. IEEE Trans. Ind. Electron. 2016, 63, 7712–7722. [Google Scholar] [CrossRef]
- Fu, H.; Khodaei, Z.S.; Aliabadi, M.H.F. An event-triggered energy-efficient wirelessstructural health monitoring system for impact detection in composite airframes. IEEE Internet Things J. 2018. [Google Scholar] [CrossRef]
- Fan, Z.; Wang, Y.S.; Qiu, X.Q.; Qing, X. Design and manufacture technology of expandable multifunctional composite structure state sensing network. J. Exp. Mech. 2018, 33, 85–92. [Google Scholar]
- Salowitz, N.P.; Guo, Z.; Kim, S.-J.; Li, Y.-H.; Lanzara, G.; Chang, F.-K. Microfabricated expandable sensor networks for intelligent sensing materials. IEEE. Sens. J. 2014, 14, 2138–2144. [Google Scholar] [CrossRef]
- Kusaka, T.; Qing, P. Characterization of loading effects on the performance of SMART layer embedded or surface-mounted on structures. In Proceedings of the Fourth International Workshop on Structural Health Monitoring, Stanford University, Stanford, CA, USA, 15–17 September 2003. [Google Scholar]
- Sun, H.; Wang, Y.; Qing, X.; Wu, Z. High Strain Survivability of Piezoceramics by Optimal Bonding Adhesive Design. Sensors 2018, 18, 2554. [Google Scholar] [CrossRef]
- Qing, X.P.; Kumar, A.; Beard, S.; Yu, P.; Zhang, D.; Liu, C.; Hannum, R. Advanced Self-sufficient Structural Health Monitoring System. In Proceedings of the Third European Workshop on Structural Health Monitoring, Granada, Spain, 5–7 July 2006. [Google Scholar]
- Lin, M.; Chang, F.-K. The manufacture of composite structures with a built-in network of piezoceramics. Compos. Sci. Technol. 2002, 62, 919–939. [Google Scholar] [CrossRef]
- Beard, S.; Liu, C.-C.; Chang, F.-K. Design of a robust SHM system for composite structures. In Proceedings of the SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, San Diego, CA, USA, 11 April 2007. [Google Scholar]
- Qing, X.P.; Beard, S.; Shen, S.B.; Banerjee, S.; Bradley, I.; Salama, M.M.; Chang, F.-K. Development of a real-time active pipeline integrity detection system. Smart Mater. Struct. 2009, 18, 115010. [Google Scholar] [CrossRef]
- Su, Z.; Ye, L. Lamb wave-based quantitative identification of delamination in CF/EP composite structures using artificial neural algorithm. Compos. Struct. 2004, 66, 627–637. [Google Scholar] [CrossRef]
- Dworakowski, Z.; Ambrozinski, L.; Packo, P.; Dragan, K.; Stepinski, T. Application of artificial neural networks for compounding multiple damage indices in Lamb-wave-based damage detection. Struct. Control Health Monit. 2015, 22, 50–61. [Google Scholar] [CrossRef]
- Sbarufatti, C.; Manson, G.; Worden, K. A numerically-enhanced machine learning approach to damage diagnosis using a Lamb wave sensing network. J. Sound Vib. 2014, 333, 4499–4525. [Google Scholar] [CrossRef]
- Sushant, A.; Mira, M. Lamb wave based automatic damage detection using matching pursuit and machine learning. Smart Mater. Struct. 2014, 23, 085012. [Google Scholar]
- Liu, Y.; Chattopadhyay, A. Low-velocity impact damage monitoring of a sandwich composite wing. J. Intell. Mater. Syst. Struct. 2013, 24, 2074–2083. [Google Scholar] [CrossRef]
- Flynn, E.B.; Todd, M.D.; Wilcox, P.D.; Drinkwater, B.W.; Croxford, A.J. Maximum-likelihood estimation of damage location in guided-wave structural health monitoring. Proc. R. Soc. A Math. Phys. Eng. Sci. 2011, 467, 2575–2596. [Google Scholar] [CrossRef] [Green Version]
- Ng, C.-T. On the selection of advanced signal processing techniques for guided wave damage identification using a statistical approach. Eng. Struct. 2014, 67, 50–60. [Google Scholar] [CrossRef] [Green Version]
- Gang, Y. A Bayesian approach for damage localization in plate-like structures using Lamb waves. Smart Mater. Struct. 2013, 22, 035012. [Google Scholar]
- Cantero-Chinchilla, S.; Chiachío, J.; Chiachío, M.; Chronopoulos, D.; Jones, A. A robust Bayesian methodology for damage localization in plate-like structures using ultrasonic guided-waves. Mech. Syst. Sig. Process. 2019, 122, 192–205. [Google Scholar] [CrossRef]
- Chakraborty, D.; Kovvali, N.; Papandreou-Suppappola, A.; Chattopadhyay, A. An adaptive learning damage estimation method for structural health monitoring. J. Intell. Mater. Syst. Struct. 2015, 26, 125–143. [Google Scholar] [CrossRef]
- Lei, Q.; Yuan, S.; Chang, F.K.; Qiao, B.; Mei, H. On-line updating Gaussian mixture model for aircraft wing spar damage evaluation under time-varying boundary condition. Smart Mater. Struct. 2014, 23, 125001. [Google Scholar]
- Lei, Q.; Yuan, S.; Qiao, B.; Mei, H.; Ren, Y. Crack propagation monitoring in a full-scale aircraft fatigue test based on guided wave-Gaussian mixture model. Smart Mater. Struct. 2016, 25, 055048. [Google Scholar]
- Ren, Y.; Qiu, L.; Yuan, S.; Fang, F. Gaussian mixture model–based path-synthesis accumulation imaging of guided wave for damage monitoring of aircraft composite structures under temperature variation. Struct. Health Monit. 2018. [Google Scholar] [CrossRef]
- Yan, G. A particle filter method for damage location in plate-like structures by using Lamb waves. Struct. Control Health Monit. 2014, 21, 847–867. [Google Scholar] [CrossRef]
- Chen, J.; Yuan, S.; Qiu, L.; Wang, H.; Yang, W. On-line prognosis of fatigue crack propagation based on Gaussian weight-mixture proposal particle filter. Ultrasonics 2018, 82, 134–144. [Google Scholar] [CrossRef]
- Spencer, B., Jr.; Ruiz-Sandoval, M.E.; Kurata, N. Smart sensing technology: Opportunities and challenges. Struct. Control Health Monit. 2004, 11, 349–368. [Google Scholar] [CrossRef]
- Wang, Y.; Qing, X. Progress on Study of Structural Health Monitoring of Composite Joints. Acta Mater. Compos. Sin. 2016, 33, 1–16. [Google Scholar]
- Di Sante, R. Fibre optic sensors for structural health monitoring of aircraft composite structures: Recent advances and applications. Sensors 2015, 15, 18666–18713. [Google Scholar] [CrossRef]
- McEvoy, M.A.; Correll, N. Materials that couple sensing, actuation, computation, and communication. Science 2015, 347, 1261689. [Google Scholar] [CrossRef]
- Baughman, R.H.; Cui, C.; Zakhidov, A.A.; Iqbal, Z.; Barisci, J.N.; Spinks, G.M.; Wallace, G.G.; Mazzoldi, A.; De Rossi, D.; Rinzler, A.G. Carbon nanotube actuators. Science 1999, 284, 1340–1344. [Google Scholar] [CrossRef]
- Zagrai, A.; Doyle, D.; Gigineishvili, V.; Brown, J.; Gardenier, H.; Arritt, B. Piezoelectric wafer active sensor structural health monitoring of space structures. J. Intell. Mater. Syst. Struct. 2010, 21, 921–940. [Google Scholar] [CrossRef]
- Zhou, C.; Hong, M.; Su, Z.; Wang, Q.; Cheng, L. Evaluation of fatigue cracks using nonlinearities of acousto-ultrasonic waves acquired by an active sensor network. Smart Mater. Struct. 2012, 22, 015018. [Google Scholar] [CrossRef]
- Hong, M.; Su, Z.; Lu, Y.; Sohn, H.; Qing, X. Locating fatigue damage using temporal signal features of nonlinear Lamb waves. Mech. Syst. Signal Process. 2015, 60, 182–197. [Google Scholar] [CrossRef]
- Ni, X.; Rizzo, P. Highly nonlinear solitary waves for the inspection of adhesive joints. Exp. Mech. 2012, 52, 1493–1501. [Google Scholar] [CrossRef]
- Khodaei, Z.S.; Aliabadi, M.H. A mult-level decision fusion strategy for condition based maintenance of composite structures. Materials 2016, 9, 790. [Google Scholar] [CrossRef]
Key Features | Traditional NDT Technology | SHM Technology |
---|---|---|
Transducers | Be separated from the structures or mounted on the structures temporally | Be mounted on or embedded into structures permanently |
Detection mode | Off-line | Off-line and on-line |
Inaccessible region | Not be inspected in service | Be monitored in service |
Downtime | Be increased due to schedule detection | Be reduced through real time monitoring |
Detection time | Time-consuming | Automatically and quickly obtain information |
Detection capacity | Just provide flaw information | Sense structure states, including flaw, strain, temperature, et al. |
Monitoring Principle | Sensor | Monitoring Object | Mode | |
---|---|---|---|---|
Strain | Fiber optical sensor | Loads and impact | Passive | |
Wave propagation | Stress wave | Piezoelectric sensor (e.g., PZT, PVDF) | Impact | Passive |
Acoustic emission | Piezoelectric sensor | Global /local damage | Passive | |
Guided waves | Piezoelectric/electro-magnetic sensor | Global /local damage | Active | |
Ultrasonics | Piezoelectric sensor/Laser | Local damage | Active | |
Electro-mechanical impedance | Piezoelectric sensor | Local damage | Active | |
Electric resistance | Resistance element | Local damage | Passive | |
Intelligent coating monitoring | Nano material | Local damage | Passive | |
Comparative vacuum monitoring | Air/vacuum galleries | Local damage | Passive | |
Eddy current | Eddy current foil sensors | Local damage | Active |
Algorithm | Superiority | Shortcoming | Sensor Density | Capability of Engineering Application |
---|---|---|---|---|
Phased array [42,48,49,50,51,52,53,54,55,56,57,58,59,60,61] | High accuracy | Must identify the wave mode and its group velocity | Compact array | Simple plates |
Delay and sum [62,63,64,65,66,67,68] | Simple algorithm; Capability of multi-damage | Must identify the wave mode and its group velocity | Sparse | Large-area plate-type structures |
Tomography [69,70,71,72,73,74,75,76,77,78,79] | Do need to identify the wave mode; Simple algorithm | Need a great number of paths | High density | Large-area complex structures |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qing, X.; Li, W.; Wang, Y.; Sun, H. Piezoelectric Transducer-Based Structural Health Monitoring for Aircraft Applications. Sensors 2019, 19, 545. https://doi.org/10.3390/s19030545
Qing X, Li W, Wang Y, Sun H. Piezoelectric Transducer-Based Structural Health Monitoring for Aircraft Applications. Sensors. 2019; 19(3):545. https://doi.org/10.3390/s19030545
Chicago/Turabian StyleQing, Xinlin, Wenzhuo Li, Yishou Wang, and Hu Sun. 2019. "Piezoelectric Transducer-Based Structural Health Monitoring for Aircraft Applications" Sensors 19, no. 3: 545. https://doi.org/10.3390/s19030545
APA StyleQing, X., Li, W., Wang, Y., & Sun, H. (2019). Piezoelectric Transducer-Based Structural Health Monitoring for Aircraft Applications. Sensors, 19(3), 545. https://doi.org/10.3390/s19030545