Refractometric Sensing with Periodic Nano-Indented Arrays: Effect of Structural Dimensions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of Gold Nanocups
2.2. Computed Reflection Spectra
2.3. Reflectance Measurements
3. Results and Discussion
3.1. Theoretical Description
3.2. Measured Reflectance Spectra
3.3. Wave Propagation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Magnusson, R. The complete biosensor. J. Biosens. Bioelectron. 2013, 4, e120. [Google Scholar] [CrossRef]
- Liedberg, B.; Nylander, C.; Lundstrom, I. Surface-plasmon resonance for gas-detection and biosensing. Sens. Actuator 1983, 4, 299–304. [Google Scholar] [CrossRef]
- Nylander, C.; Liedberg, B.; Lind, T. Gas-detection by means of surface-plasmon resonance. Sens. Actuator 1982, 3, 79–88. [Google Scholar] [CrossRef]
- Homola, J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 2008, 108, 462–493. [Google Scholar] [CrossRef] [PubMed]
- Magnusson, R.; Svavarsson, H.G.; Yoon, J.; Shokooh-Saremi, M.; Song, S.H. Experimental observation of leaky modes and plasmons in a hybrid resonance element. Appl. Phys. Lett. 2012, 100, 091106. [Google Scholar] [CrossRef]
- Guo, L.H.; Jackman, J.A.; Yang, H.H.; Chen, P.; Cho, N.J.; Kim, D.H. Strategies for enhancing the sensitivity of plasmonic nanosensors. Nano. Today 2015, 10, 213–239. [Google Scholar] [CrossRef] [Green Version]
- Nazarov, M.; Coutaz, J.L. Terahertz surface waves propagating on metals with sub-wavelength structure and grating reliefs. J. Infrared. Millim. TE. 2011, 32, 1054–1073. [Google Scholar] [CrossRef]
- Mazzotta, F.; Johnson, T.W.; Dahlin, A.B.; Shaver, J.; Oh, S.H.; Hook, F. Influence of the evanescent field decay length on the sensitivity of plasmonic nanodisks and nanoholes. ACS Photonics 2015, 2, 256–262. [Google Scholar] [CrossRef]
- Spackova, B.; Wrobel, P.; Bockova, M.; Homola, J. Optical biosensors based on plasmonic nanostructures: A review. Procee. IEEE 2016, 104, 2380–2408. [Google Scholar] [CrossRef]
- Svavarsson, H.G.; Yoon, J.W.; Shokooh-Saremi, M.; Song, S.H.; Magnusson, R. Fabrication and characterization of large, perfectly periodic arrays of metallic nanocups. Plasmonics 2012, 7, 653–657. [Google Scholar] [CrossRef]
- Svavarsson, H.G.; Yoon, J.W.; Shokooh-Saremi, M.; Song, S.H.; Magnusson, R. Fabrication of large plasmonic arrays of gold nanocups using inverse periodic templates. Plasmonics 2011, 6, 741–744. [Google Scholar] [CrossRef]
- Rakic, A.D.; Djurisic, A.B.; Elazar, J.M.; Majewski, M.L. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Optics 1998, 37, 5271–5283. [Google Scholar] [CrossRef]
- Garcia-Vidal, F.J.; Martin-Moreno, L.; Ebbesen, T.W.; Kuipers, L. Light passing through subwavelength apertures. Rev. Mod. Phys. 2010, 82, 729–787. [Google Scholar] [CrossRef] [Green Version]
- Pitarke, J.M.; Silkin, V.M.; Chulkov, E.V.; Echenique, P.M. Theory of surface plasmons and surface-plasmon. Rep. Prog. Phys. 2007, 70, 1–87. [Google Scholar] [CrossRef]
- Garcia-Vidal, F.J.; Martin-Moreno, L.; Pendry, J.B. Surfaces with holes in them: New plasmonic metamaterials. J. Opt. A.-Pure. Appl. Op. 2005, 7, 97–101. [Google Scholar] [CrossRef]
- Monteiro, J.P.; Carneiro, L.B.; Rahman, M.M.; Brolo, A.G.; Santos, M.J.L.; Ferreira, J.; Girotto, E.M. Effect of periodicity on the performance of surface plasmon resonance sensors based on subwavelength nanohole arrays. Sens. Actuat B-Chem. 2013, 178, 366–370. [Google Scholar] [CrossRef]
- Joshi, G.K.; McClory, P.J.; Dolai, S.; Sardar, R. Improved localized surface plasmon resonance biosensing sensitivity based on chemically-synthesized gold nanoprisms as plasmonic transducers. J Mater Chem. 2012, 22, 923–931. [Google Scholar] [CrossRef]
- Joshi, G.K.; McClory, P.J.; Muhoberac, B.B.; Kumbhar, A.; Smith, K.A.; Sardar, R. Designing efficient localized surface plasmon resonance-based sensing platforms: Optimization of sensor response by controlling the edge length of gold nanoprisms. J. Phys. Chem. C 2012, 116, 20990–21000. [Google Scholar] [CrossRef]
- Cetin, A.E.; Etezadi, D.; Galarreta, B.C.; Busson, M.P.; Eksioglu, Y.; Altug, H. Plasmonic nanohole arrays on a robust hybrid substrate for highly sensitive label-free biosensing. ACS photonics 2015, 2, 1167–1174. [Google Scholar] [CrossRef]
- Liu, G.D.; Zhai, X.; Wang, L.L.; Lin, Q.; Xia, S.X.; Luo, X.; Zhao, C.J. A high-performance refractive index sensor based on fano resonance in Si split-ring metasurface. Plasmonics 2018, 13, 15–19. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carney, D.J.; Svavarsson, H.G.; Hemmati, H.; Fannin, A.; Yoon, J.W.; Magnusson, R. Refractometric Sensing with Periodic Nano-Indented Arrays: Effect of Structural Dimensions. Sensors 2019, 19, 897. https://doi.org/10.3390/s19040897
Carney DJ, Svavarsson HG, Hemmati H, Fannin A, Yoon JW, Magnusson R. Refractometric Sensing with Periodic Nano-Indented Arrays: Effect of Structural Dimensions. Sensors. 2019; 19(4):897. https://doi.org/10.3390/s19040897
Chicago/Turabian StyleCarney, Daniel J., Halldor G. Svavarsson, Hafez Hemmati, Alexander Fannin, Jae W. Yoon, and Robert Magnusson. 2019. "Refractometric Sensing with Periodic Nano-Indented Arrays: Effect of Structural Dimensions" Sensors 19, no. 4: 897. https://doi.org/10.3390/s19040897
APA StyleCarney, D. J., Svavarsson, H. G., Hemmati, H., Fannin, A., Yoon, J. W., & Magnusson, R. (2019). Refractometric Sensing with Periodic Nano-Indented Arrays: Effect of Structural Dimensions. Sensors, 19(4), 897. https://doi.org/10.3390/s19040897