Assessment of Shoulder Range of Motion Using a Wireless Inertial Motion Capture Device—A Validation Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participant Recruitment
2.2. Data Collection
2.3. Data Analysis
2.4. Ethical Considerations
3. Results
3.1. IMU versus Goniometer Measurements
3.2. IMU versus IMU and Goniometer versus Goniometer Measurements
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hanney, W.J.; Kolber, M.J.; Marshall, J.S. The reliability of clinical measurements designed to quantify shoulder mobility. Phys. Ther. Rev. 2013, 16, 413–422. [Google Scholar] [CrossRef]
- Chapleau, J.; Canet, F.; Petit, Y.; Laflamme, G.Y.; Rouleau, D.M. Validity of goniometric elbow measurements: Comparative study with a radiographic method. Clin. Orthop. Relat. Res. 2011, 469, 3134–3140. [Google Scholar] [CrossRef]
- Kolber, M.J.; Hanney, W.J. The reliability and concurrent validity of shoulder mobility measurements using a digital inclinometer and goniometer: A technical report. Int. J. Sports Phys. Ther. 2012, 7, 306–313. [Google Scholar] [PubMed]
- Tian, Y.; Meng, X.; Tao, D.; Liu, D.; Feng, C. Upper limb motion tracking with the integration of IMU and Kinect. Neurocomputing 2015, 159, 207–218. [Google Scholar] [CrossRef]
- Zhang, K.; Werner, P.; Sun, M.; Pi-Sunyer, F.X.; Boozer, C.N. Measurement of human daily physical activity. Obes. Res. 2003, 11, 33–40. [Google Scholar] [CrossRef]
- Ekanayake, S.W.; Morris, A.J.; Forrester, M.; Pathirana, P.N. BioKin: An ambulatory platform for gait kinematic and feature assessment. Healthc. Technol. Lett. 2015, 2, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Najafi, B.; Aminian, K.; Paraschiv-Ionescu, A.; Loew, F.; Bula, C.J.; Robert, P. Ambulatory system for human motion analysis using a kinematic sensor: Monitoring of daily physical activity in the elderly. IEEE Trans. Biomed. Eng. 2003, 50, 711–723. [Google Scholar] [CrossRef] [PubMed]
- Levangie, P.K.; Norkin, C.C. Joint Structure and Function: A Comprehensive Analysis, 4th ed.; F.A. Davis Company: Philadelphia, PA, USA, 2005; p. 259. ISBN 978-0-80-361191-7. [Google Scholar]
- Ehsani, H.; Poursina, M.; Rostami, M.; Mousavi, A.; Parnianpour, M.; Khalaf, K. Efficient embedding of empirically-derived constraints in the ODE formulation of multibody systems: Application to the human body musculoskeletal system. Mech. Mach. Theory 2019, 133, 673–690. [Google Scholar] [CrossRef]
- Krishnan, R.; Bjorsell, N.; Gutierrez-Farewik, E.M.; Smith, C. A survey of human shoulder functional kinematic representations. Med. Biol. Eng. Comput. 2019, 57, 339–367. [Google Scholar] [CrossRef]
- Luinge, H.J.; Veltink, P.H.; Baten, C.T. Ambulatory measurement of arm orientation. J Biomech. 2007, 40, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-Q.; Ji, L.-Y.; Huang, Z.-P.; Wu, J.-K. Adaptive Information Fusion for Human Upper Limb Movement Estimation. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2012, 42, 1100–1108. [Google Scholar] [CrossRef]
- Fasel, B.; Sporri, J.; Chardonnens, J.; Kroll, J.; Muller, E.; Aminian, K. Joint Inertial Sensor Orientation Drift Reduction for Highly Dynamic Movements. IEEE J. Biomed. Health Inform. 2018, 22, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Luinge, H.J.; Veltink, P.H. Measuring orientation of human body segments using miniature gyroscopes and accelerometers. Med. Biol. Eng. Comput. 2005, 43, 273–282. [Google Scholar] [CrossRef]
- Saber-Sheikh, K.; Bryant, E.C.; Glazzard, C.; Hamel, A.; Lee, R.Y. Feasibility of using inertial sensors to assess human movement. Man. Ther. 2010, 15, 122–125. [Google Scholar] [CrossRef] [PubMed]
- Yoon, T.-L. Validity and Reliability of an Inertial Measurement Unit-Based 3D Angular Measurement of Shoulder Joint Motion. J. Korean Phys. Ther. 2017, 29, 145–151. [Google Scholar] [CrossRef]
- Garimella, R.; Peeters, T.; Beyers, K.; Truijen, S.; Huysmans, T.; Verwulgen, S. Capturing Joint Angles of the Off-site Human Body. In Proceedings of the IEEE Sensors, New Delhi, India, 28–31 October 2018; pp. 1–4. [Google Scholar]
- Nguyen, N.; Pham, T.H.; Pathirana, P.N.; Babazadeh, S.; Page, R.; Seneviratne, A. Sensing and Characterization of the Wrist using Dart Thrower’s Movement. IEEE Sens. J. 2018, 18, 4145–4153. [Google Scholar] [CrossRef]
- Altman, D.G.; Bland, J.M. Measurement in Medicine: The Analysis of Method Comparison Studies. Statistician 1983, 32, 307–317. [Google Scholar] [CrossRef]
- Hopkins, W.G. Measures of reliability in sports medicine and science. Sports Med. 2000, 30, 1–15. [Google Scholar] [CrossRef]
- Atkinson, G.; Nevill, A.M. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med. 1998, 26, 217–238. [Google Scholar] [CrossRef]
- Portney, L.G.; Watkins, M.P. Foundations of Clinical Research: Applications to Practice, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2000; p. 273. ISBN 0838526950. [Google Scholar]
- Bland, J.M.; Altman, D.G. Measuring agreement in method comparison studies. Stat. Methods Med. Res. 1999, 8, 135–160. [Google Scholar] [CrossRef]
- Sedgwick, P. Limits of agreement (Bland-Altman method). BMJ 2013, 15, 346. [Google Scholar] [CrossRef] [PubMed]
- Norkin, C.C.; White, D.J. Measurement of Joint Motion: A Guide to Goniometry, 5th ed.; F.A. Davis: Philadelphia, PA, USA, 2016; Volume xiii, pp. 66–114. ISBN 978-0-80-364566-0. [Google Scholar]
- Walter, S.D.; Eliasziw, M.; Donner, A. Sample size and optimal designs for reliability studies. Stat. Med. 1998, 17, 101–110. [Google Scholar] [CrossRef]
- Kebaetse, M.; McClure, P.; Pratt, N.A. Thoracic position effect on shoulder range of motion, strength, and three-dimensional scapular kinematics. Arch. Phys. Med. Rehabil. 1999, 80, 945–950. [Google Scholar] [CrossRef]
- Kirking, B.; El-Gohary, M.; Kwon, Y. The feasibility of shoulder motion tracking during activities of daily living using inertial measurement units. Gait Posture 2016, 49, 47–53. [Google Scholar] [CrossRef] [PubMed]
Shoulder Movement | Upper Limb Starting Position | ||
---|---|---|---|
Shoulder | Elbow | Forearm | |
Flexion | 0° | 0° | NA |
Abduction | 0° | 0° | NA |
External Rotation | 90° abduction | 90° | Parallel to floor |
Internal Rotation | 90° abduction | 90° | Parallel to floor |
Shoulder Movement | Upper Limb Starting Position | Goniometer Landmarks | ||||
---|---|---|---|---|---|---|
Shoulder | Elbow | Forearm | Axis | Stationary Arm | Moving Arm | |
Flexion | Anatomical position | Anatomical position | Anatomical position | Midpoint lateral aspect acromion | Parallel to midline of trunk | Pointing to lateral humeral epicondyle |
Abduction | Anatomical position | Anatomical position | Anatomical position | Anterior aspect acromion | Parallel to midline of sternum | Pointing to lateral humeral epicondyle |
External Rotation | 90° abduction | 90° flexion | Parallel to floor | Olecranon process ulna | Perpendicular to floor | Pointing to ulna styloid process |
Internal Rotation | 90° abduction | 90° flexion | Parallel to floor | Olecranon process ulna | Perpendicular to floor | Pointing to ulna styloid process |
Number | Age (Years) (Average, Range) | Female | Right Hand Dominant | Sport Participation (Average Per Week, Range) | Past Shoulder Injuries (No. Participants) |
---|---|---|---|---|---|
30 | 32.8 >(24–62) | 18 >(60%) | 26 >(86.6%) | 2.6 >(0–7) | 7 >(23.3%) 1 |
Goniometer Average (SD) | IMU Average (SD) | Difference 1 (SD) | ICC (95% CI) | Limits of Agreement 2 | |
---|---|---|---|---|---|
Flexion | 155.1 >(14.6) | 155.1 >(14.1) | 0.0 >(1.6) | 0.99 >(0.99–0.99) | −3.2, 3.2 |
Abduction | 151.4 >(18.6) | 152.2 >(17.8) | −0.8 >(1.9) | 0.99 >(0.99–0.99) | −4.5, 2.9 |
Internal Rotation | 51.9 >(17.5) | 52.8 >(16.8) | −0.9 >(1.7) | 0.99 >(0.99–0.99) | −4.2, 2.4 |
External Rotation | 89.2 >(17.7) | 89.5 >(17.2) | −0.3 >(1.5) | 0.99 >(0.99–0.99) | −3.3, 2.7 |
Tester A Average (SD) | Tester B Average (SD) | Difference 1 (SD) | ICC (95% CI) | Limits of Agreement 2 | |
---|---|---|---|---|---|
Flexion | 157.5 >(14.0) | 152.7 >(14.8) | 4.9 >(7.0) | 0.88 >(0.81–0.93) | −8.8, 18.6 |
Abduction | 152.9 >(19.2) | 149.9 >(18.0) | −3.0 >(8.7) | 0.89 >(0.82–0.93) | −20.1, 14.2 |
Internal Rotation | 52.4 >(18.0) | 51.3 >(17.1) | −0.9 >(13.3) | 0.71 >(0.56–0.82) | −27.1, 25.2 |
External Rotation | 90.3 >(17.6) | 88.2 >(17.9) | −2.2 >(9.9) | 0.84 >(0.75–0.90) | −21.7, 17.3 |
Tester A Average (SD) | Tester B Average (SD) | Difference 1 (SD) | ICC (95% CI) | Limits of Agreement 2 | |
---|---|---|---|---|---|
Flexion | 152.5 >(14.4) | 157.7 >(13.4) | −5.2 >(6.9) | 0.88 >(0.80–0.92) | −18.8, 8.3 |
Abduction | 150.6 >(17.1) | 153.8 >(18.5) | −3.2 >(8.6) | 0.88 >(0.81–0.93) | −20.2, 13.7 |
Internal Rotation | 52.1 >(16.2) | 53.5 >(17.6) | −1.5 >(12.9) | 0.71 >(0.56–0.82) | −26.8, 23.8 |
External Rotation | 88.4 >(17.3) | 90.7 >(17.1) | −2.3 >(9.9) | 0.84 >(0.74–0.90) | −21.6, 17.1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rigoni, M.; Gill, S.; Babazadeh, S.; Elsewaisy, O.; Gillies, H.; Nguyen, N.; Pathirana, P.N.; Page, R. Assessment of Shoulder Range of Motion Using a Wireless Inertial Motion Capture Device—A Validation Study. Sensors 2019, 19, 1781. https://doi.org/10.3390/s19081781
Rigoni M, Gill S, Babazadeh S, Elsewaisy O, Gillies H, Nguyen N, Pathirana PN, Page R. Assessment of Shoulder Range of Motion Using a Wireless Inertial Motion Capture Device—A Validation Study. Sensors. 2019; 19(8):1781. https://doi.org/10.3390/s19081781
Chicago/Turabian StyleRigoni, Michael, Stephen Gill, Sina Babazadeh, Osama Elsewaisy, Hugh Gillies, Nhan Nguyen, Pubudu N. Pathirana, and Richard Page. 2019. "Assessment of Shoulder Range of Motion Using a Wireless Inertial Motion Capture Device—A Validation Study" Sensors 19, no. 8: 1781. https://doi.org/10.3390/s19081781
APA StyleRigoni, M., Gill, S., Babazadeh, S., Elsewaisy, O., Gillies, H., Nguyen, N., Pathirana, P. N., & Page, R. (2019). Assessment of Shoulder Range of Motion Using a Wireless Inertial Motion Capture Device—A Validation Study. Sensors, 19(8), 1781. https://doi.org/10.3390/s19081781