Electrochemical Deposition of Nanomaterials for Electrochemical Sensing
Abstract
:1. Introduction
2. Metal Nanoparticles
2.1. Au-NPs Electrosynthesis
2.2. Au Nanostructures Electrosynthesis
2.3. Electrochemical Sensors Based on Au-NPs
2.4. Electrochemical Sensors Based on Nanoporous Au
2.5. Biosensors
3. LDHs and Other Inorganic Materials
3.1. Electrodeposition
3.2. Electrochemical Sensors Based on Redox Active LDHs in Basic Solution
3.3. Analytical Applications of LDHs in Non Basic Environment
3.4. Composite Systems Layered Double Hydroxides-Metal NPs
3.5. Metal Oxide Nanoparticles
4. Polymers
4.1. Electrosynthesis of Conductive Polymers
4.2. Electrochemical Polymerization of Insulating Polymers
4.3. Analytical Applications of Nanostructured Conductive Polymers
4.4. Molecularly Imprinted Polymers
5. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Zen, J.-M.; Kumar, A.S.; Tsai, D.-M. Recent updates of chemically modified electrodes in analytical chemistry. Electroanalysis 2003, 15, 1073–1087. [Google Scholar] [CrossRef]
- Pena-pereira, F.; Duarte, R.M.B.O.; Duarte, A.C. Immobilization strategies and analytical applications for metallic and metal-oxide nanomaterials on surfaces. Trends Anal. Chem. 2012, 40, 90–105. [Google Scholar] [CrossRef]
- Caschera, D.; Federici, F.; Zane, D.; Focante, F.; Curulli, A.; Padeletti, G.J. Gold nanoparticles modified GC electrodes: Electrochemical behaviour dependence of different neurotransmitters and molecules of biological interest on the particles size and shape. Nanopart. Res. 2009, 11, 1925–1936. [Google Scholar] [CrossRef]
- Cioffi, N.; Colaianni, L.; Ieva, E.; Pilolli, R.; Ditaranto, N.; Daniela, M.; Cotrone, S.; Buchholt, K.; Lloyd, A.; Sabbatini, L.; et al. Electrosynthesis and characterization of gold nanoparticles for electronic capacitance sensing of pollutants. Electrochim. Acta 2011, 56, 3713–3720. [Google Scholar] [CrossRef] [Green Version]
- Scavetta, E.; Casagrande, A.; Gualandi, I.; Tonelli, D. Analytical performances of Ni LDH films electrochemically deposited on Pt surfaces: Phenol and glucose detection. J. Electroanal. Chem. 2014, 722–723, 15–22. [Google Scholar] [CrossRef]
- Dominguez-Dominguez, S.; Arias-Pardilla, J.; Berenguer-Murcia, A.; Morallon, E.; Cazorla-Amoros, D. Electrochemical deposition of platinum nanoparticles on different carbon supports and conducting polymers. J. Appl. Electrochem. 2008, 38, 259–268. [Google Scholar] [CrossRef]
- Rodriguez-Sanchez, L.; Blanco, M.C.; Lopez-Quintela, M.A. Electrochemical Synthesis of Silver Nanoparticles. J. Phys. Chem. B 2000, 104, 9683–9688. [Google Scholar] [CrossRef]
- Wang, D.; Luo, H.; Kou, R.; Gil, M.P.; Xiao, S.; Golub, V.O.; Yang, Z.; Brinker, C.J.; Lu, Y. A General Route to Macroscopic Hierarchical 3D Nanowire Networks. Angew. Chem. Int. Ed. 2004, 43, 6169–6173. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Du, D.; Eychmu, A.; Lin, Y. Engineering Ordered and Nonordered Porous Noble Metal Nanostructures: Synthesis, Assembly, and Their Applications in Electrochemistry. Chem. Rev. 2015, 115, 8896–8943. [Google Scholar] [CrossRef] [PubMed]
- Baraton, M.I. Functionalization and Surface Treatment of Nanoparticles; American Scientific Publishers: Valencia, CA, USA, 2003. [Google Scholar]
- Ieva, E.; Cioffi, N. Electrochemical synthesis of colloidal gold nanoparticles. In Nanomaterials: New Research Developments; Pertsov, E.I., Ed.; Nova Science Publisher: Hauppauge, NY, USA, 2008. [Google Scholar]
- Hu, X.; Dong, S. Metal nanomaterials and carbon nanotubes—Synthesis, functionalization and potential applications towards electrochemistry. J. Mater. Chem. 2008, 18, 1279–1295. [Google Scholar] [CrossRef]
- Ballarin, B.; Gazzano, M.; Tonelli, D. Effects of different additives on bimetallic Au–Pt nanoparticles electrodeposited onto indium tin oxide electrodes. Electrochim. Acta 2010, 55, 6789–6795. [Google Scholar] [CrossRef]
- Finot, M.O.; Braybrook, G.D.; Mcdermott, M.T. Characterization of electrochemically deposited gold nanocrystals on glassy carbon electrodes. J. Electroanal. Chem. 1999, 466, 234–241. [Google Scholar] [CrossRef]
- El-deab, M.S.; Sotomura, T.; Ohsaka, T. Size and Crystallographic Orientation Controls of Gold Nanoparticles Electrodeposited on GC Electrodes. J. Electrochem. 2005, 152, C1–C6. [Google Scholar] [CrossRef]
- Guo, S.; Wang, L.; Wang, E. Templateless, surfactantless, simple electrochemical route to rapid synthesis of diameter-controlled 3D flowerlike gold microstructure with “clean” surface. Chem. Commun. 2007, 3, 3163–3165. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Shen, Y.; Cheng, W.; Shao, Y.; Sun, X.; Liu, B.; Dong, S. Nanocomposite films containing Au nanoparticles formed by electrochemical reduction of metal ions in the multilayer films as electrocatalyst for dioxygen reduction. Anal. Chim. Acta 2005, 535, 15–22. [Google Scholar] [CrossRef]
- El Abedin, S.Z.; Po, M.; Meiss, S.A.; Janek, J.; Endres, F. Ionic liquids as green electrolytes for the electrodeposition of nanomaterials. Green Chem. 2007, 9, 549–553. [Google Scholar] [CrossRef]
- Murdoch, H.A.; Limmer, K.R.; Labukas, J.P. Nanoarchitecture Control Enabled by Ionic Liquids. JOM 2017, 69, 1034–1040. [Google Scholar] [CrossRef]
- Liao, H.; Jiang, Y.; Zhou, Z.; Chen, S.; Sun, S. Shape-Controlled Synthesis of Gold Nanoparticles in Deep Eutectic Solvents for Studies of Structure–Functionality Relationships in. Angew. Chem. Int. Ed. 2008, 47, 9100–9103. [Google Scholar] [CrossRef]
- Senior, N.A.; Newman, R.C. Synthesis of tough nanoporous metals by controlled electrolytic dealloying. Nanotechnology 2006, 17, 2311–2316. [Google Scholar] [CrossRef]
- Jia, F.; Yu, C.; Ai, Z.; Zhang, L. Fabrication of Nanoporous Gold Film Electrodes with Ultrahigh Surface Area and Electrochemical Activity. Chem. Mater. 2007, 19, 3648–3653. [Google Scholar] [CrossRef]
- Tian, Y.; Liu, H.; Zhao, G.; Tatsuma, T. Shape-Controlled Electrodeposition of Gold Nanostructures. J. Phys. Chem. B 2006, 110, 23478–23481. [Google Scholar] [CrossRef] [PubMed]
- Serrà, A.; Vallés, E. Advanced electrochemical synthesis of multicomponent metallic nanorods and nanowires: Fundamentals and applications. Appl. Mater. Today 2018, 12, 207–234. [Google Scholar] [CrossRef]
- Vazquez, L.; Bartolome, A.; Baro, A.M.; Alonso, C.; Salvarezza, R.C.; Arvia, A.J. STM-SEM combination study on the electrochemical growth mechanism and structure of gold overlayers: A quantitative approach to electrochemical metal surface roughening. Surf. Sci. 1989, 215, 171–189. [Google Scholar] [CrossRef]
- García-mendiola, T.; Gamero, M.; Campuzano, S.; Revenga-parra, M.; Alonso, C.; Pedrero, M.; Pariente, F.; Pingarrón, J.M.; Lorenzo, E. Nanostructured rough gold electrodes as platforms to enhance the sensitivity of electrochemical genosensors. Anal. Chim. Acta 2013, 788, 141–147. [Google Scholar] [CrossRef] [PubMed]
- White, R.J.; Luque, R.; Budarin, V.L.; Clark, J.H.; Macquarrie, D.J. Supported metal nanoparticles on porous materials. Methods and applications. Chem. Soc. Rev. 2009, 38, 481–494. [Google Scholar] [CrossRef] [PubMed]
- Waheed, A.; Mansha, M.; Ullah, N. Chemistry Nanomaterials-based electrochemical detection of heavy metals in water: Current status, challenges and future direction. Trends Anal. Chem. 2018, 105, 37–51. [Google Scholar] [CrossRef]
- Wang, N.; Lin, M.; Dai, H.; Ma, H. Functionalized gold nanoparticles/reduced graphene oxide nanocomposites for ultrasensitive electrochemical sensing of mercury ions based on thymine–mercury—Thymine structure. Biosens. Bioelectron. 2016, 79, 320–326. [Google Scholar] [CrossRef]
- Idris, A.O.; Mabuba, N.; Arotiba, O.A. Electrochemical co-detection of arsenic and selenium on a glassy carbon electrode modified with gold nanoparticles. Int. J. Electrochem. Sci. 2017, 12, 10–21. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, J.; Zhu, H.; Yang, T.; Zou, M.; Zhang, M.; Du, M. Facile and green fabrication of size-controlled AuNPs/CNFs hybrids for the highly sensitive simultaneous detection of heavy metal ions. Electrochim. Acta 2016, 196, 422–430. [Google Scholar] [CrossRef]
- Guadagnini, L.; Ballarin, B.; Tonelli, D. Dendritic silver nanostructures obtained via one-step electrosynthesis: Effect of nonanesulfonic acid and polyvinylpyrrolidone as additives on the analytical performance for hydrogen peroxide sensing. J. Nanopart. Res. 2013, 15, 1971. [Google Scholar] [CrossRef]
- Xu, L.; Lian, M.; Chen, X.; Lu, Y.; Yang, W. Amperometric sensing of hydrogen peroxide via an ITO electrode modified with gold nanoparticles electrodeposited on a CoMn-layered double hydroxide. Microchim. Acta 2017, 184, 3989–3996. [Google Scholar] [CrossRef]
- Ngoc, T.; Ganesh, T.; Soo, K.; Kim, S.; Han, S.; Chung, H. A three-dimensional gold nanodendrite network porous structure and its application for an electrochemical sensing. Biosens. Bioelectron. 2011, 27, 183–186. [Google Scholar]
- Ke, X.; Xu, Y.; Yu, C.; Zhao, J.; Cui, G.; Higgins, D.; Li, Q.; Wu, G. Nanoporous gold on three-dimensional nickel foam: An efficient hybrid electrode for hydrogen peroxide electroreduction in acid media. J. Power Sources 2014, 269, 461–465. [Google Scholar] [CrossRef]
- Manikandan, V.S.; Liu, Z.; Chen, A. Simultaneous detection of hydrazine, sulfite, and nitrite based on a nanoporous microelectrode. J. Electroanal. Chem. 2018, 819, 524–532. [Google Scholar] [CrossRef]
- Ge, X.; Wang, L.; Liu, Z.; Ding, Y. Nanoporous Gold Leaf for Amperometric Determination of Nitrite. Electroanalysis 2011, 23, 381–386. [Google Scholar] [CrossRef]
- Chen, C.; Xie, Q.; Yang, D.; Xiao, H.; Fu, Y.; Tan, Y.; Yao, S. Recent advances in electrochemical glucose biosensors: A review. RSC Adv. 2013, 3, 4473–4491. [Google Scholar] [CrossRef]
- Beltrame, P.; Comotti, M.; Della, C.; Rossi, M. Aerobic oxidation of glucose II. Catalysis by colloidal gold. Appl. Catal. A Gen. 2006, 297, 1–7. [Google Scholar] [CrossRef]
- Li, C.; Wang, H.; Yamauchi, Y. Electrochemical Deposition of Mesoporous Pt—Au Alloy Films in Aqueous Surfactant Solutions: Towards a Highly Sensitive Amperometric Glucose. Chem. A Eur. J. 2013, 19, 2242–2246. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, F.; Sun, Y.; Guo, C.; Cui, K.; Shi, Y. Seed-Mediated Synthesis of Au Nanocages and Their Electrocatalytic Activity towards Glucose Oxidation. Chem. A Eur. J. 2010, 16, 9248–9256. [Google Scholar] [CrossRef]
- Okazaki, K.; Yasui, J.; Torimoto, T. Electrochemical deposition of gold frame structure on silver nanocubes. Chemical 2009, 2917–2919. [Google Scholar] [CrossRef]
- Xiao, Y.; Patolsky, F.; Katz, E.; Hainfeld, J.F.; Willner, I. “Plugging into Enzymes”: Nanowiring of Redox Enzymes by a Gold Nanoparticle. Science 2003, 299, 1877–1882. [Google Scholar] [CrossRef] [PubMed]
- Biosensor, E.R.C.; Sharma, D.; Lee, J.; Seo, J.; Shin, H. Development of a Sensitive Electrochemical Using Nano-Sized Carbon Interdigitated Electrodes. Sensors 2017, 17, 2128. [Google Scholar]
- Szamocki, R.; Reculusa, S.; Ravaine, S.; Bartlett, P.N.; Kuhn, A.; Hempelmann, R. Tailored Mesostructuring and Biofunctionalization of Gold for Increased Electroactivity. Angew. Chem. Int. Ed. 2006, 45, 1317–1321. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, Y.; Zhou, J.; Yan, W.; Li, X.; Zhu, J. Electrochemical impedance immunosensor based on three-dimensionally ordered macroporous gold film. Anal. Chem. 2008, 80, 2133–2140. [Google Scholar] [CrossRef] [PubMed]
- Ahangar, L.E.; Mehrgardi, M.A. Nanoporous gold electrode as a platform for the construction of an electrochemical DNA hybridization biosensor. Biosens. Bioelectron. 2012, 38, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Zhong, G.; Liu, A.; Chen, X.; Wang, K.; Lian, Z.; Liu, Q.; Chen, Y.; Du, M.; Lin, X. Electrochemical biosensor based on nanoporous gold electrode for detection of PML/RAR fusion gene. Biosens. Bioelectron. 2011, 26, 3812–3817. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.Y.; Fujita, T.; Chen, M.W. Biofunctionalized nanoporous gold for electrochemical biosensors. Electrochim. Acta 2012, 67, 1–5. [Google Scholar] [CrossRef]
- Gamero, M.; Pariente, F.; Lorenzo, E.; Alonso, C. Nanostructured rough gold electrodes for the development of lactate oxidase-based biosensors. Biosens. Bioelectron. 2010, 25, 2038–2044. [Google Scholar] [CrossRef]
- Dixit, M.; Vishnu Kamath, P. Electrosynthesis and stabilization of cobalt hydroxide in the presence of trivalent cations. J. Power Sources 1995, 56, 97–100. [Google Scholar] [CrossRef]
- Indira, L.; Kamath, P.V. Electrogeneration of base by cathodic reduction of anions: Novel one-step route to unary and layered double hydroxides (LDHs). J. Mater. Chem. 1994, 4, 1487–1490. [Google Scholar] [CrossRef]
- Scavetta, E.; Mignani, A.; Prandstraller, D.; Tonelli, D. Electrosynthesis of Thin Films of Ni, Al Hydrotalcite Like Compounds. Chem. Mater. 2007, 4523–4529. [Google Scholar] [CrossRef]
- Carpani, I.; Tonelli, D. Electrooxidation of Aliphatic and Aromatic Amines at a Ni, Al Based Hydrotalcite Modified Electrode. Electroanalysis 2006, 24, 2421–2425. [Google Scholar] [CrossRef]
- Scavetta, E.; Berrettoni, M.; Giorgetti, M.; Tonelli, D. Electrochemical characterisation of Ni/Al-X hydrotalcites and their electrocatalytic behaviour. Electrochim. Acta 2002, 47, 2451–2461. [Google Scholar] [CrossRef]
- Scavetta, E.; Ballarin, B.; Gazzano, M.; Tonelli, D. Electrochemical behaviour of thin films of Co/Al layered double hydroxide prepared by electrodeposition. Electrochim. Acta 2009, 54, 1027–1033. [Google Scholar] [CrossRef]
- Gualandi, I.; Solito, A.G.; Scavetta, E.; Tonelli, D. Electrochemical Pretreatment of Pt Surface: Modification with Co/Al Layered Double Hydroxide for Analytical Applications. Electroanalysis 2012, 24, 857–864. [Google Scholar] [CrossRef]
- Scavetta, E.; Vlamidis, Y.; Posati, T.; Nocchetti, M.; Tonelli, D. Effect of the Synthesis Route and Fe Presence on the Redox Activity of Ni in Layered Double Hydroxides. ChemElectroChem 2016, 3, 1320–1328. [Google Scholar] [CrossRef]
- Khenifi, A.; Derriche, Z.; Forano, C.; Prevot, V.; Mousty, C.; Scavetta, E.; Ballarin, B.; Guadagnini, L.; Tonelli, D. Glyphosate and glufosinate detection at electrogenerated NiAl-LDH thin films. Anal. Chim. Acta 2009, 654, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Gualandi, I.; Scavetta, E.; Vlamidis, Y.; Casagrande, A.; Tonelli, D. Co/Al layered double hydroxide coated electrode for in flow amperometric detection of sugars. Electrochim. Acta 2015, 173, 67–75. [Google Scholar] [CrossRef]
- Qiao, X.; Wei, M.; Tian, D.; Xia, F.; Chen, P.; Zhou, C. One-step electrosynthesis of cadmium/aluminum layered double hydroxides composite as electrochemical probe for voltammetric detection of anthracene. J. Electroanal. Chem. 2018, 808, 35–40. [Google Scholar] [CrossRef]
- Li, M.; Ni, F.; Wang, Y.; Xu, S.; Zhang, D.; Chen, S.; Wang, L. Sensitive and Facile Determination of Catechol and Hydroquinone Simultaneously Under Coexistence of Resorcinol with a Zn/Al Layered Double Hydroxide Film Modified Glassy Carbon Electrode. Electroanalysis 2009, 21, 1521–1526. [Google Scholar] [CrossRef]
- Kahl, M.; Golden, T.D. Electrochemical Determination of Phenolic Acids at a Zn/Al Layered Double Hydroxide Film Modified Glassy Carbon Electrode. Electroanalysis 2014, 26, 1664–1670. [Google Scholar] [CrossRef]
- Mignani, A.; Scavetta, E.; Tonelli, D. Electrodeposited glucose oxidase/anionic clay for glucose biosensors design. Anal. Chim. Acta 2006, 577, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Carpani, I.; Guadagnini, L.; Tonelli, D. Lactate Biosensor Based on Hydrotalcite-Like Compounds: Performances and Application to Serum Samples. Electroanalysis 2009, 21, 2401–2409. [Google Scholar] [CrossRef]
- Yang, Z.; Weei, W.; Fan, W.; Liu, T. Electrodepositing Ag nanodendrites on layered double hydroxides modified glassy carbon electrode: Novel hierarchical structure for hydrogen peroxide detection. Electrochim. Acta 2013, 90, 400–407. [Google Scholar] [CrossRef]
- Cui, L.; Meng, X.; Xu, M.; Shang, K.; Ai, S.; Liu, Y. Electro-oxidation nitrite based on copper calcined layered double hydroxide and gold nanoparticles modified glassy carbon electrode. Electrochim. Acta 2011, 56, 9769–9774. [Google Scholar] [CrossRef]
- Scavetta, E.; Stipa, S.; Tonelli, D. Electrodeposition of a nickel-based hydrotalcite on Pt nanoparticles for ethanol and glucose sensing. Electrochem. Commun. 2007, 9, 2838–2842. [Google Scholar] [CrossRef]
- Gong, J.; Wang, L.; Miao, X.; Zhang, L. Efficient stripping voltammetric detection of organophosphate pesticides using NanoPt intercalated Ni/Al layered double hydroxides as solid-phase extraction. Electrochem. Commun. 2010, 12, 1658–1661. [Google Scholar] [CrossRef]
- George, J.M.; Antony, A.; Mathew, B. Metal oxide nanoparticles in electrochemical sensing and biosensing: A review. Microchim. Acta 2018, 185, 358. [Google Scholar] [CrossRef] [PubMed]
- Gou, L.; Murphy, C.J. Controlling the size of Cu2O nanocubes from 200 to 25 nm. J. Mater. Chem. 2004, 14, 735–738. [Google Scholar] [CrossRef]
- Ng, S.Y.; Ngan, A.H.W. One- and two-dimensional cuprous oxide nano/micro structures fabricated on highly orientated pyrolytic graphite (HOPG) by electrodeposition. Electrochim. Acta 2013, 114, 379–386. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Liu, J.; Peng, Q.; Wang, X.; Li, Y. Nearly monodisperse Cu2O and CuO nanospheres: Preparation and applications for sensitive gas sensors. Chem. Mater. 2006, 18, 867–871. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, G.; Liu, X.; Wu, J.; Li, M.; Gu, J.; Liu, H.; Fang, B. Different CuO nanostructures: Synthesis, characterization, and applications for glucose sensors. J. Phys. Chem. C 2008, 112, 16845–16849. [Google Scholar] [CrossRef]
- Yang, J.; Jiang, L.; Zhang, W.; Gunasekaran, S. A highly sensitive non-enzymatic glucose sensor based on a simple two-step electrodeposition of cupric oxide (CuO) nanoparticles onto multi-walled carbon nanotube arrays. Talanta 2010, 82, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Zhang, W. A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode. Biosens. Bioelectron. 2010, 25, 1402–1407. [Google Scholar] [CrossRef] [PubMed]
- Dung, N.Q.; Patil, D.; Jung, H.; Kim, D. A high-performance nonenzymatic glucose sensor made of CuO – SWCNT nanocomposites. Biosens. Bioelectron. 2013, 42, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Long, M.; Tan, L.; Zhang, Y.; Ouyang, J.; Liu, P.; Tang, A. Helical TiO2 Nanotube Arrays Modified by Cu−Cu2O with Ultrahigh Sensitivity for the Nonenzymatic Electro-oxidation of Glucose. ACS Appl. Mater. Interfaces 2015, 7, 12719–12730. [Google Scholar] [CrossRef] [PubMed]
- Lan, T.; Fallatah, A.; Suiter, E.; Padalkar, S. Size Controlled Copper (I) Oxide Nanoparticles Influence Sensitivity of Glucose Biosensor. Sensors 2017, 17, 1944. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Bo, X.; Mu, Z.; Zhang, Y.; Guo, L. Electrodeposition of nickel oxide and platinum nanoparticles on electrochemically reduced graphene oxide film as a nonenzymatic glucose sensor. Sens. Actuators B Chem. 2014, 192, 261–268. [Google Scholar] [CrossRef]
- Garcia-Garcia, F.J.; Salazar, P.; Yubero, F.; Gonzales-Elipe, A.R. Non-enzymatic Glucose electrochemical sensor made of porous NiO thin films prepared by reactive magnetron sputtering at oblique angles. Electrochim. Acta 2016, 201, 38–44. [Google Scholar] [CrossRef]
- Liu, Z.; Guo, Y.; Dong, C. A high performance nonenzymatic electrochemical glucose sensor based on polyvinylpyrrolidone–graphene nanosheets–nickel nanoparticles–chitosan nanocomposite. Talanta 2015, 137, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Salazar, P.; Rico, V.; Gonazalez, A.R. Nickel–copper bilayer nanoporous electrode prepared by physical vapor deposition at oblique angles for the non-enzymatic determination of glucose. Sens. Actuators B Chem. 2016, 226, 436–443. [Google Scholar] [CrossRef]
- Wu, W.; Li, Y.; Jin, J.; Wu, H.; Wang, S.; Xia, Q. A novel nonenzymatic electrochemical sensor based on 3D flower-like Ni 7 S 6 for hydrogen peroxide and glucose. Sens. Actuators B Chem. 2016, 232, 633–641. [Google Scholar] [CrossRef]
- Rinaldi, A.L.; Carballo, R. Impedimetric non-enzymatic glucose sensor based on nickel hydroxide thin film onto gold electrode. Sens. Actuators B Chem. 2016, 228, 43–52. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Y.; Bao, X.; Li, H. Electrochemical deposition of Ni nanoparticles decorated ZnO hexagonal prisms as an effective platform for non-enzymatic detection of glucose. JEAC 2016, 775, 163–170. [Google Scholar] [CrossRef]
- Begum, H.; Ahmed, M.S.; Jeon, S. Ultra-fast and highly sensitive enzyme-free glucose biosensing on a nickel–nickel oxide core–shell electrode. RSC Adv. 2017, 7, 3554–3562. [Google Scholar] [CrossRef] [Green Version]
- Behzad, M.; Asgari, M.; Taghizadeh, M.; Maragheh, M.G. Lactose Electrooxidation on the Nickel Oxide Nanoparticles Electrocatalyst Prepared on the Multi-walled Carbon Nanotubes Modified Electrode. Electrocatalysis 2014, 5, 159–166. [Google Scholar] [CrossRef]
- Liu, G.; Chen, H.; Lin, G.; Ye, P.; Wang, X.; Jiao, Y.; Guo, X.-Y.; Wen, Y.; Yang, H.-F. One-step electrodeposition of graphene loaded nickel oxides nanoparticles for acetaminophen detection. Biosens. Bioelectron. 2014, 56, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Heinze, J.; Frontana-Uribe, B.A.; Ludwigs, S. Electrochemistry of conducting polymers-persistent models and new concepts. Chem. Rev. 2010, 110, 4724–4771. [Google Scholar] [CrossRef]
- Janáky, C.; Rajeshwar, K. The role of (photo) electrochemistry in the rational design of hybrid conducting polymer/semiconductor assemblies: From fundamental concepts to practical applications. Prog. Polym. Sci. 2015, 43, 96–135. [Google Scholar] [CrossRef]
- Gualandi, I.; Tonelli, D. A new electrochemical sensor for OH radicals detection. Talanta 2013, 115, 779–786. [Google Scholar] [CrossRef]
- Li, C.; Bai, H.; Shi, G. Conducting polymer nanomaterials: Electrosynthesis and applications. Chem. Soc. Rev. 2009, 38, 2397–2409. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Hu, Q.; Zeng, Q.; Wang, M.; Wang, L. Variations in Surface Morphologies, Properties, and Electrochemical Responses to Nitro-Analyte by Controlled Electropolymerization of Thiophene Derivatives. ACS Appl. Mater. Interfaces 2018, 10, 11319–11327. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Wang, L.Y.; Du, S.; Guo, W.J.; Pei, M.S. Micro/nanostructures of PANI obtained in the presence of water soluble polymers and their electrochemical sensing properties. RSC Adv. 2015, 5, 69067–69074. [Google Scholar] [CrossRef]
- Nakabayashi, K.; Fuchigami, T.; Atobe, M. Templated electrochemical synthesis of conducting polymer nanowires from corresponding monomer nanoemulsions prepared by tandem acoustic emulsification. RSC Adv. 2014, 4, 22938–22940. [Google Scholar] [CrossRef]
- Hajian, A.; Rafati, A.; Afraz, A.; Najafi, M. Electrosynthesis of Polythiophene Nanowires and Their Application for Sensing of Chlorpromazine. J. Electrochem. Soc. 2014, 161, 196–200. [Google Scholar] [CrossRef]
- Salgado, R.; del Valle, M.A.; Duran, B.G.; Pardo, M.A.; Armijo, F. Optimization of dopamine determination based on nanowires PEDOT/polydopamine hybrid film modified electrode. J. Appl. Electrochem. 2014, 44, 1289–1294. [Google Scholar] [CrossRef]
- Gokhale, A.A.; Lu, J.; Weerasiri, R.R.; Yu, J.; Lee, I. Amperometric Detection and Quantification of Nitrate Ions Using a Highly Sensitive Nanostructured Membrane Electrocodeposited Biosensor Array. Electroanalysis 2015, 27, 1127–1137. [Google Scholar] [CrossRef]
- Palod, P.A.; Singh, V. Improvement in glucose biosensing response of electrochemically grown polypyrrole nanotubes by incorporating crosslinked glucose oxidase. Mater. Sci. Eng. C 2015, 55, 420–430. [Google Scholar] [CrossRef] [PubMed]
- Ameen, S.; Akhtar, M.S.; Seo, H.; Shin, H.S. High sensitivity Schottky junction diode based on monolithically grown aligned polypyrrole nanofibers: Broad range detection of m-dihydroxybenzene. Anal. Chim. Acta 2015, 886, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Tolani, S.B.; Craig, M.; Delong, R.K.; Ghosh, K.; Wanekaya, A.K. Towards biosensors based on conducting polymer nanowires. Anal. Bioanal. Chem. 2009, 393, 1225–1231. [Google Scholar] [CrossRef] [PubMed]
- Al-mashat, L.; Debiemme-chouvy, C.; Borensztajn, S.; Wlodarski, W. Electropolymerized Polypyrrole Nanowires for Hydrogen Gas Sensing. J. Phys. Chem. C 2012, 116, 13388–13394. [Google Scholar] [CrossRef]
- Kim, D.; Yoo, B. A novel electropolymerization method for Ppy nanowire-based NH3 gas sensor with low contact resistance. Sens. Actuators B Chem. 2011, 160, 1168–1173. [Google Scholar] [CrossRef]
- Bangar, M.A.; Shirale, D.J.; Chen, W.; Myung, N.V.; Mulchandani, A. Single Conducting Polymer Nanowire Chemiresistive Label-Free Immunosensor for Cancer Biomarker. Anal. Chem. 2009, 81, 2168–2175. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Ma, Y.; Cui, M.; Luo, X. Chemical Enhanced electrochemical biosensing of alpha-fetoprotein based on three-dimensional macroporous conducting polymer polyaniline. Sens. Actuators B Chem. 2018, 255, 2568–2574. [Google Scholar] [CrossRef]
- Ma, M.; Qu, L.; Shi, G. Glucose Oxidase Electrodes Based on Microstructured Polypyrrole Films. J. Appl. Polym. Sci. 2005, 98, 2550–2554. [Google Scholar] [CrossRef]
- Babaei, M.; Alizadeh, N. Chemical Methanol selective gas sensor based on nano-structured conducting polypyrrole prepared by electrochemically on interdigital electrodes for biodiesel analysis. Sens. Actuators B Chem. 2013, 183, 617–626. [Google Scholar] [CrossRef]
- Ahmad, O.S.; Bedwell, T.S.; Esen, C.; Garcia-Cruz, A.; Piletsky, A.; Le, L. Molecularly Imprinted Polymers in Electrochemical and Optical Sensors. Trends Anal. Chem. 2019, 37, 294–309. [Google Scholar] [CrossRef]
- Erdossy, J.; Horvath, V.; Yarman, A.; Scheller, F.W.; Gyurcsányi, R.E. Electrosynthesized molecularly imprinted polymers for protein recognition. Trends Anal. Chem. 2016, 79, 179–190. [Google Scholar] [CrossRef] [Green Version]
- Dabrowski, M.; Lach, P.; Cieplak, M.; Kutner, W. Nanostructured molecularly imprinted polymers for protein chemosensing. Biosens. Bioelectron. 2018, 102, 17–26. [Google Scholar] [CrossRef]
- Tonelli, D.; Ballarin, B.; Guadagnini, L.; Mignani, A.; Scavetta, E. A novel potentiometric sensor for l-ascorbic acid based on molecularly imprinted polypyrrole. Electrochim. Acta 2011, 56, 7149–7154. [Google Scholar] [CrossRef]
- Ohkuma, S.; Shinohara, T. A potential sourse of electrophoretic artifacts in polyacrylamide gels. Biochim. Biophys. Acta 1967, 147, 171–174. [Google Scholar]
- Bognár, J.; Szu, J.; Dorkò, Z.; Horvath, V.; Gyurcsányi, R.E. Nanosphere Lithography as a Versatile Method to Generate Surface-Imprinted Polymer Films for Selective Protein Recognition. Adv. Funct. Mater. 2013, 23, 4703–4709. [Google Scholar] [CrossRef]
- Bosserdt, M.; Erd, J.; Lautner, G.; Witt, J.; Köhler, K.; Gajovic-eichelmann, N.; Yarman, A.; Wittstock, G.; Scheller, F.W.; Gyurcsányi, R.E. Microelectrospotting as a new method for electrosynthesis of surface-imprinted polymer microarrays for protein recognition. Biosens. Bioelectron. 2015, 73, 123–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karimian, N.; Turner, A.P.F.; Tiwari, A. Electrochemical evaluation of troponin T imprinted polymer receptor. Biosens. Bioelectron. 2014, 59, 160–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, W.; Qingwen, Z.; Yamin, R.E.N.; Lijing, J.; Tianxin, W.E.I. Molecularly Imprinted Polymer Thin Film Based Surface Plasmon Resonance Sensor to Detect Hemoglobin. Chem. Res. Chin. Univ. 2014, 30, 42–48. [Google Scholar]
- Ramanaviciene, A.; Ramanavicius, A. Molecularly imprinted polypyrrole-based synthetic receptor for direct detection of bovine leukemia virus glycoproteins. Biosens. Bioelectron. 2004, 20, 1076–1082. [Google Scholar] [CrossRef]
- Cieplak, M.; Szwabinska, K.; Sosnowska, M.; Chandra, B.K.C.; Borowicz, P.; Noworyta, K.; Souza, F.D.; Kutner, W. Selective electrochemical sensing of human serum albumin by semi-covalent molecular imprinting. Biosens. Bioelectron. 2015, 74, 960–966. [Google Scholar] [CrossRef] [Green Version]
- Evtugyn, G.; Porfireva, A.; Ivanov, A.; Konovalova, O.; Hianik, T. Molecularly Imprinted Polymerized Methylene Green as a Platform for Electrochemical Sensing of Aptamer–Thrombin Interactions. Electroanalysis 2009, 21, 1272–1277. [Google Scholar] [CrossRef]
- Kan, X.; Xing, Z.; Zhu, A.; Zhao, Z.; Xu, G.; Li, C.; Zhou, H. Molecularly imprinted polymers based electrochemical sensor for bovine hemoglobin recognition. Sens. Actuators B Chem. 2012, 168, 395–401. [Google Scholar] [CrossRef]
- Karimian, N.; Vagin, M.; Hossein, M.; Zavar, A.; Chamsaz, M.; Turner, A.P.F.; Tiwari, A. An ultrasensitive molecularly-imprinted human cardiac troponin sensor. Biosens. Bioelectron. 2013, 50, 492–498. [Google Scholar] [CrossRef]
- Lu, L.; Yang, L.; Xing, Z.; Lu, X.; Kan, X. Surface molecularly imprinted polymers-based electrochemical sensor for bovine hemoglobin recognition. Analyst 2013, 138, 6962–6968. [Google Scholar]
- Tretjakov, A.; Syritski, V.; Reut, J.; Boroznjak, R.; Volobuheva, O.; Öpik, A. Surface molecularly imprinted polydopamine films for recognition of immunoglobulin G. Microchim. Acta 2013, 180, 1433–1442. [Google Scholar] [CrossRef]
- Viswanathan, S.; Rani, C.; Ribeiro, S.; Delerue-Matos, C. Biosensors and Bioelectronics Molecular imprinted nanoelectrodes for ultra sensitive detection of ovarian cancer marker. Biosens. Bioelectron. 2012, 33, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Suriyanarayanan, S.; Mandal, S.; Ramanujam, K.; Nicholls, I.A. Electrochemically synthesized molecularly imprinted polythiophene nanostructures as recognition elements for an aspirin-chemosensor. Sens. Actuators B Chem. 2017, 253, 428–436. [Google Scholar] [CrossRef]
- Sharma, P.S.; Prochowicz, D.; Fronc, K.; Souza, F.D.; Toczyd, D.; Stefaniak, F.; Noworyta, K. Molecularly Imprinted Polymer (MIP) Film with Improved Surface Area Developed by Using Metal–Organic Framework (MOF) for Sensitive Lipocalin (NGAL) Determination. ACS Appl. Mater. Interfaces 2016, 8, 6–11. [Google Scholar]
- Teng, Y.; Liu, F.; Kan, X. Voltammetric dopamine sensor based on three-dimensional electrosynthesized molecularly imprinted polymers and polypyrrole nanowires. Microchim. Acta 2017, 184, 2515–2522. [Google Scholar] [CrossRef]
- Li, H.; Wang, H.; Li, W.; Fang, X.; Guo, X.; Zhou, W.; Cao, X.; Kou, D.; Zhou, Z.; Wu, S. A novel electrochemical sensor for epinephrine based on three dimensional molecularly imprinted polymer arrays. Sens. Actuators B Chem. 2016, 222, 1127–1133. [Google Scholar] [CrossRef]
- Berti, F.; Todros, S.; Lakshmi, D.; Whitcombe, M.J.; Chianella, I.; Ferroni, M.; Piletsky, S.A.; Turner, A.P.F.; Marrazza, G. Quasi-monodimensional polyaniline nanostructures for enhanced molecularly imprinted polymer-based sensing. Biosens. Bioelectron. 2010, 26, 497–503. [Google Scholar] [CrossRef] [PubMed]
- David, B.; Tiu, B.; Pernites, R.B.; Tiu, S.B.; Advincula, R.C. Detection of aspartame via microsphere-patterned and molecularly imprinted polymer arrays. Colloids Surf. A Physicochem. Eng. Asp. 2016, 495, 149–158. [Google Scholar] [Green Version]
- Dabrowski, M.; Cieplak, M.; Sindhu, P.; Borowicz, P.; Noworyta, K.; Lisowski, W.; D’Souza, F.; Kuhn, A.; Kutner, W. Hierarchical templating in deposition of semi-covalently imprinted inverse opal polythiophene film for femtomolar determination of human serum albumin. Biosens. Bioelectron. 2017, 94, 155–161. [Google Scholar] [CrossRef]
Polymerization | Monomer | Analyte | Detection | Ref. |
---|---|---|---|---|
PT +0.9 V | EDOT | Avidin | Microgravimetric chip | [114] |
PD 0–+1.2 V 50 mV·s−1 | p-bis(2,2′-Bithien-5-yl)methyl-alanine-5,5′,5′′-methanetriyltris(2,2′-bithiophene) | Human serum albumin | DPV, EIS | [119] |
PD −0.7–+0.6 V 0.1 V·s−1 | Methylene green | Thrombin | EIS | [120] |
PD −0.2 V–+1.2 V 100 mV·s−1 | Pyrrole | Bovine hemoglobin | DPV | [121] |
PD 0–+1.1 V 50 mV·s−1 | o-Phenylenediamine | Troponint | CV, DPV | [122] |
PD 0–+1.1 V 50 mV·s−1 | o-Phenylenediamine | Troponint | CV, EIS | [116] |
PD −0.2–+1.2 V | Pyrrole | Bovine hemoglobin | DPV, EIS | [123] |
PD −0.45–+0.55 V 50 mV·s−1 | Dopamine | Immunoglobulin G | QCM | [124] |
PD 0–+0.9 V | Phenol | Ovarian cancer marker | DPV | [125] |
Polymerization | Monomer | Template Structure | Nanostructure | Analyte | Detection | Ref. |
---|---|---|---|---|---|---|
PD (from 0 to +1.4 V vs. Ag/AgCl, 50 mV·s−1) | 2,2′-Bithiophene-5-carboxylic acid | Porous crystalline Metal−Organic Framework | Molecular cavities | Lipocalin | FET | [127] |
PD from 0.0 to +0.8 V | Pyrrole | No template | Nanowires | Dopamine | DPV | [128] |
PD from −0.4 to +1.6 V at 50 mV·s−1 | 3-Thienyl-boronic acid (3-TBA) and 3-thiophene acetic acid (3-TAA), and thiophene | Micelle deposition, alumina template | Nanoparticles, nanowires | Aspirin | QCM | [126] |
PD from 0 to +1.2 V 100 mV·s−1 | Pyrrole | Deposition on ZnO nanorods | Nanorods | Epinephrine | DPV | [129] |
PD from −0.4 V to +1.0 V (vs. Ag/AgCl, scan rate 50 mV·s−1 | Aniline | Nanoporous alumina membranes | Nanowire | Catechol | CV | [130] |
PD from 0 V to +1.1 V at a scan rate of 100 mV·s−1 | Terthiophene-based monomer with an acetic acid moiety | Polystyrene microbeads | Nanonetwork | Aspartame | QCM | [131] |
PT +1.3 V | 2,3′-Bithiophene | Nanoparticles | Nanonetwork | Human serum albumin | EG-FET | [132] |
PD from −0.2 to +1.2 V 100 mV·s−1 | Pyrrole | SiO2–CHO microsphere | Nanonetwork | Bovine hemoglobin | DPV | [123] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tonelli, D.; Scavetta, E.; Gualandi, I. Electrochemical Deposition of Nanomaterials for Electrochemical Sensing. Sensors 2019, 19, 1186. https://doi.org/10.3390/s19051186
Tonelli D, Scavetta E, Gualandi I. Electrochemical Deposition of Nanomaterials for Electrochemical Sensing. Sensors. 2019; 19(5):1186. https://doi.org/10.3390/s19051186
Chicago/Turabian StyleTonelli, Domenica, Erika Scavetta, and Isacco Gualandi. 2019. "Electrochemical Deposition of Nanomaterials for Electrochemical Sensing" Sensors 19, no. 5: 1186. https://doi.org/10.3390/s19051186
APA StyleTonelli, D., Scavetta, E., & Gualandi, I. (2019). Electrochemical Deposition of Nanomaterials for Electrochemical Sensing. Sensors, 19(5), 1186. https://doi.org/10.3390/s19051186