Fluorescent Sensors for the Detection of Heavy Metal Ions in Aqueous Media
Abstract
:1. Introduction
2. Heavy Metal Ion Sensors Based on Fluorescent Aptamers
3. Heavy Metal Ion Sensors Based on Fluorescent Quantum Dots
4. Heavy Metal Ion Sensors Based on Organic Dyes
5. Comparison between Fluorescent Sensors for Heavy Metal Ions Based on Different Materials
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Schriks, M.; Heringa, M.B.; van der Kooi, M.M.E.; de Voogt, P.; van Wezel, A.P. Toxicological relevance of emerging contaminants for drinking water quality. Water Res. 2010, 44, 461–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gregory, M.R. Environmental implications of plastic debris in marine settings- entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2013–2025. [Google Scholar] [CrossRef] [PubMed]
- Lockhart, K.M.; King, A.M.; Harter, T. Identifying sources of groundwater nitrate contamination in a large alluvial groundwater basin with highly diversified intensive agricultural production. J. Contam. Hydrol. 2013, 151, 140–154. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, N. Contamination of soils with microbial pathogens originating from effluent water used for irrigation. In Proceedings of the EGU General Assembly 2009, Vienna, Austria, 19–24 April 2009. [Google Scholar]
- Järup, L. Hazards of heavy metal contamination. Br. Med. Bull. 2003, 68, 167–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldhaber, S.B. Trace element risk assessment: Essentiality vs. toxicity. Regul. Toxicol. Pharmacol. 2003, 38, 232–242. [Google Scholar] [CrossRef]
- Xie, W.; Peng, C.; Wang, H.; Chen, W. Health risk assessment of trace metals in various environmental media, crops and human hair from a mining affected area. Int. J. Environ. Res. Public Health 2017, 14, 1595. [Google Scholar] [CrossRef]
- Stankovic, S.; Jovic, M.; Stankovic, A.R.; Katsikas, L. Heavy Metals in Seafood Mussels. Risks for Human Health; Springer: Dordrecht, The Netherlands, 2012; Volume 1, ISBN 9789400724396. [Google Scholar]
- Huff, J.; Lunn, R.M.; Waalkes, M.P.; Tomatis, L.; Infante, P.F. Cadmium-induced cancers in animals and in humans. Int. J. Occup. Environ. Health 2007, 13, 202–212. [Google Scholar] [CrossRef]
- Bhatti, P.; Stewart, P.A.; Hutchinson, A.; Rothman, N.; Linet, M.S.; Inskip, P.D.; Rajaraman, P. Lead exposure, polymorphisms in genes related to oxidative stress, and risk of adult brain tumors. Cancer Epidemiol. Biomark. Prev. 2009, 18, 1841–1848. [Google Scholar] [CrossRef]
- Bansod, B.; Kumar, T.; Thakur, R.; Rana, S.; Singh, I. A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosens. Bioelectron. 2017, 94, 443–455. [Google Scholar] [CrossRef]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef] [Green Version]
- Jan, A.T.; Azam, M.; Siddiqui, K.; Ali, A.; Choi, I.; Haq, Q.M.R. Heavy metals and human health: Mechanistic insight into toxicity and counter defense system of antioxidants. Int. J. Mol. Sci. 2015, 16, 29592–29630. [Google Scholar] [CrossRef] [PubMed]
- Senthil Kumar, P.; Saravanan, A. Sustainable wastewater treatments in textile sector. Sustain. Fibres Text. 2017, 323–346. [Google Scholar]
- Suszcynsky, E.M.; Shann, J.R. Phytotoxicity and accumulation of mercury in tobacco subjected to different exposure routes. Environ. Toxicol. Chem. 1995, 14, 61–67. [Google Scholar] [CrossRef]
- Lough, G.C.; Schauer, J.J.; Park, J.-S.; Shafer, M.M.; Deminter, J.T.; Weinstein, J.P. Emissions of metals associated with motor vehicle roadways. Environ. Sci. Technol. 2005, 39, 826–836. [Google Scholar] [CrossRef] [PubMed]
- Yuliusman, S.; Nurqomariah, A.; Fajaryanto, R. Recovery of cobalt and nickel from spent lithium ion batteries with citric acid using leaching process: Kinetics study. In Proceedings of the E3S Web of Conferences, Berdyansk, Ukraine, 4–8 September 2018; Volume 67. [Google Scholar]
- Arruti, A.; Fernández-Olmo, I.; Irabien, A. Evaluation of the contribution of local sources to trace metals levels in urban PM2.5 and PM10 in the Cantabria region (Northern Spain). J. Environ. Monit. 2010, 12, 1451–1458. [Google Scholar] [CrossRef] [PubMed]
- Farzin, L.; Shamsipur, M.; Sheibani, S. A review: Aptamer-based analytical strategies using the nanomaterials for environmental and human monitoring of toxic heavy metals. Talanta 2017, 174, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Ye, B.-C.; Yin, B.-C. Highly sensitive detection of mercury(II) ions by fluorescence polarization enhanced by gold nanoparticles. Angew. Chem. Int. Ed. 2008, 47, 8386–8389. [Google Scholar] [CrossRef]
- Nolan, E.M.; Lippard, S.J. A “Turn-on” Fluorescent Sensor for the Selective Detection of Mercuric Ion in Aqueous Media. J. Am. Chem. Soc. 2003, 125, 14270–14271. [Google Scholar] [CrossRef]
- Simões Da Costa, A.M.; Delgadillo, I.; Rudnitskaya, A. Detection of copper, lead, cadmium and iron in wine using electronic tongue sensor system. Talanta 2014, 129, 63–71. [Google Scholar] [CrossRef]
- Alizadeh, T.; Ganjali, M.R.; Zare, M. Application of an Hg2+ selective imprinted polymer as a new modifying agent for the preparation of a novel highly selective and sensitive electrochemical sensor for the determination of ultratrace mercury ions. Anal. Chim. Acta 2011, 689, 52–59. [Google Scholar] [CrossRef]
- Kim, H.N.; Ren, W.X.; Kim, J.S.; Yoon, J. Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chem. Soc. Rev. 2012, 41, 3210–3244. [Google Scholar] [CrossRef] [PubMed]
- Kuswandi, B.; Nuriman; Huskens, J.; Verboom, W. Optical sensing systems for microfluidic devices: A review. Anal. Chim. Acta 2007, 601, 141–155. [Google Scholar] [CrossRef] [PubMed]
- Aiestaran, P.; Dominguez, V.; Arrue, J.; Zubia, J. A fluorescent linear optical fiber position sensor. Opt. Mater. 2009, 31, 1101–1104. [Google Scholar] [CrossRef]
- Vendrell, M.; Zhai, D.; Er, J.C.; Chang, Y.-T. Combinatorial strategies in fluorescent probe development. Chem. Rev. 2012, 112, 4391–4420. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.; He, Y.; Xing, X.; Zhao, Y.; Tang, H.; Pang, D. Aptamer functionalized gold nanoparticles based fluorescent probe for the detection of mercury (II) ion in aqueous solution. Talanta 2013, 113, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Lakowicz, J.R., Ed.; Springer: Boston, MA, USA, 2006; ISBN 978-0-387-31278-1. [Google Scholar]
- Elosua, C.; de Acha, N.; Lopez-Torres, D.; Matias, I.R.; Arregui, F.J. Luminescent Optical Fiber Oxygen Sensor following Layer-by-layer Method. Procedia Eng. 2014, 87, 987–990. [Google Scholar] [CrossRef] [Green Version]
- Caselli, M. Porphyrin-based electrostatically self-assembled multilayers as fluorescent probes for mercury(ii) ions: A study of the adsorption kinetics of metal ions on ultrathin films for sensing applications. RSC Adv. 2015, 5, 1350–1358. [Google Scholar] [CrossRef]
- Yang, J.; Wang, Z.; Li, Y.; Zhuang, Q.; Zhao, W.; Gu, J. Porphyrinic MOFs for reversible fluorescent and colorimetric sensing of mercury(II) ions in aqueous phase. RSC Adv. 2016, 6, 69807–69814. [Google Scholar] [CrossRef]
- He, J.-L.; Zhu, S.-L.; Wu, P.; Li, P.-P.; Li, T.; Cao, Z. Enzymatic cascade based fluorescent DNAzyme machines for the ultrasensitive detection of Cu(II) ions. Biosens. Bioelectron. 2014, 60, 112–117. [Google Scholar] [CrossRef]
- Zhu, Y.-F.; Wang, Y.-S.; Zhou, B.; Yu, J.-H.; Peng, L.-L.; Huang, Y.-Q.; Li, X.-J.; Chen, S.-H.; Tang, X.; Wang, X.-F. A multifunctional fluorescent aptamer probe for highly sensitive and selective detection of cadmium(II). Anal. Bioanal. Chem. 2017, 409, 4951–4958. [Google Scholar] [CrossRef]
- Xu, H.; Miao, R.; Fang, Z.; Zhong, X. Quantum dot-based turn-on fluorescent probe for detection of zinc and cadmium ions in aqueous media. Anal. Chim. Acta 2011, 687, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Lu, Y.; He, S.; Wei, F.; Zhao, L.; Zeng, X. A highly sensitive and selective turn-on fluorescent chemosensor for palladium based on a phosphine-rhodamine conjugate. Chem. Commun. 2013, 49, 822–824. [Google Scholar] [CrossRef] [PubMed]
- Lakhin, A.V.; Tarantul, V.Z.; Gening, L.V. Aptamers: Problems, solutions and prospects. Acta Nat. 2013, 5, 34–43. [Google Scholar]
- Lung Khung, Y.; Narducci, D. Synergizing nucleic acid aptamers with 1-dimensional nanostructures as label-free field-effect transistor biosensors. Biosens. Bioelectron. 2013, 50, 278–293. [Google Scholar] [CrossRef] [PubMed]
- Bozokalfa, G.; Akbulut, H.; Demir, B.; Guler, E.; Gumus, Z.P.; Odaci Demirkol, D.; Aldemir, E.; Yamada, S.; Endo, T.; Coskunol, H.; et al. Polypeptide Functional Surface for the Aptamer Immobilization: Electrochemical Cocaine Biosensing. Anal. Chem. 2016, 88, 4161–4167. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Niazi, J.H.; Gu, M.B. Specific detection of oxytetracycline using DNA aptamer-immobilized interdigitated array electrode chip. Anal. Chim. Acta 2009, 634, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Radom, F.; Jurek, P.M.; Mazurek, M.P.; Otlewski, J.; Jeleń, F. Aptamers: Molecules of great potential. Biotechnol. Adv. 2013, 31, 1260–1274. [Google Scholar] [CrossRef]
- Lassalle, H.-P.; Marchal, S.; Guillemin, F.; Reinhard, A.; Bezdetnaya, L. Aptamers as remarkable diagnostic and therapeutic agents in cancer treatment. Curr. Drug Metab. 2012, 13, 1130–1144. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhang, Z.; Xu, L.; Xia, T.; Li, N.; Liu, J.; Fang, X. Exonuclease i aided enzyme-linked aptamer assay for small-molecule detection. Anal. Bioanal. Chem. 2014, 406, 2949–2955. [Google Scholar] [CrossRef]
- Jiang, H.; Ling, K.; Tao, X.; Zhang, Q. Theophylline detection in serum using a self-assembling RNA aptamer-based gold nanoparticle sensor. Biosens. Bioelectron. 2015, 70, 299–303. [Google Scholar] [CrossRef]
- Liu, Y.; Lai, Y.; Yang, G.; Tang, C.; Deng, Y.; Li, S.; Wang, Z. Cd-aptamer electrochemical biosensor based on AuNPs/CS modified glass carbon electrode. J. Biomed. Nanotechnol. 2017, 13, 1253–1259. [Google Scholar] [CrossRef]
- Miyake, Y.; Togashi, H.; Tashiro, M.; Yamaguchi, H.; Oda, S.; Kudo, M.; Tanaka, Y.; Kondo, Y.; Sawa, R.; Fujimoto, T.; et al. MercuryII-mediated formation of thymine-HgII-thymine base pairs in DNA duplexes. J. Am. Chem. Soc. 2006, 128, 2172–2173. [Google Scholar] [CrossRef] [PubMed]
- Ono, A.; Cao, S.; Togashi, H.; Tashiro, M.; Fujimoto, T.; MacHinami, T.; Oda, S.; Miyake, Y.; Okamoto, I.; Tanaka, Y. Specific interactions between silver(i) ions and cytosine-cytosine pairs in DNA duplexes. Chem. Commun. 2008, 4825–4827. [Google Scholar] [CrossRef] [PubMed]
- Ono, A.; Togashi, H. Highly selective oligonucleotide-based sensor for mercury(II) in aqueous solutions. Angew. Chem. Int. Ed. 2004, 43, 4300–4302. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, B.; Qi, Y.; Jin, Y. Label-free aptamer-based colorimetric detection of mercury ions in aqueous media using unmodified gold nanoparticles as colorimetric probe. Anal. Bioanal. Chem. 2009, 393, 2051–2057. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chang, H.; Hirata, A.; Wu, H.; Xue, Q.-K.; Chen, M. Nanoporous gold based optical sensor for sub-ppt detection of mercury ions. ACS Nano 2013, 7, 4595–4600. [Google Scholar] [CrossRef]
- Liu, C.-W.; Tsai, T.-C.; Osawa, M.; Chang, H.-C.; Yang, R.-J. Aptamer-based sensor for quantitative detection of mercury (II) ions by attenuated total reflection surface enhanced infrared absorption spectroscopy. Anal. Chim. Acta 2018, 1033, 137–147. [Google Scholar] [CrossRef]
- Li, B.; Du, Y.; Dong, S. DNA based gold nanoparticles colorimetric sensors for sensitive and selective detection of Ag(I) ions. Anal. Chim. Acta 2009, 644, 78–82. [Google Scholar] [CrossRef]
- Wen, Y.; Xing, F.; He, S.; Song, S.; Wang, L.; Long, Y.; Li, D.; Fan, C. A graphene-based fluorescent nanoprobe for silver(i) ions detection by using graphene oxide and a silver-specific oligonucleotide. Chem. Commun. 2010, 46, 2596–2598. [Google Scholar] [CrossRef]
- Park, J.; Choi, W.; Jang, K.; Na, S. High-sensitivity detection of silver ions using oligonucleotide-immobilized oscillator. Biosens. Bioelectron. 2013, 41, 471–476. [Google Scholar] [CrossRef]
- Guo, L.; Nie, D.; Qiu, C.; Zheng, Q.; Wu, H.; Ye, P.; Hao, Y.; Fu, F.; Chen, G. A G-quadruplex based label-free fluorescent biosensor for lead ion. Biosens. Bioelectron. 2012, 35, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Jung, I.H.; Kang, M.; Shim, H.-K.; Woo, H.Y. Cationic conjugated polyelectrolytes-triggered conformational change of molecular beacon aptamer for highly sensitive and selective potassium ion detection. J. Am. Chem. Soc. 2012, 134, 3133–3138. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Chen, Y.; Li, X.; Fang, W. Pb2+ induced DNA conformational switch from hairpin to G-quadruplex: Electrochemical detection of Pb2+. Analyst 2011, 136, 2367–2372. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Feng, Y.; Zhao, C.; Tang, B. Crystal violet as a G-quadruplex-selective probe for sensitive amperometric sensing of lead. Chem. Commun. 2011, 47, 11909–11911. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Yin, N.; Chen, G. Photoinduced electron transfer mediated by π-stacked thymine-Hg2+-thymine base pairs. J. Phys. Chem. C 2011, 115, 4837–4842. [Google Scholar] [CrossRef]
- Liu, C.-W.; Huang, C.-C.; Chang, H.-T. Highly selective DNA-based sensor for lead(II) and mercury(II) ions. Anal. Chem. 2009, 81, 2383–2387. [Google Scholar] [CrossRef]
- Ono, A. Development of novel oligonucleotide-based sensors which are highly Hg(II) selective and are insensitive to other heavy metal ions. Nucleic Acids Symp. Ser. (Oxf.) 2004, 29–30. [Google Scholar] [CrossRef]
- Wang, Y.; Bao, L.; Liu, Z.; Pang, D.-W. Aptamer biosensor based on fluorescence resonance energy transfer from upconverting phosphors to carbon nanoparticles for thrombin detection in human plasma. Anal. Chem. 2011, 83, 8130–8137. [Google Scholar] [CrossRef]
- Chung, C.H.; Kim, J.H.; Jung, J.; Chung, B.H. Nuclease-resistant DNA aptamer on gold nanoparticles for the simultaneous detection of Pb2+ and Hg2+ in human serum. Biosens. Bioelectron. 2013, 41, 827–832. [Google Scholar] [CrossRef]
- Chen, S.-H.; Wang, Y.-S.; Chen, Y.-S.; Tang, X.; Cao, J.-X.; Li, M.-H.; Wang, X.-F.; Zhu, Y.-F.; Huang, Y.-Q. Dual-channel detection of metallothioneins and mercury based on a mercury-mediated aptamer beacon using thymidine-mercury-thymidine complex as a quencher. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 151, 315–321. [Google Scholar] [CrossRef]
- Zeng, X.; Zhang, F.S.; Zhu, B.; Zhu, L. Fluorescence Determination of Merucury(II) Using a Thymine Aptamer. Anal. Lett. 2015, 48, 2208–2216. [Google Scholar] [CrossRef]
- Johansson, M.K. Choosing reporter-quencher pairs for efficient quenching through formation of intramolecular dimers. Methods Mol. Biol. 2006, 335, 17–29. [Google Scholar] [PubMed]
- Li, Z.; Muhandiramlage, T.P.; Keogh, J.P.; Hall, H.K.; Aspinwall, C.A. Aptamer-functionalized porous phospholipid nanoshells for direct measurement of Hg(2+) in urine. Anal. Bioanal. Chem. 2015, 407, 953–960. [Google Scholar] [CrossRef] [PubMed]
- Fialová, M.; Kypr, J.; Vorlíčková, M. The thrombin binding aptamer GGTTGGTGTGGTTGG forms a bimolecular guanine tetraplex. Biochem. Biophys. Res. Commun. 2006, 344, 50–54. [Google Scholar] [CrossRef]
- Huang, X.; Ren, J. Gold nanoparticles based chemiluminescent resonance energy transfer for immunoassay of alpha fetoprotein cancer marker. Anal. Chim. Acta 2011, 686, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Mayilo, S.; Kloster, M.A.; Wunderlich, M.; Lutich, A.; Klar, T.A.; Nichtl, A.; Kürzinger, K.; Stefani, F.D.; Feldmann, J. Long-range fluorescence quenching by gold nanoparticles in a sandwich immunoassay for cardiac troponin T. Nano Lett. 2009, 9, 4558–4563. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Wang, J.; Jiao, K.; Yang, X. Colorimetric detection of mercury ion (Hg2+) based on DNA oligonucleotides and unmodified gold nanoparticles sensing system with a tunable detection range. Biosens. Bioelectron. 2009, 24, 3153–3158. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Niu, C.; Wang, X.; Lv, X.; Zeng, G. “Turn-on” fluorescent sensor for Hg2+ based on single-stranded DNA functionalized Mn:CdS/ZnS quantum dots and gold nanoparticles by time-gated mode. Anal. Chem. 2013, 85, 1164–1170. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ouyang, Q.; Li, H.; Chen, M.; Zhang, Z.; Chen, Q. Turn-On Fluoresence Sensor for Hg2+ in Food Based on FRET between Aptamers-Functionalized Upconversion Nanoparticles and Gold Nanoparticles. J. Agric. Food Chem. 2018, 66, 6188–6195. [Google Scholar] [CrossRef]
- Long, F.; Zhu, A.; Wang, H. Optofluidics-based DNA structure-competitive aptasensor for rapid on-site detection of lead(II) in an aquatic environment. Anal. Chim. Acta 2014, 849, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Dragan, A.I.; Casas-Finet, J.R.; Bishop, E.S.; Strouse, R.J.; Schenerman, M.A.; Geddes, C.D. Characterization of PicoGreen interaction with dsDNA and the origin of its fluorescence enhancement upon binding. Biophys. J. 2010, 99, 3010–3019. [Google Scholar] [CrossRef] [PubMed]
- Singer, V.L.; Lawlor, T.E.; Yue, S. Comparison of SYBR® Green I nucleic acid gel stain mutagenicity and ethidium bromide mutagenicity in the Salmonella/mammalian microsome reverse mutation assay (Ames test). Mutat. Res. Genet. Toxicol. Environ. Mutagen. 1999, 439, 37–47. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, Y.; Yan, J.; Zhu, C.; Zhang, C.; Chen, A. Dulplex analysis of mercury and silver ions using a label-free fluorescent aptasensor. Int. J. Environ. Anal. Chem. 2018, 98, 349–359. [Google Scholar] [CrossRef]
- Yan, Z.; Tian, C.; Qu, X.; Shen, W.; Ye, B. DNA-functionalized photonic crystal microspheres for multiplex detection of toxic metal ions. Colloids Surf. B Biointerfaces 2017, 154, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhou, X.; Ding, W.; Guo, S.; Wu, N. Fluorescent aptamer-functionalized graphene oxide biosensor for label-free detection of mercury(II). Biosens. Bioelectron. 2013, 41, 889–893. [Google Scholar] [CrossRef]
- Li, J.; Wang, H.; Guo, Z.; Wang, Y.; Ma, H.; Ren, X.; Du, B.; Wei, Q. A “turn-off” fluorescent biosensor for the detection of mercury (II) based on graphite carbon nitride. Talanta 2017, 162, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Duan, N.; Shi, Z.; Fang, C.; Wang, Z. Dual fluorescence resonance energy transfer assay between tunable upconversion nanoparticles and controlled gold nanoparticles for the simultaneous detection of Pb2+ and Hg2+. Talanta 2014, 128, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Niu, C.; Ruan, M.; Wang, X.; Zeng, G.; Deng, C. Highly sensitive strategy for Hg2+ detection in environmental water samples using long lifetime fluorescence quantum dots and gold nanoparticles. Environ. Sci. Technol. 2013, 47, 4392–4398. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Zhu, L.; Wu, J.; Hou, Y.; Wang, P.; Wang, Z.; Yang, M. A fluorescent biosensor based on carbon dots-labeled oligodeoxyribonucleotide and graphene oxide for mercury (II) detection. Biosens. Bioelectron. 2015, 63, 506–512. [Google Scholar] [CrossRef]
- Zhang, L.; Mi, N.; Zhang, Y.; Wei, M.; Li, H.; Yao, S. Label-free DNA sensor for Pb2+ based on a duplex-quadruplex exchange. Anal. Methods 2013, 5, 6100–6105. [Google Scholar] [CrossRef]
- Huang, Y.; Yan, J.; Fang, Z.; Zhang, C.; Bai, W.; Yan, M.; Zhu, C.; Gao, C.; Chen, A. Highly sensitive and selective optical detection of lead(ii) using a label-free fluorescent aptasensor. RSC Adv. 2016, 6, 90300–90304. [Google Scholar] [CrossRef]
- Liu, C.; Huang, C.-Z. Detection of lead ions in water based on the surface energy transfer between gold nanoparticles and fluorescent dyes. Fenxi Huaxue/Chin. J. Anal. Chem. 2014, 42, 1195–1199. [Google Scholar] [CrossRef]
- Taghdisi, S.M.; Emrani, S.S.; Tabrizian, K.; Ramezani, M.; Abnous, K.; Emrani, A.S. Ultrasensitive detection of lead (II) based on fluorescent aptamer-functionalized carbon nanotubes. Environ. Toxicol. Pharmacol. 2014, 37, 1236–1242. [Google Scholar] [CrossRef] [PubMed]
- Qian, Z.S.; Shan, X.Y.; Chai, L.J.; Chen, J.R.; Feng, H. A fluorescent nanosensor based on graphene quantum dots-aptamer probe and graphene oxide platform for detection of lead (II) ion. Biosens. Bioelectron. 2015, 68, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhou, X.; Guo, S.; Wu, N. Detection of lead (II) with a “turn-on” fluorescent biosensor based on energy transfer from CdSe/ZnS quantum dots to graphene oxide. Biosens. Bioelectron. 2013, 43, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Zhu, C.; Huang, Y.; Yan, J.; Chen, A. Ultrasensitive detection of lead(II) using a turn-on probe based on the use of an aptamer and a water-soluble fluorescent perylene probe. Microchim. Acta 2017, 184, 2439–2444. [Google Scholar] [CrossRef]
- Niu, X.; Zhong, Y.; Chen, R.; Wang, F.; Liu, Y.; Luo, D. A “turn-on” fluorescence sensor for Pb2+ detection based on graphene quantum dots and gold nanoparticles. Sens. Actuators B Chem. 2018, 255, 1577–1581. [Google Scholar] [CrossRef]
- Frasco, M.F.; Chaniotakis, N. Semiconductor quantum dots in chemical sensors and biosensors. Sensors 2009, 9, 7266–7286. [Google Scholar] [CrossRef]
- Bera, D.; Qian, L.; Tseng, T.-K.; Holloway, P.H. Quantum dots and their multimodal applications: A review. Materials (Basel) 2010, 3, 2260–2345. [Google Scholar] [CrossRef]
- Hardman, R. A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors. Environ. Health Perspect. 2006, 114, 165–172. [Google Scholar] [CrossRef]
- Renugopalakrishnan, V.; Barbiellini, B.; King, C.; Molinari, M.; Mochalov, K.; Sukhanova, A.; Nabiev, I.; Fojan, P.; Tuller, H.L.; Chin, M.; et al. Engineering a robust photovoltaic device with quantum dots and bacteriorhodopsin. J. Phys. Chem. C 2014, 118, 16710–16717. [Google Scholar] [CrossRef] [PubMed]
- Jang, E.; Jun, S.; Jang, H.; Lim, J.; Kim, B.; Kim, Y. White-light-emitting diodes with quantum dot color converters for display backlights. Adv. Mater. 2010, 22, 3076–3080. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Su, H.; Wang, K.; Wong, W.-K.; Zhu, X. Facile synthesis of N-rich carbon quantum dots from porphyrins as efficient probes for bioimaging and biosensing in living cells. Int. J. Nanomed. 2017, 12, 7375–7391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, S.; Chen, F.; Chen, C.; Chen, X.; Gong, H.; Cai, C. A novel CdTe quantum dots probe amplified resonance light scattering signals to detect microRNA-122. Talanta 2017, 165, 659–663. [Google Scholar] [CrossRef] [PubMed]
- Carrillo-Carrión, C.; Simonet, B.M.; Valcárcel, M. Colistin-functionalised CdSe/ZnS quantum dots as fluorescent probe for the rapid detection of Escherichia coli. Biosens. Bioelectron. 2011, 26, 4368–4374. [Google Scholar] [CrossRef] [PubMed]
- Sidorov, A.I.; Lebedev, V.F.; Kobranova, A.A.; Nashchekin, A.V. Formation of carbon quantum dots and nanodiamonds in laser ablation of a carbon film. Quantum Electron. 2018, 48, 45–48. [Google Scholar] [CrossRef]
- Kelarakis, A. Graphene quantum dots: In the crossroad of graphene, quantum dots and carbogenic nanoparticles. Curr. Opin. Colloid Interface Sci. 2015, 20, 354–361. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Zhang, L.; Zhang, S.; Yang, Y.; Chen, X.; Zhang, M. Fluorescent carbon nanoparticles for the fluorescent detection of metal ions. Biosens. Bioelectron. 2015, 63, 61–71. [Google Scholar] [CrossRef]
- Cai, J.; Sun, B.; Gou, X.; Gou, Y.; Li, W.; Hu, F. A novel way for analysis of calycosin via polyaniline functionalized graphene quantum dots fabricated electrochemical sensor. J. Electroanal. Chem. 2018, 816, 123–131. [Google Scholar] [CrossRef]
- Constantine, C.A.; Gattás-Asfura, K.M.; Mello, S.V.; Crespo, G.; Rastogi, V.; Cheng, T.-C.; DeFrank, J.J.; Leblanc, R.M. Layer-by-layer biosensor assembly incorporating functionalized quantum dots. Langmuir 2003, 19, 9863–9867. [Google Scholar] [CrossRef]
- Lin, X.; Gao, G.; Zheng, L.; Chi, Y.; Chen, G. Encapsulation of strongly fluorescent carbon quantum dots in metal-organic frameworks for enhancing chemical sensing. Anal. Chem. 2014, 86, 1223–1228. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Qu, L.; Yang, R.; Zhou, Y.; Li, J. A highly selective and simple fluorescent sensor for mercury (II) ion detection based on cysteamine-capped CdTe quantum dots synthesized by the reflux method. Luminescence 2015, 30, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Guo, J.; Yang, C. Ratiometric fluorescence sensor for Fe3+ ions detection based on quantum dot-doped hydrogel optical fiber. Sens. Actuators B Chem. 2018, 264, 52–58. [Google Scholar] [CrossRef]
- Labeb, M.; Sakr, A.-H.; Soliman, M.; Abdel-Fettah, T.M.; Ebrahim, S. Effect of capping agent on selectivity and sensitivity of CdTe quantum dots optical sensor for detection of mercury ions. Opt. Mater. (Amst.) 2018, 79, 331–335. [Google Scholar] [CrossRef]
- Gong, T.; Liu, J.; Liu, X.; Liu, J.; Xiang, J.; Wu, Y. A sensitive and selective sensing platform based on CdTe QDs in the presence of L-cysteine for detection of silver, mercury and copper ions in water and various drinks. Food Chem. 2016, 213, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Hao, J.; Yi, T.; Xu, Y.; Niu, X.; Ren, C.; Chen, H.; Chen, X. Probing the mechanism of the interaction between l-cysteine-capped-CdTe quantum dots and Hg2+ using capillary electrophoresis with ensemble techniques. Electrophoresis 2015, 36, 859–866. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Cai, Y.-Q.; Liu, H.-J.; Chen, Y. CdS quantum dots capped with hyperbranched graft copolymers: Role of hyperbranched shell in fluorescence and selective mercury-sensing. Sens. Actuators B Chem. 2017, 251, 171–179. [Google Scholar] [CrossRef]
- Chen, G.-F.; Tsai, H.-P.; Lai, P.-S.; Liao, M.-Y. Functionalized Mn2+-doped zinc sulfide quantum dots as a metal ion sensor for industrial wastes. Sens. Mater. 2013, 25, 437–442. [Google Scholar] [CrossRef]
- Geng, S.; Lin, S.M.; Li, N.B.; Luo, H.Q. Polyethylene glycol capped ZnO quantum dots as a fluorescent probe for determining copper(II) ion. Sens. Actuators B Chem. 2017, 253, 137–143. [Google Scholar] [CrossRef]
- Rezaei, B.; Shahshahanipour, M.; Ensafi, A.A.; Farrokhpour, H. Development of highly selective and sensitive fluorimetric label-free mercury aptasensor based on cysteamine@CdTe/ZnS quantum dots, experimental and theoretical investigation. Sens. Actuators B Chem. 2017, 247, 400–407. [Google Scholar] [CrossRef]
- Xi, L.-L.; Ma, H.-B.; Tao, G.-H. Thiourea functionalized CdSe/CdS quantum dots as a fluorescent sensor for mercury ion detection. Chin. Chem. Lett. 2016, 27, 1531–1536. [Google Scholar] [CrossRef]
- Xu, X.; Ray, R.; Gu, Y.; Ploehn, H.J.; Gearheart, L.; Raker, K.; Scrivens, W.A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737. [Google Scholar] [CrossRef] [PubMed]
- Esteves da Silva, J.C.G.; Gonçalves, H.M.R. Analytical and bioanalytical applications of carbon dots. TrAC Trends Anal. Chem. 2011, 30, 1327–1336. [Google Scholar] [CrossRef]
- Baker, S.N.; Baker, G.A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem. Int. Ed. 2010, 49, 6726–6744. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Lei, Y. Fluorescent carbon dots and their sensing applications. TrAC Trends Anal. Chem. 2017, 89, 163–180. [Google Scholar] [CrossRef]
- Shi, Y.; Li, C.; Liu, S.; Liu, Z.; Zhu, J.; Yang, J.; Hu, X. Facile synthesis of fluorescent carbon dots for determination of curcumin based on fluorescence resonance energy transfer. RSC Adv. 2015, 5, 64790–64796. [Google Scholar] [CrossRef]
- Lin, L.; Luo, Y.; Tsai, P.; Wang, J.; Chen, X. Metal ions doped carbon quantum dots: Synthesis, physicochemical properties, and their applications. TrAC Trends Anal. Chem. 2018, 103, 87–101. [Google Scholar] [CrossRef]
- Wang, H.; Sun, P.; Cong, S.; Wu, J.; Gao, L.; Wang, Y.; Dai, X.; Yi, Q.; Zou, G. Nitrogen-doped carbon dots for “green” quantum dot solar cells. Nanoscale Res. Lett. 2016, 11, 27. [Google Scholar] [CrossRef]
- Barati, A.; Shamsipur, M.; Arkan, E.; Hosseinzadeh, L.; Abdollahi, H. Synthesis of biocompatible and highly photoluminescent nitrogen doped carbon dots from lime: Analytical applications and optimization using response surface methodology. Mater. Sci. Eng. C 2015, 47, 325–332. [Google Scholar] [CrossRef]
- Wang, C.; Hu, T.; Wen, Z.; Zhou, J.; Wang, X.; Wu, Q.; Wang, C. Concentration-dependent color tunability of nitrogen-doped carbon dots and their application for iron(III) detection and multicolor bioimaging. J. Colloid Interface Sci. 2018, 521, 33–41. [Google Scholar] [CrossRef]
- Xiao, N.; Liu, S.G.; Mo, S.; Li, N.; Ju, Y.J.; Ling, Y.; Li, N.B.; Luo, H.Q. Highly selective detection of p-nitrophenol using fluorescence assay based on boron, nitrogen co-doped carbon dots. Talanta 2018, 184, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, J.; Li, J.; Xu, L.; Qiao, Y. One-pot synthesis of nitrogen and sulfur co-doped carbon dots and its application for sensor and multicolor cellular imaging. J. Colloid Interface Sci. 2017, 485, 167–174. [Google Scholar] [CrossRef]
- Zhi, B.; Gallagher, M.J.; Frank, B.P.; Lyons, T.Y.; Qiu, T.A.; Da, J.; Mensch, A.C.; Hamers, R.J.; Rosenzweig, Z.; Fairbrother, D.H.; et al. Investigation of phosphorous doping effects on polymeric carbon dots: Fluorescence, photostability, and environmental impact. Carbon N. Y. 2018, 129, 438–449. [Google Scholar] [CrossRef]
- Liu, Y.; Liao, M.; He, X.; Liu, X.; Kou, X.; Xiao, D. One-step synthesis of highly luminescent nitrogen-doped carbon dots for selective and sensitive detection of mercury(ii) ions and cellular imaging. Anal. Sci. 2015, 31, 971–977. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Chen, Y.; Liang, M.; Xu, L.; Qi, S.; Chen, H.; Chen, X. Solid-phase synthesis of highly fluorescent nitrogen-doped carbon dots for sensitive and selective probing ferric ions in living cells. Anal. Chem. 2014, 86, 9846–9852. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Li, Y.; Cao, J.; Zhu, J.; Fan, L.; Li, X. Sulfur-doped graphene quantum dots as a novel fluorescent probe for highly selective and sensitive detection of Fe3+. Anal. Chem. 2014, 86, 10201–10207. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Pu, P.; Zhao, J.; Dong, C.; Gao, C.; Chen, Y.; Chen, J.; Liu, Y.; Zhou, H. Preparation of highly photoluminescent sulfur-doped carbon dots for Fe(iii) detection. J. Mater. Chem. A 2015, 3, 542–546. [Google Scholar] [CrossRef]
- Wu, F.; Yang, M.; Zhang, H.; Zhu, S.; Zhu, X.; Wang, K. Facile synthesis of sulfur-doped carbon quantum dots from vitamin B1 for highly selective detection of Fe3+ ion. Opt. Mater. (Amst.) 2018, 77, 258–263. [Google Scholar] [CrossRef]
- Naik, V.M.; Gunjal, D.B.; Gore, A.H.; Pawar, S.P.; Mahanwar, S.T.; Anbhule, P.V.; Kolekar, G.B. Quick and low cost synthesis of sulphur doped carbon dots by simple acidic carbonization of sucrose for the detection of Fe3+ ions in highly acidic environment. Diam. Relat. Mater. 2018, 88, 262–268. [Google Scholar] [CrossRef]
- Yang, G.; Wan, X.; Su, Y.; Zeng, X.; Tang, J. Acidophilic S-doped carbon quantum dots derived from cellulose fibers and their fluorescence sensing performance for metal ions in an extremely strong acid environment. J. Mater. Chem. A 2016, 4, 12841–12849. [Google Scholar] [CrossRef]
- Wang, Y.; Kim, S.-H.; Feng, L. Highly luminescent N, S- Co-doped carbon dots and their direct use as mercury(II) sensor. Anal. Chim. Acta 2015, 890, 134–142. [Google Scholar] [CrossRef]
- Sun, H.; Wu, L.; Wei, W.; Qu, X. Recent advances in graphene quantum dots for sensing. Mater. Today 2013, 16, 433–442. [Google Scholar] [CrossRef]
- Shi, B.; Zhang, L.; Lan, C.; Zhao, J.; Su, Y.; Zhao, S. One-pot green synthesis of oxygen-rich nitrogen-doped graphene quantum dots and their potential application in pH-sensitive photoluminescence and detection of mercury(II) ions. Talanta 2015, 142, 131–139. [Google Scholar] [CrossRef]
- Bian, S.; Shen, C.; Hua, H.; Zhou, L.; Zhu, H.; Xi, F.; Liu, J.; Dong, X. One-pot synthesis of sulfur-doped graphene quantum dots as a novel fluorescent probe for highly selective and sensitive detection of lead(II). RSC Adv. 2016, 6, 69977–69983. [Google Scholar] [CrossRef]
- Anh, N.T.N.; Chowdhury, A.D.; Doong, R. Highly sensitive and selective detection of mercury ions using N, S-codoped graphene quantum dots and its paper strip based sensing application in wastewater. Sens. Actuators B Chem. 2017, 252, 1169–1178. [Google Scholar] [CrossRef]
- Zhu, J.; Chang, H.; Li, J.-J.; Li, X.; Zhao, J.-W. Using silicon-coated gold nanoparticles to enhance the fluorescence of CdTe quantum dot and improve the sensing ability of mercury (II). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 188, 170–178. [Google Scholar] [CrossRef]
- Wan, X.; Li, S.; Zhuang, L.; Tang, J. l-Tryptophan-capped carbon quantum dots for the sensitive and selective fluorescence detection of mercury ion in aqueous solution. J. Nanoparticle Res. 2016, 18, 202. [Google Scholar] [CrossRef]
- Ke, J.; Li, X.; Zhao, Q.; Hou, Y.; Chen, J. Ultrasensitive quantum dot fluorescence quenching assay for selective detection of mercury ions in drinking water. Sci. Rep. 2014, 4, 5624. [Google Scholar] [CrossRef]
- Yang, R.; Ding, X.; Zhou, Y.; Li, J.; Qu, L.; Zhang, K. A novel fluorescent sensor for mercury (ii) ion using self-assembly of poly(diallyl dimethyl ammonium)chloride functionalized CdTe quantum dots. Anal. Methods 2015, 7, 436–442. [Google Scholar] [CrossRef]
- Hua, M.; Wang, C.; Qian, J.; Wang, K.; Yang, Z.; Liu, Q.; Mao, H.; Wang, K. Preparation of graphene quantum dots based core-satellite hybrid spheres and their use as the ratiometric fluorescence probe for visual determination of mercury(II) ions. Anal. Chim. Acta 2015, 888, 173–181. [Google Scholar] [CrossRef]
- Fu, H.; Ji, Z.; Chen, X.; Cheng, A.; Liu, S.; Gong, P.; Li, G.; Chen, G.; Sun, Z.; Zhao, X.; et al. A versatile ratiometric nanosensing approach for sensitive and accurate detection of Hg2+ and biological thiols based on new fluorescent carbon quantum dots. Anal. Bioanal. Chem. 2017, 409, 2373–2382. [Google Scholar] [CrossRef]
- Sun, X.; Yang, S.; Guo, M.; Ma, S.; Zheng, M.; He, J. Reversible fluorescence probe based on N-doped carbon dots for the determination of mercury ion and glutathione in waters and living cells. Anal. Sci. 2017, 33, 761–767. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, W. Nitrogen-doped carbon quantum dots: Facile synthesis and application as a “turn-off” fluorescent probe for detection of Hg2+ ions. Biosens. Bioelectron. 2013, 55, 83–90. [Google Scholar] [CrossRef]
- Li, L.-L.; Ni, G.; Wang, J.-N.; Li, J.; Li, W. Synthesis of nitrogen-doped carbon quantum dots and its application as fluorescent sensor for Hg2+. Guang Pu Xue Yu Guang Pu Fen Xi/Spectrosc. Spectr. Anal. 2016, 36, 2846–2851. [Google Scholar]
- Patir, K.; Gogoi, S.K. Facile Synthesis of Photoluminescent Graphitic Carbon Nitride Quantum Dots for Hg2+ Detection and Room Temperature Phosphorescence. ACS Sustain. Chem. Eng. 2018, 6, 1732–1743. [Google Scholar] [CrossRef]
- Wang, B.; Zhuo, S.; Chen, L.; Zhang, Y. Fluorescent graphene quantum dot nanoprobes for the sensitive and selective detection of mercury ions. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 131, 384–387. [Google Scholar] [CrossRef]
- Zhao, Q.; Rong, X.; Chen, L.; Ma, H.; Tao, G. Layer-by-layer self-assembly xylenol orange functionalized CdSe/CdS quantum dots as a turn-on fluorescence lead ion sensor. Talanta 2013, 114, 110–116. [Google Scholar] [CrossRef]
- Zhu, H.; Yu, T.; Xu, H.; Zhang, K.; Jiang, H.; Zhang, Z.; Wang, Z.; Wang, S. Fluorescent nanohybrid of gold nanoclusters and quantum dots for visual determination of lead ions. ACS Appl. Mater. Interfaces 2014, 6, 21461–21467. [Google Scholar] [CrossRef]
- Qu, H.; Cao, L.; Su, G.; Liu, W.; Gao, R.; Xia, C.; Qin, J. Silica-coated ZnS quantum dots as fluorescent probes for the sensitive detection of Pb2+ ions. J. Nanoparticle Res. 2014, 16. [Google Scholar] [CrossRef]
- Xu, J.; Jie, X.; Xie, F.; Yang, H.; Wei, W.; Xia, Z. Flavonoid moiety-incorporated carbon dots for ultrasensitive and highly selective fluorescence detection and removal of Pb2+. Nano Res. 2018, 11, 3648–3657. [Google Scholar] [CrossRef]
- Xu, S.; Xu, S.; Zhu, Y.; Xu, W.; Zhou, P.; Zhou, C.; Dong, B.; Song, H. A novel upconversion, fluorescence resonance energy transfer biosensor (FRET) for sensitive detection of lead ions in human serum. Nanoscale 2014, 6, 12573–12579. [Google Scholar] [CrossRef]
- Wang, Q.; Yu, X.; Zhan, G.; Li, C. Fluorescent sensor for selective determination of copper ion based on N-acetyl-l-cysteine capped CdHgSe quantum dots. Biosens. Bioelectron. 2014, 54, 311–316. [Google Scholar] [CrossRef]
- Elmizadeh, H.; Soleimani, M.; Faridbod, F.; Bardajee, G.R. Ligand-Capped CdTe Quantum Dots as a Fluorescent Nanosensor for Detection of Copper Ions in Environmental Water Sample. J. Fluoresc. 2017, 27, 2323–2333. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, X.; Zhu, T.; Deng, M.; Ikechukwu, I.P.; Huang, W.; Yin, G.; Bai, Y.; Qu, D.; Huang, X.; et al. All-inorganic CsPbBr3 perovskite quantum dots as a photoluminescent probe for ultrasensitive Cu2+ detection. J. Mater. Chem. C 2018, 6, 4793–4799. [Google Scholar] [CrossRef]
- Qin, J.; Dong, B.; Gao, R.; Su, G.; Han, J.; Li, X.; Liu, W.; Wang, W.; Cao, L. Water-soluble silica-coated ZnS: Mn nanoparticles as fluorescent sensors for the detection of ultratrace copper(II) ions in seawater. Anal. Methods 2017, 9, 322–328. [Google Scholar] [CrossRef]
- Xie, Z.; Sun, X.; Jiao, J.; Xin, X. Ionic liquid-functionalized carbon quantum dots as fluorescent probes for sensitive and selective detection of iron ion and ascorbic acid. Colloids Surfaces A Physicochem. Eng. Asp. 2017, 529, 38–44. [Google Scholar] [CrossRef]
- Liu, Y.; Duan, W.; Song, W.; Liu, J.; Ren, C.; Wu, J.; Liu, D.; Chen, H. Red Emission B, N, S-co-Doped Carbon Dots for Colorimetric and Fluorescent Dual Mode Detection of Fe3+ Ions in Complex Biological Fluids and Living Cells. ACS Appl. Mater. Interfaces 2017, 9, 12663–12672. [Google Scholar] [CrossRef]
- Satnami, M.L.; Vaishanav, S.K.; Nagwanshi, R.; Ghosh, K.K. Spectrofluorometric Determination of Mercury and Lead by Colloidal CdS Nanomaterial. J. Dispers. Sci. Technol. 2016, 37, 196–204. [Google Scholar] [CrossRef]
- Elmizadeh, H.; Soleimani, M.; Faridbod, F.; Bardajee, G.R. A sensitive nano-sensor based on synthetic ligand-coated CdTe quantum dots for rapid detection of Cr(III) ions in water and wastewater samples. Colloid Polym. Sci. 2018, 296, 1581–1590. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, C.; Wang, X.; Wang, L.; Chen, A.; Hu, J.; Luo, Z. Fabrication of an “ion-imprinting” dual-emission quantum dot nanohybrid for selective fluorescence turn-on and ratiometric detection of cadmium ions. Analyst 2016, 141, 5886–5892. [Google Scholar] [CrossRef]
- Liu, M.; Hu, M.; Jiang, Q.; Lu, Z.; Huang, Y.; Tan, Y.; Jiang, Q. A novel coumarin derivative as a sensitive probe for tracing intracellular pH changes. RSC Adv. 2015, 5, 15778–15783. [Google Scholar] [CrossRef]
- Tan, J.-L.; Zhang, M.-X.; Zhang, F.; Yang, T.-T.; Liu, Y.; Li, Z.-B.; Zuo, H. A novel “off-on” colorimetric and fluorescent rhodamine-based pH chemosensor for extreme acidity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 140, 489–494. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, W.; Mu, L.; Zeng, X.; Xue, S.; Tao, Z.; Yamatob, T. A novel rhodamine-based thiacalix[4]arene fluorescent sensor for Fe3+ and Cr3+. J. Incl. Phenom. Macrocycl. Chem. 2010, 68, 139–146. [Google Scholar] [CrossRef]
- Chen, H.; Huang, H.; Huang, X.; Clifford, J.N.; Forneli, A.; Palomares, E.; Zheng, X.; Zheng, L.; Wang, X.; Shen, P.; et al. High molar extinction coefficient branchlike organic dyes containing Di(p-tolyl)phenylamine donor for dye-sensitized solar cells applications. J. Phys. Chem. C 2010, 114, 3280–3286. [Google Scholar] [CrossRef]
- Sun, W.-C.; Gee, K.R.; Klaubert, D.H.; Haugland, R.P. Synthesis of fluorinated fluoresceins. J. Org. Chem. 1997, 62, 6469–6475. [Google Scholar] [CrossRef]
- Zheng, H.; Zhan, X.-Q.; Bian, Q.-N.; Zhang, X.-J. Advances in modifying fluorescein and rhodamine fluorophores as fluorescent chemosensors. Chem. Commun. 2013, 49, 429–447. [Google Scholar] [CrossRef]
- Chang, P.V.; Bertozzi, C.R. Imaging beyond the proteome. Chem. Commun. 2012, 48, 8864–8879. [Google Scholar] [CrossRef]
- Wanichacheva, N. Design and Synthesis of Ionophores and Fluoroionophores for the Detection of Lithium and Ammoniums Ions; Worcester Polytechnic Institute: Worcester, MA, USA, 2006. [Google Scholar]
- Kaur, M.; Choi, D.H. Diketopyrrolopyrrole: Brilliant red pigment dye-based fluorescent probes and their applications. Chem. Soc. Rev. 2015, 44, 58–77. [Google Scholar] [CrossRef]
- Valeur, B.; Leray, I. Design principles of fluorescent molecular sensors for cation recognition. Coord. Chem. Rev. 2000, 205, 3–40. [Google Scholar] [CrossRef]
- Doludda, M.; Kastenholz, F.; Lewitzki, E.; Grell, E. Time-resolved response of fluorescent alkali ion indicators and detection of short-lived intermediates upon binding to molecular cavities. J. Fluoresc. 1996, 6, 159–163. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Wren, S.P.; Sun, T.; Grattan, K.T.V. Development of a fiber-optic chemical sensor for the detection of cadmium. In Proceedings of the IEEE Sensors, Glasgow, Scotland, 29 October–1 November 2017. [Google Scholar]
- Lee, H.Y.; Swamy, K.M.K.; Jung, J.Y.; Kim, G.; Yoon, J. Rhodamine hydrazone derivatives based selective fluorescent and colorimetric chemodosimeters for Hg2+ and selective colorimetric chemosensor for Cu2+. Sens. Actuators B Chem. 2013, 182, 530–537. [Google Scholar] [CrossRef]
- Niu, Y.; Qian, Y. Synthesis and aggregation-induced emission enhancement of naphthalimide-rhodamine dye. J. Photochem. Photobiol. A Chem. 2016, 329, 88–95. [Google Scholar] [CrossRef]
- Biswal, B.; Mallick, D.; Thirunavoukkarasu, M.; Mohanty, R.; Bag, B. A pyridine and pyrrole coupled rhodamine derivative for Co(II) ion detection and its imaging application in plant tissues. Sens. Actuators B Chem. 2016, 232, 410–419. [Google Scholar] [CrossRef]
- Chen, X.; Ma, H. A selective fluorescence-on reaction of spiro form fluorescein hydrazide with Cu(II). Anal. Chim. Acta 2006, 575, 217–222. [Google Scholar] [CrossRef]
- Du, X.-L.; Zhang, H.-S.; Guo, X.-F.; Deng, Y.-H.; Wang, H. 6-Oxy-(acetyl piperazine) fluorescein as a new fluorescent labeling reagent for free fatty acids in serum using high-performance liquid chromatography. J. Chromatogr. A 2007, 1169, 77–85. [Google Scholar] [CrossRef]
- Wu, W.-N.; Wu, H.; Wang, Y.; Mao, X.-J.; Zhao, X.-L.; Xu, Z.-Q.; Fan, Y.-C.; Xu, Z.-H. A highly sensitive and selective off–on fluorescent chemosensor for hydrazine based on coumarin β-diketone. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 188, 80–84. [Google Scholar] [CrossRef]
- Karaoglu, K.; Yilmaz, F.; Menteşe, E. A New Fluorescent “Turn-Off” Coumarin-Based Chemosensor: Synthesis, Structure and Cu-Selective Fluorescent Sensing in Water Samples. J. Fluoresc. 2017, 27, 1293–1298. [Google Scholar] [CrossRef]
- Li, M.; Sun, Y.; Dong, L.; Feng, Q.-C.; Xu, H.; Zang, S.-Q.; Mak, T.C.W. Colorimetric recognition of Cu2+ and fluorescent detection of Hg2+ in aqueous media by a dual chemosensor derived from rhodamine B dye with a NS2 receptor. Sens. Actuators B Chem. 2016, 226, 332–341. [Google Scholar] [CrossRef]
- Haugland, R.P. The Handbook: A Guide to Fluorescent Probes and Labeling Technologies, 10th ed.; Invitrogen Corp.: Carlsbad, CA, USA, 2005. [Google Scholar]
- Ruan, S.; Ebendorff-Heidepriem, H.; Ruan, Y. Optical fibre turn-on sensor for the detection of mercury based on immobilized fluorophore. Measurement 2018, 121, 122–126. [Google Scholar] [CrossRef]
- Li, M.; Jiang, X.-J.; Wu, H.-H.; Lu, H.-L.; Li, H.-Y.; Xu, H.; Zang, S.-Q.; Mak, T.C.W. A dual functional probe for “turn-on” fluorescence response of Pb2+ and colorimetric detection of Cu2+ based on a rhodamine derivative in aqueous media. Dalton Trans. 2015, 44, 17326–17334. [Google Scholar] [CrossRef]
- Su, W.; Yuan, S.; Wang, E. A Rhodamine-Based Fluorescent Chemosensor for the Detection of Pb2+, Hg2+ and Cd2+. J. Fluoresc. 2017, 27, 1871–1875. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; Zhang, K.; Li, C.; Li, Y.; Niu, S. A novel fluorescent chemosensor based on a rhodamine 6G derivative for the detection of Pb2+ ion. Sens. Actuators B Chem. 2017, 246, 696–702. [Google Scholar] [CrossRef]
- Liu, C.; Huang, S.; Yao, H.; He, S.; Lu, Y.; Zhao, L.; Zeng, X. Preparation of fluorescein-based chemosensors and their sensing behaviors toward silver ions. RSC Adv. 2014, 4, 16109–16114. [Google Scholar] [CrossRef]
- Wu, G.; Li, M.; Zhu, J.; Lai, K.W.C.; Tong, Q.; Lu, F. A highly sensitive and selective turn-on fluorescent probe for Pb(II) ions based on a coumarin-quinoline platform. RSC Adv. 2016, 6, 100696–100699. [Google Scholar] [CrossRef]
- Jiao, Y.; Zhang, L.; Zhou, P. A rhodamine B-based fluorescent sensor toward highly selective mercury (II) ions detection. Talanta 2016, 150, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Fang, Z. A novel “turn on” glucose-based rhodamine B fluorescent chemosensor for mercury ions recognition in aqueous solution. Spectrosc. Lett. 2015, 48, 578–585. [Google Scholar] [CrossRef]
- Gao, T.; Lee, K.M.; Kim, S.H.; Heo, J.; Yang, S.I. A Mercuric Ion Selective Fluorescent Sensor Based on Rhodamine B with an Ethylene Unit. Bull. Korean Chem. Soc. 2017, 38, 292–295. [Google Scholar] [CrossRef]
- Long, Y.; Yang, M.-P.; Yang, B.-Q. Development and applications of two colorimetric and fluorescent indicators for Hg2+ detection. J. Inorg. Biochem. 2017, 172, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-M.; Zhao, R.-R.; Wei, Y.-L.; Yang, D.; Zhou, Z.-J.; Zhang, J.-F.; Zhou, Y. A rhodamine derivative for Hg2+-selective colorimetric and fluorescent sensing and its application to in vivo imaging. Chin. Chem. Lett. 2016, 27, 813–816. [Google Scholar] [CrossRef]
- Yan, F.; Cao, D.; Wang, M.; Yang, N.; Yu, Q.; Dai, L.; Chen, L. A new rhodamine-based “off-on” fluorescent chemosensor for Hg (II) ion and its application in imaging Hg (II) in living cells. J. Fluoresc. 2012, 22, 1249–1256. [Google Scholar] [CrossRef]
- Yan, F.; Wang, M.; Cao, D.; Yang, N.; Fu, Y.; Chen, L.; Chen, L. New fluorescent and colorimetric chemosensors based on the rhodamine detection of Hg2+ and Al3+ and application of imaging in living cells. Dye Pigment. 2013, 98, 42–50. [Google Scholar] [CrossRef]
- Bera, K.; Das, A.K.; Nag, M.; Basak, S. Development of a rhodamine-rhodanine-based fluorescent mercury sensor and its use to monitor real-time uptake and distribution of inorganic mercury in live zebrafish larvae. Anal. Chem. 2014, 86, 2740–2746. [Google Scholar] [CrossRef] [PubMed]
- Wanichacheva, N.; Hanmeng, O.; Kraithong, S.; Sukrat, K. Dual optical Hg2+-selective sensing through FRET system of fluorescein and rhodamine B fluorophores. J. Photochem. Photobiol. A Chem. 2014, 278, 75–81. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Wren, S.P.; Sun, T.; Grattan, K.T.V. Fluorescent optical fibre chemosensor for the detection of mercury. In Proceedings of the SPIE—The International Society for Optical Engineering, Baltimore, MD, USA, 18–19 April 2016; Volume 10013. [Google Scholar]
- Huang, K.; Jiao, X.; Liu, C.; Wang, Q.; Qiu, X.; Zheng, D.; He, S.; Zhao, L.; Zeng, X. Highly selective and sensitive fluorescent probe for mercury ions based on a novel rhodol-coumarin hybrid dye. Dye Pigment. 2017, 142, 437–446. [Google Scholar] [CrossRef]
- Xu, Y.; Jiang, Z.; Xiao, Y.; Zhang, T.-T.; Miao, J.-Y.; Zhao, B.-X. A new fluorescent turn-on chemodosimeter for mercury ions in solution and its application in cells and organisms. Anal. Chim. Acta 2014, 807, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Ncube, P.; Krause, R.W.M.; Ndinteh, D.T.; Mamba, B.B. Fluorescent sensing and determination of mercury (II) ions in water. Water SA 2014, 40, 175–182. [Google Scholar] [CrossRef]
- Han, Y.; Yang, C.; Wu, K.; Chen, Y.; Zhou, B.; Xia, M. A facile naphthalene-based fluorescent chemodosimeter for mercury ions in aqueous solution. RSC Adv. 2015, 5, 16723–16726. [Google Scholar] [CrossRef]
- Aliberti, A.; Vaiano, P.; Caporale, A.; Consales, M.; Ruvo, M.; Cusano, A. Fluorescent chemosensors for Hg2+ detection in aqueous environment. Sens. Actuators B Chem. 2017, 247, 727–735. [Google Scholar] [CrossRef]
- Sunnapu, O.; Kotla, N.G.; Maddiboyina, B.; Singaravadivel, S.; Sivaraman, G. A rhodamine based “turn-on” fluorescent probe for Pb(II) and live cell imaging. RSC Adv. 2015, 6, 656–660. [Google Scholar] [CrossRef]
- Shaily; Kumar, A.; Parveen, I.; Ahmed, N. Highly selective and sensitive coumarin–triazole-based fluorometric ‘turn-off’ sensor for detection of Pb2+ ions. Luminescence 2018, 33, 713–721. [Google Scholar] [CrossRef]
- Liu, J.; Wu, K.; Li, S.; Song, T.; Han, Y.; Li, X. A highly sensitive and selective fluorescent chemosensor for Pb2+ ions in an aqueous solution. Dalton Trans. 2013, 42, 3854–3859. [Google Scholar] [CrossRef] [PubMed]
- Karak, D.; Banerjee, A.; Lohar, S.; Sahana, A.; Mukhopadhyay, S.K.; Adhikari, S.S.; Das, D. Xanthone based Pb2+ selective turn on fluorescent probe for living cell staining. Anal. Methods 2013, 5, 169–172. [Google Scholar] [CrossRef]
- Sinha, S.; Rani Koner, R.; Kumar, S.; Mathew, J.; Roy, A.; Kanti Mukhopadhyay, S.; Nandi, C.K.; Ghosh, S. Structurally tuned benzo[h]chromene derivative as Pb2+ selective “turn-on” fluorescence sensor for living cell imaging. J. Lumin. 2013, 143, 355–360. [Google Scholar] [CrossRef]
- Saleem, M.; Lee, K.-H. Selective fluorescence detection of Cu2+ in aqueous solution and living cells. J. Lumin. 2014, 145, 843–848. [Google Scholar] [CrossRef] [Green Version]
- Karuk Elmas, Ş.N.; Ozen, F.; Koran, K.; Yilmaz, I.; Gorgulu, A.O.; Erdemir, S. Coumarin Based Highly Selective “off-on-off” Type Novel Fluorescent Sensor for Cu2+ and S2− in Aqueous Solution. J. Fluoresc. 2017, 27, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Bao, X.; Cao, Q.; Wu, X.; Shu, H.; Zhou, B.; Geng, Y.; Zhu, J. Design and synthesis of a new selective fluorescent chemical sensor for Cu2+ based on a Pyrrole moiety and a Fluorescein conjugate. Tetrahedron Lett. 2016, 57, 942–948. [Google Scholar] [CrossRef]
- Yang, X.; Zeng, W.; Wang, L.; Lu, X.; Yan, Y.; Qu, J.; Liu, R. A new fluorescent probe based on styrylcyanine dye containing pyridine: Dissimilar fluorescent response to Cu2+ and Pb2+. RSC Adv. 2014, 4, 22613–22616. [Google Scholar] [CrossRef]
- An, J.-M.; Yan, M.-H.; Yang, Z.-Y.; Li, T.-R.; Zhou, Q.-X. A turn-on fluorescent sensor for Zn(II) based on fluorescein-coumarin conjugate. Dye Pigment 2013, 99, 1–5. [Google Scholar] [CrossRef]
- Ashwin, B.C.M.A.; Sivaraman, G.; Stalin, T.; Yuvakkumar, R.; Muthu Mareeswaran, P. Selective and sensitive fluorescent sensor for Pd2+ using coumarin 460 for real-time and biological applications. J. Photochem. Photobiol. B Biol. 2018, 183, 302–308. [Google Scholar] [CrossRef]
- Wu, D.; Huang, Y.; Hu, S.; Yi, X.; Wang, J. Sensitive Hg2+ Sensing via Quenching the Fluorescence of the Complex between Polythymine and 5,10,15,20-tetrakis(N-methyl-4-pyridyl) Porphyrin (TMPyP). Sensors (Basel) 2018, 18, 3998. [Google Scholar] [CrossRef]
- Huang, W.-B.; Gu, W.; Huang, H.-X.; Wang, J.-B.; Shen, W.-X.; Lv, Y.-Y.; Shen, J. A porphyrin-based fluorescent probe for optical detection of toxic Cd2+ ion in aqueous solution and living cells. Dye Pigment 2017, 143, 427–435. [Google Scholar] [CrossRef]
- Zhang, X.; Xia, T.; Jiang, K.; Cui, Y.; Yang, Y.; Qian, G. Highly sensitive and selective detection of mercury (II) based on a zirconium metal-organic framework in aqueous media. J. Solid State Chem. 2017, 253, 277–281. [Google Scholar] [CrossRef]
- Yang, C.-X.; Ren, H.-B.; Yan, X.-P. Fluorescent metal-organic framework MIL-53(Al) for highly selective and sensitive detection of Fe3+ in aqueous solution. Anal. Chem. 2013, 85, 7441–7446. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xia, T.; Zhang, X.; Zhang, Q.; Cui, Y.; Yang, Y.; Qian, G. A turn-on fluorescent probe for Cd2+ detection in aqueous environments based on an imine functionalized nanoscale metal-organic framework. RSC Adv. 2017, 7, 54892–54897. [Google Scholar] [CrossRef]
Analyte | ON Sequence | Fluorophore | Quencher | Detection Range | LOD | Reversibility | Interferent Analytes | Aqueous Media | Observations | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
Hg2+ | 5-′FAM-CGC TTG TTT GTT CGC ACC CGT TCT TTC TT-3′ | FAM | 14.2 × 10−9 to 3 × 10−7 M | 4.28 × 10−9 M | Not studied | Negligible influence | Tris–HCl buffer (10 mM, pH 8.5) | [65] | ||
Hg2+ | 5′-NH2-(CH2)6- TTCTTTCTTCCCTTGTTTGTT | SYBR Green I | 1 × 10−9 to 1 × 10−2 M | Not studied | 93–110% | Not studied | Tris nitrate buffer (pH 8.0, 20 mM) | [79] | ||
Hg2+ | 5′-NH2-(CH2)6-TTCTTTCTTCGCGTTGTTTGTT-3′ | Graphene oxide (GO) sheets | 1 × 10−9 to 50 × 10−9 M | 9.2 × 10−10 M | Not studied | Negligible influence | phosphate-buffered (PBS) saline (10 mM, pH = 7.0) | [80] | ||
Hg2+ | 5′-NH2-TTCTTCCCCTTGTT-3′ | graphite carbon nitride (g-C3N4) sheets | 5 × 10−10 to 1 × 10−6 M | 1.7 × 10−8 M | 98.3–110.8% | Cu2+, Fe3+. Ag+ | Detection range, LOD and interferent analytes calculated in Tris-HCl (pH 7.6, 25 mM) buffer containing 150 mM NaClReversibi-lity studied in tap water | [81] | ||
Hg2+ | Fam-5′-GGTTGGTGTGGTTGG-3′-DABCYL) | FAM | DABCYL | 1 × 10−8 to 2 × 10−7 M | 5 × 10−9 M | 95–104% | Pb2+ | Tris–aceta-te (pH 7.4, 10 mM) | [61] | |
Hg2+ | 5′-FAM-GGT-TGG-TGT-GGT-TGG-DABCYL-3′ | FAM | DABCYL | 1 × 10−8 to 2 × 10−7 M | 1 × 10−8 M | Not studied | Not studied | Tris-acetate buffer (pH 7.4, 10 mM) | [68] | |
Hg2+ | 5′-SH-3(CH2CH2O)6- TCATGTTTGTTTGTTGGCCCCCCTTCTTTCTTA-3′ linked to the AuNPs | Texas Red | Au NPs | 1 × 10−11 to 1 × 10−6 M | 5.1 × 10−11 M | Not studied | Negligible influence | phosphate-buffered saline (10 mM, pH 7.0) with 0.3 M NaCl | cDNA linked to the Texas Red | [64] |
Hg2+ | 5′-SH (CH2)6A10TTCTTTCTTCCCCTTGTTTGTT-FAM-3′ | FAM | Au NPs | 2 × 10−8 to 1 × 10−6 M | 1.6 × 10−10 M | Not studied | Negligible influence | Tris–HCl buffer (25 mM, pH 8.2) containing 0.3 M NaCl | Aptamer linked to the Au NPs at the 5′ termini | [29] |
Hg2+ | 5′ NH2- C6-CTA CAG TTT CAC CTT TTC CCC CGT TTT GGT GTT T-3′ linked to the NaYF4:Tm3+, Yb3+ UCNPs | NaYF4:Tm3+, Yb3+ UCNPs | Au NPs | 2 × 10−7 to 2 × 10−5 M | 6 × 10−8 M | 95.2–108.2% | Negligible influence | Detection range and LOD studied in phosphate-buffered saline (10 mM, pH 7.4) and reversibility analyzed in milk and tap water | cDNA linked to the Au NPs | [74] |
Hg2+ | 5′-NH2-TCATCGTTCTTTCTTCCCCTTGTTTGTT-3′ linked to the UCNPs | Mn2+-doped NaYF4: Yb, Er UCNPs | Au nanoballs | 5 × 10−8 to 5 × 10−7 M | 1.5 × 10−10 M | 91.4–102.3% | Negligible influence | 25 g of real samples of shrimps or fish dipped in 225 mL of PBS (pH 7.4) | cDNA-functionalized Au nanoballs | [82] |
Hg2+ | 5′-SH-C6-TACAG TTTCA CCTTT TCCCC CGTTT TGGTG TTT-3′ linked to Au NPs | Mn:CdS/ZnS QDs | Au NPs | 1 × 10−9 to 1 × 10−6 M | 1.8 × 10−10 M | Not studied | Negligible influence | Tris–HCl (pH 7.4, 10 mM) buffer with 100 mM KCl and 1 mM MgCl2 | cDNA:5′SH-C6-TGAAA CTGTA-3′ linked to Mn:CdS/ZnS | [73] |
Hg2+ | 5′-SH-CGTCTTGTCGA-3′ linked to QDs | Mn-doped CdS/ZnS core/shell QDs | Au NPs | 1 × 10−9 to 1 × 10−8 M | 4.9 × 10−10 M | Not studied | Negligible influence | PBS buffer (10 mM, pH 7.4) | cDNA:5′-SH-TCGTCTTGTCG-3′ linked to the Au NPs | [83] |
Hg2+ | 5′-NH2-(CH2)6-TTCTTTCTTCGCGTTGTTTGTT-3′ labeled to the CDs | CQDs | GO | 5 × 10−9 to 2 × 10−7 M | 2.6 × 10−9 M | 94.7–109.8% | Equal amount of Fe2+ | PBS (10 mM, pH 8.0) | [84] |
Analyte | ON Sequence | Fluorophore | Quencher | Detection Range | LOD | Reversibility | Interferent Analytes | Aqueous Media | Observations | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
Pb2+ | 5′-Cy5.5-(CH2)6-GGGTGGGTGGGTGGGT-3′ | Cy5.5 | 1 × 10−9 to 3 × 10−7 M | 2.2 × 10−10 M | 80–105% | Negligible influence | PBS (10 mM, pH 7.4) | cDNA: 5′-NH2-(CH2)6-TTTTTTACCCACCCACCC-3′ | [75] | |
Pb2+ | 5′-GTGGGTAGGGCGGGTTGG-3′ | SYBR Green 1 | 1 × 10−8 to 1 × 10−6 M | Not studied | 98–102.3% | Not studied | Tris–HAc buffer (10 mM, pH 7.4) | [85] | ||
Pb2+ | 5′-GGT TGG TGT GGT TGG-3′ | PicoGreen (PG) | 5 × 10−8 to 5 × 10−6 M | 4.8 × 10−9 M | Not studied | Negligible influence | Water | cDNA: 5′-CCA ACC ACA CCA ACC-3′ | [86] | |
Pb2+ | FAM-5′-GGTTGGTGTGGTTGG-3′-DABCYL) | FAM | DABCYL | 5 × 10−10 to 3 × 10−8 M | 3 × 10−10 M | 95–104% | Hg2+ | Tris–aceta-te (pH 7.4, 10 mM) | [61] | |
Pb2+ | 5′-FAM-GGTTGGTGTGGTTGG-3′ | FAM | Au NPs | 1.25 × 10−8 to 1 × 10−7 M | 1 × 10−8 M | 92–112% | Slightly affected by Cu2+, Al2+ and Hg2+ | Tris–HAc buffer (5 mM, pH 7.4) | [87] | |
Pb2+ | 5′-SH-3(CH2CH2O)6-GGAAGGTGTGGAAGG-3′ linked to the Au NPs | Cy5.5 | Au NPs | 1 × 10−11 to 1 × 10−6 M | 2.7 × 10−13 M | Not studied | Negligible influence | phosphate-buffered saline (10 mM, pH 7) with 0.3 M NaCl | cDNA linked to Cy5.5 | [64] |
Pb2+ | 5′-ATTO647N-GGGTGGGTGGGTGGGT-3′ | ATTO647N | SWNTs | 0 to 1 × 10−6 M | 4.2 × 10−10 M | Not studied | Negligible influence | PBS buffer (10 mM, pH 7) with 0.25 M NaCl | [88] | |
Pb2+ | 5′-NH2-GGGTGGGTGGGTGGGT-3′ linked to NaYF4: Yb, Ho UCNPs | NaYF4: Yb, Ho UCNPs | Au NRs | 1 × 10−10 to 1 × 10−7 M | 5 × 10−11 M | 96.3–110.6% | Negligible influence | 25 g of real samples of shrimps or fish dipped in 225 mL of PBS (pH 7.4) | cDNA-functionalized Au NRs | [82] |
Pb2+ | 5′-NH2-(CH2)6-GGGTGGGTGGGTGGGT-3′ | Graphene QDs | GOx | 6 × 10−10 to 4 × 10−7 M | 6 × 10−10 M | Not studied | Negligible influence | PBS buffer (10.0 mM, pH 7.4) | [89] | |
Pb2+ | 5′-NH2-(CH2)6-GGGTGGGTGGGTGGGT-3′ | CdSe/ZnS QDs | GO sheets | 1 × 10−10 to 1 × 10−8 M | 9 × 10−11 M | Not studied | Negligible influence | PBS buffer (10 mM, pH 7.4) | [90] | |
Pb2+ | 5′-GGTTGGTGTGGTTGG-3′ | perylenetetracarboxylic acid diimide (PTCDI) | 4.8 × 10−10 to 4.8 × 10−5 M | 4.8 × 10−10 M | 77.2–93.4% | Negligible influence | MOPS buffer (5 mM, pH 7) | [91] | ||
Pb2+ | 5′-/3ThioMC3-D/CGATAACTCACTATrAGGAAGAGATG-3′ linked to the GQDs | Graphene QDs | Au NPs | 5 × 10−8 to 4 × 10−6 M | 1.67 × 10−8 M | Not studied | Negligible influence | PBS buffer (5 mM, pH 7.4) with 0.1 M NaCl | 5′-/5AmMC6/CATCTCTTCTCCGAGCCGGTCGA-AATAGTGAGT-3′ linked to the Au NPs | [92] |
Analyte | QDs | Detection Range | LOD | Reversibility | Interferent Analytes | Aqueous Media | Observations | Ref. |
---|---|---|---|---|---|---|---|---|
Hg2+ | CdTe QDs | 0 to 2 × 10−6 M | 6.23 × 10−9 M | 96.9–99.4% | Negligible influence | Ultrapure water | [141] | |
Hg2+ | capped CdTe QDs | (TGA) 1.25 × 10−9 to 1 × 10−8 M (l-cysteine) 5 × 10−12 to 2.5 × 10−11 M | (TGA) 3.5 × 10−10 M (l-cysteine) 2.7 × 10−12 M | Not studied | (TGA) not evaluated (l-cysteine) Zn2+, Cu2+ | Ultrapure water | QDs capped with thioglycolic acid (TGA) or l-cysteine | [109] |
Hg2+ | Cysteamine (CA)-capped CdTe QDs | 6 × 10−9 to 4.5 × 10−7 M | 4 × 10−9 M | 97–106.4% | 10-fold Pb2+, Cu2+ and Ag+ < 7% | acetic-acetate buffer (pH 5.0) | [107] | |
Hg2+ | l-Tryptophan-capped carbon quantum dots | 1.1 × 10−8 to 4 × 10−6 M | 1.1 × 10−8 M | Not studied | Negligible influence | sodium phosphate buffer (10 mM, pH 6.0) | [142] | |
Hg2+ | HPEI-g-HPGs-capped CdS QDs | 1 × 10−8 to 1 × 10−4 M | 1.5 × 10−8 M | Not studied | Cu2+ | Tris–HCl buffer (pH 7.4, 10 mM) | [112] | |
Hg2+ | MPA coated Mn doped ZnSe/ZnS colloidal NPs | 0 to 2 × 10−8 M | 1 × 10−10 M | Not studied | Negligible influence | PBS (10 mM, pH 7.4) | [143] | |
Hg2+ | PDDA-functionalized CdTe QDs | 6 × 10−9 to 1 × 10−6 M | 5 × 10−9 M | 97.5–103% | Negligible influence | Double distilled water | PDDA eliminates the interference from Cu2+ and Ag+ | [144] |
Hg2+ | TU-functionalized TGA-capped CdSe/CdS QDs | 5 × 10−9 to 1.5 × 10−6 M | 2.79 × 10−9 M | 83.8–95.4% | Not studied | PBS (pH 7.73) | [116] | |
Hg2+ | CdTe@SiO2@GQDs | 1 × 10−8 to 2.2 × 10−5 M | 3.3 × 10−9 M | 107.3–108.7% | Fe2+, Fe3+ | PBS (10 mM, pH 7.73) | [145] | |
Hg2+ | Carbon QDs blended with Rhodamine B | 1 × 10−7 to 4 × 10−5 M | 3 × 10−8 M | 94.5–957% | glutathione (GSH) | High purity water | [146] | |
Hg2+ | N-doped carbon QDs | 1 × 10−7 to 1 × 10−4 M | 2.3 × 10−8 M | 97.2–103.8% | GSH | Ultrapure water | [147] | |
Hg2+ | N-doped carbon QDs | 0.2 × 10−6 to 8 × 10−6 M | 8.7 × 10−8 M | 96.6–105.5% | Negligible influence | PBS (50 mM, pH 7) | Doping with N improves the selectivity | [129] |
Hg2+ | N-doped carbon QDs | 0 to 2.5 × 10−5 M | 2.3 × 10−7 M | No | Negligible influence | Ultra-pure water | [148] | |
Hg2+ | N-dopped carbon QDs | 1 × 10−8 to 1 × 10−7 M | 2.1 × 10−9 M | No | Not studied | PBS (10 mM, pH 7) | [149] | |
Hg2+ | N-, S-, Co- doped carbon QDs | 0 to 2 × 10−5 M | 1.8 × 10−7 M | No | Cu2+, Ni2+ | Deionized water and filtered river water | [136] | |
Hg2+ | S- and O- doped carbon nitride QDs | 1 × 10−8 to 1 × 10−6 M | 1 × 10−11 M | Not studied | Negligible influence | Double distilled water and tap water | [150] | |
Hg2+ | Graphene QDs | 8 × 10−7 to 9 × 10−6 M | 1 × 10−7 M | Not studied | Ca2+, Zn2+, Fe2+, and Co2+ < 10% | Tris–HCl buffer (pH 8, 50 mM) | [151] | |
Hg2+ | O-rich N-doped graphene QDs | 4 × 10−8 to 6 × 10−6 M | 8.6 × 10−9 M | 86.7–103.5% | Pb2+, Cd2+, Cu2+, and Ni2+ | Tris–HCl buffer (pH 8, 10 mM) | [138] | |
Hg2+ | N-, S-doped graphene QDs | 5 × 10−8 to 1.5 × 10−5 M | 1.4 × 10−8 M | (96 ± 4.7)–(116 ± 3.8)% | Negligible influence | PBS buffer (100 mM, pH 7) | [140] |
Analyte | QDs | Detection Range | LOD | Reversibility | Interferent Analytes | Aqueous Media | Observations | Ref. |
---|---|---|---|---|---|---|---|---|
Pb2+ | xylenol orange functionalized CdSe/CdS QDs | 5 × 10−8 to 6 × 10−6 M | 2 × 10−8 M | 94.8–103.7% | Negligible influence | PBS (pH 6.47) | [152] | |
Pb2+ | green Au NCs covalently linked to the surface of silica NPs embedded with red QDs | 2.5 × 10−8 to 2.5 × 10−7 M | 3.5 × 10−9 M | 95.2–112.4% | Negligible influence | PBS (50 mM, pH 6) | [153] | |
Pb2+ | S-doped graphene QDs | 1 × 10−7 to 1.4 × 10−4 M | 3 × 10−8 M | Not studied | Negligible influence | PBS (3 mM, pH 7) | [139] | |
Pb2+ | Silica-coated ZnS QDs (ZnS@SiO2 QDs) | 1 × 10−9 to 2.6 × 10−4 M | - | No | Cd2+ | Deionized water | [154] | |
Pb2+ | Flavonoid moiety-incorporated carbon QDs | 1 × 10−10 to 2 × 10−8 M | 5.5 × 10−11 M | Not studied | Negligible influence | Deionized water | [155] | |
Pb2+ | CdTe QDs | 2 × 10−8 to 3.6 × 10−6 M | 8 × 10−8 M | Not studied | Negligible influence | Human serum | [156] | |
Cu2+ | N-acetyl-l-cysteine capped CdHgSe QDs | 1 × 10−9 to 4 × 10−7 M | 2 × 10−10 M | 98.3–101.6% | Ag+, Co2+, Hg2+ | PBS (pH 9) | [157] | |
Cu2+ | L-cysteine capped Mn2+-doped ZnS QDs | 7.87 × 10−6 to 3.15 × 10−4 M | 3.15 × 10−6 M | Not studied | Hg2+ | Phosphate buffer (pH 7) | [113] | |
Cu2+ | ligand-capped CdTe QDs (CdTe-L QDs) | (5.16 ± 0.07) × 10−8 to (1.50 ± 0.03) × 10−5 M | (1.55 ± 0.05) × 10−8 M | Not studied | Negligible influence | Tris–HCl buffer (pH 6.5, 10 mM) | [158] | |
Cu2+ | inorganic CsPbBr3 perovskite QDs | 0 to 1 × 10−7 M | 1 × 10−10 M | Not studied | Negligible influence | Hexane | [159] | |
Cu2+ | Polyethylene glycol capped ZnO QDs (PEG@ZnO QDs) | 4 × 10−9 to 1 × 10−5 M | 3.33 × 10−9 M | 99.6–104.0% | Negligible influence | Detection range, LOD and interferent analytes in Ultra-pure studied water, reversibi-lity in tap water | [114] | |
Cu2+ | Water-soluble silica-coated ZnS:Mn NPs (ZnS:Mn/SiO2) | 8.16 × 10−8 to 4.16 × 10−4 M | - | 94.76–105.82% | Negligible influence | Seawater | [160] | |
Fe3+ | Carbon QDs | 0 to 3 × 10−4 M | 13.68 × 10−6 M | With ascorbic acid | Negligible influence | Ultra-pure water | [161] | |
Fe3+ | CdTe QDs: (1) thioglyco-lic acid capped quantum dots (Green) (2) N-Acetyl-l-cysteine capped QDs (red) | 0 to 3.5 × 10−6 M | 1.4 × 10−8 M | Not studied | Negligible influence | Deioni-zed water | [108] | |
Fe3+ | S-doped carbon QDs | 2.5 × 10−5 to 5 × 10−3 M | 9.6 × 10−7 M | Not studied | Negligible influence | Ultra-pure water | It works in strongly acid (pH < 2) solutions | [135] |
Fe3+ | N-, B-, S- doped carbon dots | 3 × 10−7 to 5.46 × 10−4 M | 9 × 10−8 M | 97.98–108.55% | Negligible influence | Tris–HCl buffer (pH 7) | [162] | |
Hg2+, Pb2+ | L-cysteine-capped CdS QDs | 1 × 10−9 to 4 × 10−9 M (Hg2+) 3 × 10−9 to 1.5 × 10−8 M (Pb2+) | 1 × 10−9 M (Hg2+) 1 × 10−7 M (Pb2+) | Not studied | Negligible influence | phosphate buffer (pH 7.4) | [163] | |
Cr(III) | ligand-coated CdTe QDs (CdTe-L QDs) | (6.78 ± 0.05) × 10−9 to (3.70 ± 0.02) × 10−6 M | (20.30 ± 0.03) × 10−9 M | 98.32–100.50% | Negligible influence | PBS (10 mM, pH 7) | [164] | |
Cd2+ | Green emitting CdSe QDs covalently linked onto red emitting CdTe QDs | 1 × 10−7 to 9 × 10−6 M | 2.5 × 10−9 M | 86.5–102.6% | Negligible influence | Detection range, LOD and interferent analytes studied in Tris-EDTA. Reversibility studied in lake water and tap water | [165] |
Analyte | Organic Dye | Detection Range | LOD | Reversibility | Interferent Analytes | Aqueous Media | Observations | Ref. |
---|---|---|---|---|---|---|---|---|
Hg2+ | Rhodamine B | 1 to 5 × 10−8 M | - | Not studied | Negligible influence | Acetonitrile | Functionalized with 5-aminoisophthalic acid diethyl ester | [193] |
Hg2+ | Rhodamine B | 0 to 7 × 10−5 M | - | Not studied | Zn2+, Fe2+,and Cu2+ | Water | Functionalized with glucose | [194] |
Hg2+ | non-sulfur rhodamine derivative | 0 to 5 × 10−6 M | 2 × 10−7 M | Yes | Negligible influence | Acetonitrile | Functionalized with ethylene moiety | [195] |
Hg2+ | Rhodamine B (RBAI) Rhodamine 6G (RGAI) | RBAI—5 × 10−6 to 2.2 × 10−5 M RGAI—7.94 × 10−6 to 2.5 × 10−5 M | RBAI—4.23 × 10−6 M RGAI—6.34 × 10−6 M | > 90% | Negligible influence | Detection range, LOD, reversibility and interferent analytes studied in ethanol-water (4/6 v/v, 20 mM, HEPES pH 7.4). Detection also tested in living cells and mice | Functionalized with di-Aminobenzene-phenyl Isothiocyanate | [196] |
Hg2+ | Rhodamine B derivative | 0 to 1.6 × 10−5 M | 2.36 × 10−6 M | Yes | Negligible influence | Detection range, LOD, reversibility and interferent analytes studied in deionized water. Potential application analyzed in three natural water samples. | Functionalized with NS2-containing receptor | [185] |
Hg2+ | Rhodamine derivative | 0 to 6 × 10−4 M | 6.79 × 10−6 M | Not studied | Negligible influence | DMSO–HEPES buffer (0.02 mol/L, pH 7.4; v/v = 6:4) | Functionalized with hydroxyquinoline group | [197] |
Hg2+ | Rhod-5N | 0 to 3 × 10−7 M | 1.5 × 10−9 M | Not studied | Not studied | Milli-Q water | Functionalized with BAPTA | [187] |
Hg2+ | Rhodamine C | 4 × 10−7 to 5 × 10−6 M | 7.4 × 10−8 M | Yes (Na2S addition) | Negligible influence | buffered HEPES (20 mM, pH 7.0) water-ethanol (7/3, v/v) | synthesized by the reaction of rhodamine ethylenediamine and cinnamoyl chloride | [198] |
Hg2+ | Rhodamine B derivatives RW-1, RW-2 | RW-1: 5 × 10−7 to 3 × 10−6 M RW-2: 5 × 10−7 to 4 × 10−6 M | RW-1: 2.5 × 10−8 M RW-2: 4.2 × 10−8 M | Yes | Negligible influence | 4:6 CH3OH/HEPES buffer (v/v, 10 mM, pH 7.0) | Functionalized with a spirocyclic moiety | [199] |
Hg2+ | RR1-rhodamine–rhodanine-based | 0 to 12 × 10−6 M | 5 × 10−9 M | No | Negligible influence | water–ACN (60/40 v/v) mixture | [200] | |
Hg2+, Pb2+, Cd2+ | rhodamine 6G hydrazide | Hg2+: 1 × 10−5 to 5 × 10−5 M Pb2+: 1 × 10−5 to 7 × 10−5 M Cd2+: 1 × 10−5 to 9 × 10−5 M | Hg2+: 1.6 × 10−8 M Pb2+: 1.2 × 10−8 M Cd2+: 4.7 × 10−8 M | Yes: Hg2+ and Cd2+ (with EDTA) No: Pb2+ | Cu2+ and Ni2+ in the case of Cd2+ detection | HEPES buffer solution (EtOH:H2O = 9/1, 10 mM HEPES buffer, pH 7.2) | Functionalized with N-methylisatin | [189] |
Hg2+ | Fluorescein and rhodamine B | 2.5 × 10−7 to 2.52 × 10−6 M | 2.02 × 10−8 M | Yes | Negligible influence | Dichlorome-thane | [201] | |
Hg2+ | Coumarine derivative | 0 to 1.4 × 10−5 M | - | Yes (after TPEN incubation) | Negligible influence | Deionized water | Modified with azathia crown ether moiety | [202] |
Hg2+ | rhodol-coumarin | 0 to 2.5 × 10−5 M | 5.5 × 10−9 M | Not studied | Negligible influence | MeOH-H2O (v/v = 1:1) solution | Modified with hydrazide moiety | [203] |
Hg2+ | coumarin | 0 to 4 × 10−6 M | 1 × 10−5 M | No | Co2+, Ni2+ and Cu2+ (can me masked by using EDTA) | HEPES buffer solution (20 mM HEPES, pH 7.2, EtOH:H2O = 1:1, v/v) | thiosemicarbazide derivative reacts with Hg2+ | [204] |
Hg2+ | dibenzo-18-crown-6-ether (DB18C6) | 1.25 × 10−6 to 1.2 × 10−4 M | 1.25 × 10−8 M | Not studied | Cu2+, Pb2+ | Titrisol buffer (pH 7) | [205] | |
Hg2+ | 2-((2-(vinyloxy)-naphthalen-1-yl)methylene) malononitrile | 0 to 5 × 10−6 M | 4.31 × 10−8 M | Not studied | Negligible influence | PBS buffer (10 mM, pH 7.4, containing 1% CH3CN) | [206] | |
Hg2+ | Dansyl-Met-NH2 | 1 × 10−8 to 6 × 10−6 M | 5 × 10−9 M | Yes | Potentital interference from Fe2+, Pb2+, Cd2+, Pd2+ | HEPES buffer (10 mM, pH 7.4). Potential application also studied in synthetic marine water | [207] |
Analyte | Organic Dye | Detection Range | LOD | Reversibility | Interferent Analytes | Aqueous Media | Observations | Ref. |
---|---|---|---|---|---|---|---|---|
Pb2+ | Rhodamine 6G derivative | 1 × 10−8 to 1 × 10−5 M | 2.7 × 10−9 M | Yes | Negligible influence | HEPES buffer (10 mM, pH 7.4). Also tested in sea shells food. | Recognition moiety attached to the R-6G derivative | [190] |
Pb2+ | rhodamine tri methoxy benzaldehyde conjugate derivative | 0 to 1 × 10−5 M | 1.5 × 10−8 M | Not studied | Negligible influence | HEPES buffer solution (pH 7.54) | [208] | |
Pb2+ | rhodamine hydroxamate derivative | 0 to 1 × 10−5 M | 2.5 × 10−7 M | Yes (adding EDTA) | Negligible influence | HEPES buffer (10 mM, pH 6.5) | Functionalized with an acyclic diethyl iminodiacetate receptor | [188] |
Pb2+ | Coumarin | 0 to 2 × 10−5 M | 1.9 × 10−9 M | Not studied | Negligible influence | phosphate-buffer (20 mM, 1:9 DMSO/H2O (v/v), pH 8.0) | Coumarin-trizaole-based receptor: (4-((1-(2-oxo-2H-chromen-4-yl)-1H-1,2,3- triazol-5-yl)methoxy)-2H-chromen-2-one) | [209] |
Pb2+ | Coumarin | 6 × 10−6 to 2 × 10−5 M | 3.36 × 10−11 M | Not studied | Negligible influence | HEPES buffer solution (CH3CN:H2O = 95:5, v/v, 10 mM, pH 7.2) | Functionalized with a triazole substituted 8-hydroxyquinoline (8-HQ) receptor | [192] |
Pb2+ | BODIPY fluorophore | 5 × 10−8 to 2.5 × 10−6 M | 1.34 × 10−8 M | Not studied | Negligible influence | PBS buffer (0.1 M, pH 7.2) | Functionalized with a polyamide receptor | [210] |
Pb2+ | 1,3,6-trihydroxy xanthone | 1 × 10−5 to 2 × 10−4 M | 1.8 × 10−7 M | Not studied | - | DMSO–H2O solution (2:1 ratio, v/v) | [211] | |
Pb2+ | 2-amino-4-phenyl-4H-benzo[h]chromene-3-carbonitrile | 0 to 2 × 10−3 M | 4.14 × 10−4 M | Yes | Cd2+, Fe3+, Hg2+, Cu2+ | Methanol | [212] | |
Cu2+ | rhodamine B semicarbazide | 2 × 10−8 to 3 × 10−7 M | 1.6 × 10−7 M | Not studied | Negligible influence | Methanol–water (1:1, v/v) at pH 7 | [213] | |
Cu2+ | rhodamine hydroxamate derivative | 0 to 1.2 × 10−5 M | 5.8 × 10−7 M | Yes (Na2S addition) | Negligible influence | HEPES buffer (10 mM, pH 6.5) containing 1% CH3CN (v/v) | Functionalized with an acyclic diethyl iminodiacetate receptor | [188] |
Cu2+ | 6,7-dihydroxy-3-(3-chlorophenyl) coumarin | 0 to 2.5 × 10−6 M | 3.3 × 10−10 M | Yes (with S2−) | Negligible influence | CH3CN/H2O (90:10, v/v) | [214] | |
Cu2+ | Fluorescein | 1 × 10−6 to 6 × 10−5 M | 3 × 10−7 M | Not studied | Negligible influence | DMSO/HEPES solution(3:1, v/v, 1 mM, pH 7.2) | Functionalized with a pyrrole moiety | [215] |
Pb2+, Cu2+ | styrylcyanine dye containing pyridine | Pb2+: 3 × 10−5 to 6 × 10−4 M Cu2+: 3 × 10−6 to 9 × 10−7 M | Pb2+: 3.41 × 10−6 M Cu2+: 1.24 × 10−6 M | Not studied | Negligible influence | CH3CN–water mixture (9:1, v/v) | [216] | |
Zn2+ | Fluorescein-coumarin conjugate | 0 to 1 × 10−5 M | 1 × 10−7 M | Yes | Negligible influence | HEPES buffer (water/ethanol, 1:9, v/v; 10 mM HEPES; pH 7.4) | [217] | |
Cd2+ | coumarin | 0 to 1.6 × 10−5 M | - | Not studied | Hg2+ | Deionized water | Functionalized with a dipicolylamine receptor | [177] |
Ag+ | Fluorescein | L1: 0 to 1.98 × 10−6 M L2: 0 to 4.95 × 10−6 M | L1: 4 × 10−9 M L2: 3 × 10−8 M | Yes (Na2S) | Negligible influence | Ethanol | L1: functionalized with N,S- receptor L2: functionalized with N,Se- receptor | [191] |
Pd2+ | Coumarin 460 | 0 to 1 × 10−5 M | 2.5 × 10−7 M | Not studied | Negligible influence | PBS buffer containing 1% DMSO | [218] |
Type of Material | Sensitive Material | Analyte | Detection Range | LOD | Reversibility | Interferent Analytes | Ref. |
---|---|---|---|---|---|---|---|
Fluorophore-labelled aptamer | Mn2+-doped NaYF4: Yb, Er UCNPs labelled to 5′-NH2-TCATCGTTCTTTCTTCCCCTTGTTTGTT-3′ | Hg2+ | 5 × 10−8 to 5 × 10−7 M | 1.5 × 10−10 M | 91.4–102.3% | Negligible influence | [82] |
Texas Red labelled to 5′-SH-3(CH2CH2O)6- TCATGTTTGTTTGTTGGCCCCCCTTCTTTCTTA-3′ linked to the AuNPs | Hg2+ | 1 × 10−11 to 1 × 10−6 M | 5.1 × 10−11 M | Not studied | Negligible influence | [64] | |
5′- Cy5.5-SH-3(CH2CH2O)6-GGAAGGTGTGGAAGG-3′ linked to the Au NPs | Pb2+ | 1 × 10−11 to 1 × 10−6 M | 2.7 × 10−13 M | Not studied | Negligible influence | [64] | |
Quantum dots | S- and O- doped carbon nitride QDs | Hg2+ | 1 × 10−8 to 1 × 10−6 M | 1 × 10−11 M | Not studied | Negligible influence | [150] |
Flavonoid moiety-incorporated carbon QDs | Pb2+ | 1 × 10−10 to 2 × 10−8 M | 5.5 × 10−11 M | Not studied | Negligible influence | [157] | |
Polyethylene glycol capped ZnO QDs (PEG@ZnO QDs) | Cu2+ | 4 × 10−9 to 1 × 10−5 M | 3.33 × 10−9 M | 99.6–104% | Negligible influence | [114] | |
Organic dyes | rhodol-coumarin | Hg2+ | 0 to 2.5 × 10−5 M | 5.5 × 10−9 M | Not studied | Negligible influence | [203] |
6,7-dihydroxy-3-(3-chlorophenyl) coumarin | Cu2+ | 0 to 2.5 × 10−6 M | 3.3 × 10−10 M | Yes (with S2−) | Negligible influence | [214] | |
Rhodamine 6G derivative | Pb2+ | 1 × 10−8 to 1 × 10−5 M | 2.7 × 10−9 M | Yes | Negligible influence | [190] | |
Porphyrins | 5,10,15,20-tetrakis (4-sulfonatophenyl)porphyrin(TPPS) | Hg2+ | 3.3 × 10−8 to 3.3 × 10−5 M | 3.3 × 10−8 M | Not studied | Negligible influence | [32] |
5,10,15,20-tetrakis (N-methyl-4-pyridyl) porphyrin (TMPyP) | Hg2+ | 5 × 10−9 to 1 × 10−7 M | 1.3 × 10−9 M | 96–105% | Slightly affected by Pb2+ | [219] | |
5,10-bis(4-aminophenyl)-15,20-diphenyl-porphyrin (BATP) | Cd2+ | 5 × 10−8 to 4 × 10−6 M | 3.2 × 10−8 M | Yes | Slightly affected by Cu2+ and Hg2+ | [220] | |
Metal-organic frameworks | UiO-66-PSM | Hg2+ | 0 to 7.81 × 10−5 M | 5.88 × 10−6 M | 96.9–100.6% | Negligible influence | [221] |
MIL-53(Al) | Fe3+ | 3 × 10−6 to 2 × 10−4 M | 9 × 10−5 M | 98–106% | Negligible influence | [222] | |
UiO-66-NH2 | Cd2+ | 1 × 10−5 to 5 × 10−4 M | 3.36 × 10−7 M | Not studied | Not studied | [223] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Acha, N.; Elosúa, C.; Corres, J.M.; Arregui, F.J. Fluorescent Sensors for the Detection of Heavy Metal Ions in Aqueous Media. Sensors 2019, 19, 599. https://doi.org/10.3390/s19030599
De Acha N, Elosúa C, Corres JM, Arregui FJ. Fluorescent Sensors for the Detection of Heavy Metal Ions in Aqueous Media. Sensors. 2019; 19(3):599. https://doi.org/10.3390/s19030599
Chicago/Turabian StyleDe Acha, Nerea, César Elosúa, Jesús M. Corres, and Francisco J. Arregui. 2019. "Fluorescent Sensors for the Detection of Heavy Metal Ions in Aqueous Media" Sensors 19, no. 3: 599. https://doi.org/10.3390/s19030599
APA StyleDe Acha, N., Elosúa, C., Corres, J. M., & Arregui, F. J. (2019). Fluorescent Sensors for the Detection of Heavy Metal Ions in Aqueous Media. Sensors, 19(3), 599. https://doi.org/10.3390/s19030599