Evaluating Maize Genotype Performance under Low Nitrogen Conditions Using RGB UAV Phenotyping Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growing Conditions
2.2. Agronomic Parameters
2.3. Proximal and Aerial Data Collection
2.4. Image Processing
2.5. Statistical Analysis
3. Results
3.1. The Effect of Optimal Condition and Low Managed Nitrogen on grain yield
3.2. The Performance of Remote Sensing Indices and Field Sensors
3.2.1. Color and Vignetting Calibration
3.2.2. The Performance of Remote Sensing Indices and Field Sensors Assessing Grain Yield
3.3. Agronomic Parameters and Their Effect on Yield
3.4. Multivariate Models
4. Discussion
4.1. The Effect of Managed Low Nitrogen on Grain Yield
4.2. Effect of Managed Low Nitrogen on Agronomic Parameters
4.3. Remote Sensing Indices and Field Sensors
4.3.1. Color and Vignetting Calibration
4.3.2. Performance of RGB VIs and Additional Field Sensors
4.4. Multivariate Model Assessment
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
N | Nitrogen |
SPAD | Relative leaf chlorophyll content |
HTTP | Hight throughput plant phenotyping |
UAV | Unmanned aerial vehicle |
VNIR | Visible and near-infrared |
NDVI | Normalized difference vegetation index |
SR | Simple ratio |
NDWI | Normalized difference water index |
RGB | Red–green–blue |
RGB VIs | Red–green–blue vegetation indices |
UAV RGB VIs | Unmanned aerial vehicle red-green-blue vegetation indices |
Ground RGB VIs | Ground level red-green-blue vegetation indices |
HIS | Hue–intensity–saturation |
H | Hue |
GA | Green area |
GGA | Greener green area |
CSI | Crop senescence index |
CIMMYT | International center for maize and wheat improvement |
OP | Optimum nitrogen |
LOW | Low managed nitrogen |
L* | Lightness |
NDLab | Normalized difference between a* and b* |
NDLuv | Normalized difference between u* and v* |
TGI | Triangular greenness index |
NGRDI | Normalized green–red difference index |
ASI | Anthesis silking interval |
AD | Anthesis data |
PH | Plant height |
SEN | Canopy senescence |
MOI | Moisture |
GY | Grain yield |
GYLI | Grain yield loss index |
HY | High yield |
MHY | Medium high yield |
MLY | Medium low yield |
LY | Low yield |
ANOVA | Analyses of variance |
Appendix A
LOW | OP | ||||
---|---|---|---|---|---|
Genotype | GY (Mg/ha) | Group | Genotype | GY (Mh/ha) | Group |
CZH15062 | 4.43 | a | PGS65 | 12.30 | a |
CZH15047 | 4.19 | ab | CZH15026 | 12.08 | ab |
CZH15028 | 3.88 | abc | CZH15054 | 12.04 | abc |
CZH15032 | 3.87 | abc | CZH15022 | 11.98 | abc |
CZH15057 | 3.82 | abc | CZH15057 | 11.40 | abcd |
CZH15058 | 3.65 | abc | CZH15053 | 11.36 | abcd |
10C3271 | 3.54 | abc | PAN53 | 11.27 | abcde |
CZH15055 | 3.51 | abc | CZH15024 | 11.13 | abcdef |
CZH15024 | 3.5 | abc | 11C4393 | 10.97 | abcdefg |
CZH15052 | 3.44 | abc | CZH128 | 10.93 | abcdefgh |
CZH142087 | 3.41 | abc | MRI 614 | 10.79 | abcdefghi |
CZH15045 | 3.38 | abc | CZH141029 | 10.75 | abcdefghi |
11C4393 | 3.37 | abc | X40F424W | 10.73 | abcdefghi |
CZH128 | 3.35 | abc | LOCAL CHECK2 | 10.59 | abcdefghij |
CZH15060 | 3.3 | abc | CZH132043 | 10.53 | bcdefghij |
CZH15050 | 3.28 | abc | CZH132047 | 10.51 | bcdefghijk |
CZH15031 | 3.27 | abc | CZH15029 | 10.49 | bcdefghijk |
CZH15046 | 3.25 | abc | CZH15037 | 10.35 | cdefghijkl |
CZH132043 | 3.22 | abc | 10C3271 | 10.24 | defghijklm |
CZH15033 | 3.19 | abc | CZH15033 | 10.23 | defghijklm |
LOCAL CHECK1 | 3.18 | abc | MH1547 | 10.15 | defghijklmn |
CZH15051 | 3.17 | abc | CZH15045 | 10.13 | defghijklmn |
CZH15054 | 3.16 | abc | CZH15043 | 10.08 | defghijklmn |
CZH15029 | 3.16 | abc | CZH15028 | 10.06 | defghijklmno |
CZH141022 | 3.15 | abc | CZH15030 | 10.04 | defghijklmno |
CZH142010 | 3.15 | abc | CZH15044 | 9.90 | defghijklmno |
CZH15042 | 3.06 | abc | CZH15056 | 9.87 | defghijklmno |
CZH15039 | 3.05 | abc | CZH15035 | 9.80 | defghijklmnop |
CZH15030 | 3.05 | abc | CZH15036 | 9.71 | defghijklmnop |
CZH15035 | 3.03 | abc | CZH15058 | 9.69 | defghijklmnopq |
CZH15038 | 3 | abc | CZH15060 | 9.68 | defghijklmnopq |
CZH15059 | 3 | abc | CZH15047 | 9.61 | efghijklmnopq |
CZH15044 | 2.97 | abc | CZH15052 | 9.61 | efghijklmnopq |
PAN53 | 2.95 | abc | CZH15025 | 9.56 | efghijklmnopq |
CZH15041 | 2.93 | abc | CZH15048 | 9.48 | fghijklmnopqr |
CZH15040 | 2.87 | abc | CZH15032 | 9.47 | fghijklmnopqr |
P2859W | 2.85 | abc | CZH15034 | 9.39 | ghijklmnopqrs |
MH1547 | 2.82 | abc | CZH15061 | 9.39 | ghijklmnopqrs |
X40F423W | 2.81 | abc | CZH15031 | 9.37 | ghijklmnopqrs |
CZH15026 | 2.79 | abc | CZH15038 | 9.24 | hijklmnopqrs |
CZH15053 | 2.75 | abc | CZH15041 | 9.20 | hijklmnopqrst |
SC513 | 2.72 | abc | CZH15023 | 9.17 | ijklmnopqrst |
CZH15061 | 2.71 | abc | CZH15050 | 9.08 | ijklmnopqrstu |
CZH1227 | 2.68 | abc | CZH141022 | 8.96 | jklmnopqrstu |
CZH15056 | 2.68 | abc | X40F423W | 8.93 | jklmnopqrstu |
PGS65 | 2.67 | abc | CZH15046 | 8.88 | jklmnopqrstu |
X40F424W | 2.67 | abc | CZH15049 | 8.87 | jklmnopqrstu |
CZH15023 | 2.56 | abc | MRI 624 | 8.79 | klmnopqrstu |
CZH15025 | 2.56 | abc | CZH15039 | 8.72 | lmnopqrstu |
CZH141029 | 2.52 | abc | CZH15042 | 8.59 | mnopqrstu |
CZH15048 | 2.45 | abc | CZH142010 | 8.56 | mnopqrstu |
CZH132047 | 2.45 | abc | PHB30G19 | 8.46 | nopqrstu |
LOCAL CHECK2 | 2.44 | abc | CZH1227 | 8.45 | nopqrstu |
CZH15027 | 2.32 | abc | CZH15027 | 8.44 | nopqrstu |
MRI 634 | 2.29 | abc | CZH142087 | 8.42 | nopqrstu |
PHB30G19 | 2.27 | abc | CZH15062 | 8.34 | opqrstuv |
MRI 614 | 2.24 | abc | CZH15040 | 8.12 | pqrstuv |
CZH15049 | 2.21 | abc | MRI 634 | 7.97 | qrstuv |
CZH15022 | 2.03 | bc | P2859W | 7.77 | rstuv |
CZH15043 | 2.02 | bc | CZH15055 | 7.71 | stuv |
CZH15036 | 1.98 | bc | CZH15059 | 7.68 | stuv |
CZH15034 | 1.92 | bc | CZH15051 | 7.48 | tuv |
MRI 624 | 1.69 | c | LOCAL CHECK1 | 7.39 | uv |
CZH15037 | 1.53 | c | SC513 | 6.68 | v |
ANOVA: *** | ANOVA: *** |
Entry name | GYLI (%) | GY (12/5/16) | ASI | PH (29/2/16) | AD | NDVI (28/1/16) | SPADV (18/2/16) | SPADR (1/3/16) | GA.a (28/1/16) | GA.g (28/1/16) | GGA.a (28/1/16) | GGA.g (28/1/16) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CZH128 | 69.32 | 3.35 ± 0.39 | 1.00 | 193.00 | 71.67 | 0.730 | 41.09 | 37.97 | 0.483 | 0.522 | 0.327 | 0.452 |
CZH142087 | 59.54 | 3.41 ± 0.75 | 4.00 | 192.38 | 67.33 | 0.705 | 42.86 | 37.56 | 0.457 | 0.573 | 0.307 | 0.479 |
CZH15024 | 68.59 | 3.50 ± 0.65 | 3.00 | 183.96 | 73.00 | 0.672 | 40.78 | 34.07 | 0.417 | 0.454 | 0.269 | 0.360 |
CZH15028 | 61.44 | 3.88 ± 0.43 | 0.67 | 200.63 | 69.33 | 0.702 | 44.41 | 43.00 | 0.358 | 0.496 | 0.225 | 0.415 |
CZH15031 | 65.11 | 3.27 ± 0.06 | 5.33 | 201.88 | 69.00 | 0.698 | 41.18 | 39.03 | 0.445 | 0.533 | 0.266 | 0.413 |
CZH15045 | 66.60 | 3.38 ± 0.21 | 2.00 | 208.04 | 70.00 | 0.707 | 41.80 | 36.65 | 0.460 | 0.540 | 0.324 | 0.434 |
CZH15047 | 56.32 | 4.20 ± 0.39 | 2.00 | 214.21 | 68.33 | 0.730 | 45.36 | 39.01 | 0.537 | 0.622 | 0.383 | 0.515 |
CZH15050 | 63.89 | 3.28 ± 0.35 | 3.00 | 172.88 | 68.67 | 0.725 | 43.14 | 39.29 | 0.410 | 0.471 | 0.256 | 0.391 |
CZH15052 | 64.19 | 3.44 ± 0.36 | 3.00 | 198.79 | 69.33 | 0.730 | 43.18 | 38.93 | 0.531 | 0.574 | 0.377 | 0.464 |
CZH15055 | 54.54 | 3.51 ± 0.69 | 2.00 | 188.75 | 70.67 | 0.675 | 43.25 | 40.68 | 0.397 | 0.497 | 0.232 | 0.397 |
CZH15057 | 66.49 | 3.23 ± 0.43 | 2.67 | 187.58 | 72.00 | 0.707 | 41.76 | 37.37 | 0.461 | 0.536 | 0.299 | 0.468 |
CZH15058 | 62.28 | 3.83 ± 0.44 | 0.33 | 185.63 | 71.67 | 0.712 | 46.04 | 38.54 | 0.421 | 0.558 | 0.278 | 0.456 |
CZH15061 | 71.13 | 3.48 ± 0.95 | 4.00 | 182.00 | 71.33 | 0.720 | 45.71 | 35.81 | 0.478 | 0.566 | 0.323 | 0.495 |
CZH15062 | 46.88 | 3.90 ± 0.49 | 1.67 | 185.42 | 68.33 | 0.697 | 42.51 | 37.50 | 0.484 | 0.557 | 0.326 | 0.477 |
11C4393 | 69.25 | 3.44 ± 0.22 | 3.00 | 204.29 | 67.67 | 0.720 | 41.01 | 33.84 | 0.529 | 0.622 | 0.367 | 0.534 |
Local check 2 | 76.92 | 3.64 ± 0.94 | 3.33 | 207.75 | 70.00 | 0.695 | 43.63 | 37.16 | 0.413 | 0.521 | 0.273 | 0.450 |
CZH132043 | 69.44 | 3.22 ± 0.56 | 3.67 | 202.33 | 72.00 | 0.692 | 43.48 | 37.98 | 0.431 | 0.548 | 0.285 | 0.442 |
CZH142010 | 63.25 | 3.15 ± 0.53 | 4.33 | 189.00 | 67.67 | 0.697 | 41.75 | 36.91 | 0.444 | 0.524 | 0.295 | 0.436 |
CZH141022 | 64.84 | 3.15 ± 0.15 | 4.33 | 169.75 | 68.67 | 0.697 | 42.57 | 36.05 | 0.487 | 0.490 | 0.331 | 0.410 |
CZH15029 | 69.91 | 3.16 ± 0.54 | 4.00 | 205.25 | 70.33 | 0.712 | 43.49 | 40.53 | 0.473 | 0.511 | 0.318 | 0.412 |
CZH15030 | 69.63 | 3.05 ± 0.60 | 3.33 | 197.46 | 70.67 | 0.685 | 44.07 | 37.67 | 0.387 | 0.472 | 0.246 | 0.378 |
CZH15032 | 59.12 | 3.87 ± 0.56 | 2.67 | 181.54 | 69.00 | 0.728 | 41.54 | 36.33 | 0.428 | 0.508 | 0.270 | 0.404 |
CZH15033 | 68.86 | 3.19 ± 0.61 | 4.33 | 195.00 | 73.00 | 0.690 | 41.56 | 36.17 | 0.495 | 0.534 | 0.321 | 0.414 |
CZH15035 | 69.07 | 3.03 ± 0.45 | 4.67 | 209.83 | 73.33 | 0.710 | 38.39 | 37.47 | 0.472 | 0.521 | 0.299 | 0.417 |
CZH15039 | 65.00 | 3.05 ± 0.46 | 4.00 | 196.21 | 67.67 | 0.687 | 42.23 | 41.02 | 0.379 | 0.502 | 0.243 | 0.418 |
CZH15042 | 64.35 | 3.06 ± 0.50 | 1.67 | 199.67 | 72.00 | 0.727 | 37.11 | 32.71 | 0.432 | 0.568 | 0.273 | 0.446 |
CZH15046 | 63.40 | 3.25 ± 0.39 | 3.00 | 173.17 | 67.33 | 0.687 | 46.32 | 38.29 | 0.425 | 0.555 | 0.285 | 0.468 |
CZH15051 | 57.62 | 3.17 ± 0.17 | 1.67 | 180.33 | 69.33 | 0.717 | 44.84 | 38.88 | 0.465 | 0.554 | 0.277 | 0.432 |
CZH15054 | 73.79 | 3.16 ± 0.31 | 3.00 | 207.33 | 71.00 | 0.710 | 38.12 | 32.19 | 0.478 | 0.605 | 0.312 | 0.451 |
CZH15059 | 60.88 | 3.22 ± 0.79 | 5.00 | 186.96 | 69.67 | 0.710 | 43.65 | 36.60 | 0.450 | 0.598 | 0.289 | 0.485 |
X40F424W | 75.08 | 3.07 ± 0.66 | 5.33 | 213.71 | 72.00 | 0.727 | 43.71 | 33.73 | 0.551 | 0.627 | 0.400 | 0.539 |
10C3271 | 65.39 | 3.14 ± 0.15 | 1.67 | 198.83 | 66.67 | 0.723 | 40.27 | 39.00 | 0.492 | 0.612 | 0.350 | 0.510 |
PAN53 | 73.79 | 2.95 ± 0.23 | 3.67 | 204.25 | 70.67 | 0.702 | 43.55 | 34.76 | 0.451 | 0.576 | 0.318 | 0.504 |
P2859W | 63.28 | 2.85 ± 0.33 | 2.67 | 187.67 | 70.00 | 0.643 | 41.21 | 35.78 | 0.367 | 0.453 | 0.239 | 0.388 |
SC513 | 59.23 | 2.72 ± 0.25 | 4.33 | 197.58 | 69.67 | 0.673 | 38.00 | 32.98 | 0.379 | 0.439 | 0.209 | 0.319 |
CZH1227 | 68.28 | 2.68 ± 0.42 | 2.67 | 173.21 | 69.00 | 0.702 | 40.32 | 37.79 | 0.508 | 0.585 | 0.340 | 0.481 |
CZH15023 | 72.05 | 2.56 ± 0.66 | 3.33 | 179.04 | 70.33 | 0.703 | 39.43 | 31.36 | 0.449 | 0.545 | 0.272 | 0.461 |
CZH15025 | 73.23 | 2.56 ± 0.71 | 1.67 | 196.38 | 72.67 | 0.725 | 35.41 | 31.33 | 0.471 | 0.529 | 0.306 | 0.447 |
CZH15026 | 76.90 | 2.79 ± 0.25 | 5.00 | 208.17 | 72.67 | 0.723 | 40.93 | 32.87 | 0.473 | 0.530 | 0.306 | 0.434 |
CZH15038 | 67.50 | 3.0 ± 0.52 | 5.33 | 199.00 | 69.00 | 0.717 | 44.98 | 37.76 | 0.431 | 0.574 | 0.287 | 0.492 |
CZH15040 | 64.71 | 2.87 ± 0.22 | 6.00 | 180.25 | 67.33 | 0.658 | 43.01 | 39.73 | 0.373 | 0.441 | 0.221 | 0.331 |
CZH15041 | 68.13 | 2.93 ± 0.37 | 4.67 | 184.21 | 69.00 | 0.673 | 43.31 | 37.73 | 0.351 | 0.499 | 0.212 | 0.412 |
CZH15044 | 70.02 | 2.97 ± 0.13 | 3.67 | 190.25 | 70.33 | 0.683 | 45.24 | 40.79 | 0.424 | 0.524 | 0.272 | 0.435 |
CZH15053 | 75.79 | 2.75 ± 0.37 | 2.00 | 202.00 | 71.67 | 0.715 | 38.50 | 33.27 | 0.533 | 0.552 | 0.367 | 0.449 |
CZH15056 | 72.87 | 2.68 ± 0.24 | 1.67 | 174.29 | 73.00 | 0.702 | 41.79 | 32.66 | 0.383 | 0.515 | 0.235 | 0.415 |
CZH15060 | 65.96 | 2.67 ± 0.20 | 2.00 | 181.13 | 69.00 | 0.685 | 43.64 | 40.30 | 0.458 | 0.543 | 0.306 | 0.461 |
X40F423W | 68.52 | 2.81 ± 0.34 | 6.67 | 204.17 | 72.00 | 0.687 | 41.63 | 33.69 | 0.416 | 0.474 | 0.278 | 0.370 |
Local check 1 | 56.92 | 2.75 ± 0.47 | 3.00 | 201.96 | 72.67 | 0.678 | 44.61 | 35.68 | 0.407 | 0.467 | 0.246 | 0.357 |
PHB30G19 | 73.10 | 2.28 ± 0.60 | 6.67 | 203.75 | 69.33 | 0.712 | 41.80 | 35.77 | 0.478 | 0.561 | 0.335 | 0.469 |
CZH132047 | 76.68 | 2.45 ± 0.20 | 4.00 | 209.83 | 72.67 | 0.673 | 40.87 | 38.25 | 0.442 | 0.527 | 0.275 | 0.431 |
CZH141029 | 76.53 | 2.52 ± 0.04 | 1.33 | 189.67 | 74.33 | 0.672 | 38.99 | 35.54 | 0.361 | 0.467 | 0.207 | 0.341 |
CZH15022 | 83.03 | 2.03 ± 0.21 | 1.00 | 166.33 | 77.00 | 0.690 | 36.19 | 31.04 | 0.405 | 0.525 | 0.240 | 0.413 |
CZH15027 | 72.52 | 2.32 ± 0.27 | 3.67 | 191.38 | 74.00 | 0.665 | 39.63 | 31.78 | 0.399 | 0.465 | 0.254 | 0.352 |
CZH15034 | 79.59 | 1.92 ± 0.17 | 6.33 | 199.92 | 72.33 | 0.697 | 38.48 | 35.76 | 0.397 | 0.491 | 0.231 | 0.363 |
CZH15036 | 79.64 | 1.98 ± 0.23 | 3.67 | 205.13 | 72.67 | 0.695 | 38.90 | 31.69 | 0.436 | 0.543 | 0.276 | 0.408 |
CZH15037 | 85.22 | 1.53 ± 0.29 | 7.00 | 189.75 | 71.33 | 0.710 | 40.76 | 34.23 | 0.444 | 0.553 | 0.297 | 0.435 |
CZH15043 | 79.99 | 2.02 ± 0.32 | 7.33 | 196.38 | 72.67 | 0.710 | 39.74 | 33.60 | 0.493 | 0.616 | 0.332 | 0.517 |
CZH15048 | 74.16 | 2.45 ± 0.52 | 4.67 | 169.46 | 70.33 | 0.668 | 43.14 | 37.98 | 0.460 | 0.516 | 0.319 | 0.462 |
CZH15049 | 75.04 | 2.21 ± 0.59 | 5.00 | 174.67 | 70.67 | 0.700 | 39.81 | 36.25 | 0.415 | 0.462 | 0.268 | 0.381 |
PGS65 | 78.26 | 2.52 ± 0.45 | 4.00 | 197.46 | 75.00 | 0.703 | 37.86 | 28.82 | 0.426 | 0.484 | 0.258 | 0.381 |
MH1547 | 72.17 | 2.54 ± 0.01 | 3.00 | 194.58 | 72.33 | 0.675 | 36.77 | 33.97 | 0.386 | 0.468 | 0.235 | 0.379 |
MRI 624 | 80.82 | 1.84 ± 0.58 | 7.00 | 180.38 | 74.67 | 0.660 | 38.49 | 32.22 | 0.390 | 0.469 | 0.241 | 0.353 |
MRI 634 | 71.21 | 2.20 ± 0.33 | 5.33 | 196.17 | 72.33 | 0.668 | 43.86 | 42.19 | 0.435 | 0.540 | 0.299 | 0.467 |
MRI 614 | 79.22 | 2.37 ± 0.37 | 6.67 | 213.38 | 72.33 | 0.687 | 42.72 | 37.68 | 0.489 | 0.563 | 0.332 | 0.484 |
References
- FAO. Food and Agriculture Organization of the United Nations; Statistic Division. 2017. Available online: http://faostat.fao.org/ (accessed on 28 August 2017).
- Cairns, J.E.; Hellin, J.; Sonder, K.; Araus, J.L.; MacRobert, J.F.; Thierfelder, C.; Prasanna, B.M. Adapting maize production to climate change in sub-Saharan Africa. Food Secur. 2013, 5, 345–360. [Google Scholar] [CrossRef] [Green Version]
- Buerkert, A.; Bationo, A.; Piepho, H.P. Efficient phosphorus application strategies for increased crop production in sub-Saharan West Africa. Field Crop. Res. 2001, 72, 1–15. [Google Scholar] [CrossRef]
- Leff, B.; Ramankutty, N.; Foley, J.A. Geographical distribution of major crops across the world. Glob. Biogeochem. Cycles 2004, 18, GB1009. [Google Scholar] [CrossRef]
- Masuka, B.; Araus, J.L.; Das, B.; Sonder, K.; Cairns, J.E. Phenotyping for Abiotic Stress Tolerance in Maize. J. Integr. Plant Biol. 2012, 54, 238–249. [Google Scholar] [CrossRef]
- Hergert, G.; Ferguson, R.; Gotway, C.; Peterson, T. The Impact of VRT-N application on N use efficiency of furrow irrigated corn. In Proceedings of the 3rd International Conference on Precision Agriculture, Minneapolis, MN, USA, 23–26 June 1996; pp. 389–397. [Google Scholar]
- Delgado, J.A.; Follett, R.F.; Buchleiter, G.; Stuebe, A.; Sparks, R.T.; Dillon, M.A.; Thompson, A.; Thompson, K. Use of geospatial information for N management and conservation of underground water quality. In Proceedings of the 3rd International Conference on Geospatial Information in Agriculture and Forestry, Denver, CO, USA, 5–7 November 2001; pp. 5–7. [Google Scholar]
- Wang, R.L.; Stec, A.; Hey, J.; Lukens, L.; Doebley, J. The limits of selection during maize domestication. Nature 1999, 398, 236–239. [Google Scholar] [CrossRef]
- Cairns, J.E.; Sanchez, C.; Vargas, M.; Ordoñez, R.; Araus, J.L. Dissecting Maize Productivity: Ideotypes Associated with Grain Yield under Drought Stress and Well-Watered Conditions. J. Integr. Plant Biol. 2012, 54, 1007–1020. [Google Scholar] [CrossRef]
- Araus, J.L.; Cairns, J.E. Field high-throughput phenotyping: The new crop breeding frontier. Trends Plant Sci. 2014, 19, 52–61. [Google Scholar] [CrossRef]
- Reynolds, M.; Foulkes, J.; Furbank, R.; Griffiths, S.; King, J.; Murchie, E.; Parry, M.; Slafer, G. Achieving yield gains in wheat. Plant Cell Environ. 2012, 35, 1799–1823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Debaeke, P.; Route, P.; Justes, E. Relationship between the normalize SPAD index and the nitrogen nutrition index: Application to durum wheat. J. Plant Nutr. 2006, 29, 75–92. [Google Scholar] [CrossRef]
- Rorie, R.L.; Purcell, L.C.; Morteza, M.; Karcher, D.E.; King, C.A.; Marsh, M.C.; Longer, D.E. Association of “greenness” in corn with yield and leaf nitrogen concentration. Agron. J. 2011, 103, 529–535. [Google Scholar] [CrossRef]
- Saleh, B. Effect of salt stress on growth and chlorophyll content of some cultivated cotton varieties grown in Syria. Commun. Soil Sci. Plant Anal. 2012, 43, 1976–1983. [Google Scholar] [CrossRef]
- Vollmann, J.; Walter, H.; Sato, T.; Schweiger, P. Digital image analysis and chlorophyll metering for phenotyping the nodulation in soybean. Comput. Electron. Agric. 2011, 75, 190–195. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Ciganda, V.; Rundquist, D.C.; Arkebauer, T.J. Remote estimation of canopy chlorophyll content in crops. Geophys. Res. Lett. 2005, 32, 1–4. [Google Scholar] [CrossRef]
- Bänziger, M.; Edmeades, G.O.; Beck, D.; Bellon, M. Breeding for Drought and Nitrogen Stress Tolerance in Maize: From Theory to Practice; CIMMYT: El Batán, Mexico, 2000; Available online: https://repository.cimmyt.org/bitstream/handle/10883/765/68579.pdf?sequence=1&isAllowed=y (accessed on 10 April 2019).
- Nebiker, S.; Annen, A.; Scherrer, M.; Oesch, D. A light-weight multispectral sensor for micro UAV—Opportunities for very high resolution airborne remote sensing. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences; International Society for Photogrammetry and Remote Sensing (ISPRS): Beijing, China, 2008; Volume 37(B1). [Google Scholar]
- Nex, F.; Remondino, F. UAV for 3D mapping application: A review. Appl. Geomat. 2014, 6, 1–15. [Google Scholar] [CrossRef]
- Colomina, I.; Molina, P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79–97. [Google Scholar] [CrossRef] [Green Version]
- Carter, G.A. Reflectance wavebands and indices for remote estimation of photosynthesis and stomatal conductance in pine canopies. Remote Sens. Environ. 1998, 63, 61–72. [Google Scholar] [CrossRef]
- Huete, A.R. A soil adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Gamon, J.A.; Peñuelas, J.; Field, C.B. 27 A narrow waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ. 1992, 41, 35–44. [Google Scholar] [CrossRef]
- Huang, W.; Lamb, D.W.; Zheng, N.; Zhang, Y.; Liu, L.; Wang, J. Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging. Precis. Agric. 2007, 8, 187–197. [Google Scholar] [CrossRef]
- Peñuelas, J.; Gamon, J.A.; Griffin, K.L.; Field, C.B. Assessing type, biomass, pigment composition and photosynthetic efficiency of aquatic vegetation from spectral reflectance. Remote Sens. Environ. 1993, 46, 110–118. [Google Scholar] [CrossRef]
- Peñuelas, J.; Filella, I.; Gamon, J.A. Assessment of photosynthetic radiation—Use efficiency with spectral reflectance. New Phytol. 1995, 131, 291–296. [Google Scholar] [CrossRef]
- Chappelle, E.W.; Kim, M.S.; McMurtrey III, J.E. Ratio analysis of reflectance spectra (RARS): An algorithm for the remote estimation of the concentrations of chlorophyll A, chlorophyll B, and carotenoids in soybean leaves. Remote Sens. Environ. 1992, 39, 239–247. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Thenkabail, P.S.; Smith, R.B.; De Pauw, E. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sens. Environ. 2000, 71, 158–182. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Smith, R.B.; De Pauw, E. Evaluation of narrowband and broadband vegetation indices for determining optimal hyperspectral wavebands for agricultural crop characterization. Photogramm. Eng. Remote Sens. 2002, 68, 607–622. [Google Scholar]
- Peñuelas, J.; Filella, I. Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends Plant Sci. 1998, 3, 151–156. [Google Scholar] [CrossRef]
- Serrano, L.; Filella, I.; Peñuelas, J. Remote Sensing of Biomass and Yield of Winter Wheat under Different Nitrogen Supplies. Crop Sci. 2000, 40, 723. [Google Scholar] [CrossRef]
- Gao, B.-C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N. Signature Analysis of Leaf Reflectance Spectra: Algorithm Development for Remote Sensing of Chlorophyll. J. Plant Physiol. 1996, 148, 494–500. [Google Scholar] [CrossRef]
- Murchie, E.H.; Kefauver, S.; Araus, J.L.; Muller, O.; Rascher, U.; Flood, P.J.; Lawson, T. Measuring the dynamic photosynthome. Ann. Bot. 2018. [Google Scholar] [CrossRef]
- Araus, J.L.; Slafer, G.A.; Royo, C.; Serret, M.D. Breeding for yield potential and stress adaptation in cereals. Crit. Rev. Plant Sci. 2008, 27, 377–412. [Google Scholar] [CrossRef]
- Weber, V.; Araus, J.; Cairns, J.; Sanchez, C.; Melchinger, A.; Orsini, E. Prediction of grain yield using reflectance spectra of canopy and leaves in maize plants grown under different water regimes. Field Crops Res. 2012, 128, 82–90. [Google Scholar] [CrossRef]
- Vergara-Diaz, O.; Kefauver, S.C.; Elazab, A.; Nieto-Taladriz, M.T.; Araus, J.L. Grain yield lo SSES in yellow-rusted durum wheat estimated using digital and conventional parameters under field conditions. Crop J. 2015, 3, 200–210. [Google Scholar] [CrossRef]
- Kefauver, S.C.; El-Haddad, G.; Vergara-Diaz, O.; Araus, J.L. RGB picture vegetation indexes for High-Throughput Phenotyping Platforms (HTPPs). In Proceedings of the Remote Sensing for Agriculture, Ecosystems, and Hydrology XVII, Toulouse, France, 14 October 2015. [Google Scholar] [CrossRef]
- Chang, Y.-C.; Reid, J.F. RGB calibration for color image analysis in machine vision. IEEE Trans. Image Process. 1996, 5, 1414–1422. [Google Scholar] [CrossRef]
- Fernández, P.D.M.; Peña, F.A.G.; Ren, T.I.; Leandro, J.J.G. Fast and Robust Multiple ColorChecker Detection using Deep Convolutional Neural Networks. Image Vis. Comput. 2018. [Google Scholar] [CrossRef]
- Lebourgeois, V.; Bégué, A.; Labbé, S.; Mallavan, B. Can Commercial Digital Cameras Be Used as Multispectral. Sensors 2008, 8, 7300–7322. [Google Scholar] [CrossRef]
- Casadesús, J.; Kaya, Y.; Bort, J.; Nachit, M.M.; Araus, J.L.; Amor, S.; Ferrazzano, G.; Maalouf, F.; Maccaferri, M.; Martos, V.; et al. Using vegetation indices derived from conventional digital cameras as selection criteria for wheat breeding in water-limited environments. Ann. Appl. Biol. 2007, 150, 227–236. [Google Scholar] [CrossRef]
- Zaman-Allah, M.; Vergara, O.; Araus, J.L.; Tarekegne, A.; Magorokosho, C.; Zarco-Tejada, P.J.; Cairns, J. Unmanned aerial platform-based multi-spectral imaging for field phenotyping of maize. Plant Methods 2015, 11, 35. [Google Scholar] [CrossRef]
- Kefauver, S.C.; Vicente, R.; Vergara-Díaz, O.; Fernandez-Gallego, J.A.; Kerfal, S.; Lopez, A.; Melichar, J.P.E.; Serret Molins, M.D.; Araus, J.L. Comparative UAV and Field Phenotyping to Assess Yield and Nitrogen Use Efficiency in Hybrid and Conventional Barley. Front. Plant Sci. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Pinter, P.J., Jr.; Hatfield, J.L.; Schepers, J.S.; Barnes, E.M.; Moran, M.S.; Daughtry, C.S.T.; Upchurch, D.R. Remote Sensing for Crop Management. Photogramm. Eng. Remote Sens. 2003, 69, 647–664. [Google Scholar] [CrossRef] [Green Version]
- El-Shikha, D.M.; Barnes, E.M.; Clarke, T.R.; Hunsaker, D.J.; Pinter, P.J.; Waller, P.M.; Thompson, T.L. Remote sensing of cotton nitrogen status using the canopy chlorophyll content index (CCCI). Trans. ASABE 2008, 51, 73–82. [Google Scholar] [CrossRef]
- Trussell, H.J.; Vrhel, M.J.; Saber, E. Color image processing. IEEE Signal Process. Mag. 2005, 22, 14–22. [Google Scholar] [CrossRef]
- Masuka, B.; Atlin, G.N.; Olsen, M.; Magorokosho, C.; Labuschagne, M.; Crossa, J.; Bänziger, M.; Pixley, K.V.; Vivek, B.S.; Von Biljon, A.; et al. Gains in maize genetic improvement in eastern and southern Africa: I. CIMMYT hybrid breeding pipeline. Crop Sci. 2017, 57, 168–179. [Google Scholar] [CrossRef]
- Zaidi, P.H.; Zaman-Allah, M.; Trachsel, S.; Seetharam, K.; Cairns, J.E.; Vinayan, M.T. Phenotyping for Abiotic Stress Tolerance in Maize—Heat Stress; A Field Manual; CIMMYT: Hyderabad, India, 2016. [Google Scholar]
- Makanza, R.; Zaman-Allah, M.; Cairns, J.; Magorokosho, C.; Tarekegne, A.; Olsen, M.; Prasanna, B. High-Throughput Phenotyping of Canopy Cover and Senescence in Maize Field Trials Using Aerial Digital Canopy Imaging. Remote Sens. 2018, 10, 330. [Google Scholar] [CrossRef]
- Bänziger, M.; Lafitte, H. Efficiency of Secondary Traits for Improving Maize for Low-Nitrogen Target Environments. Crop Sci. 1997, 37, 1110. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Meth. 2012, 9, 671–675. [Google Scholar] [CrossRef] [Green Version]
- Hunt, E.R.; Doraiswamy, P.C.; McMurtrey, J.E.; Daughtry, C.S.T.; Perry, E.M.; Akhmedov, B. A visible band index for remote sensing leaf chlorophyll content at the Canopy scale. Int. J. Appl. Earth Obs. Geoinf. 2012, 21, 103–112. [Google Scholar] [CrossRef]
- Hunt, E.R.; Cavigelli, M.; Daughtry, C.S.T.; McMurtrey, J.E.; Walthall, C.L. Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status. Precis. Agric. 2005, 6, 359–378. [Google Scholar] [CrossRef]
- Bai, X.D.; Cao, Z.G.; Wang, Y.; Yu, Z.H.; Zhang, X.F.; Li, C.N. Crop segmentation from images by morphology modeling in the CIE L à a à b à color space. Comput. Electron. Agric. 2013, 99, 21–34. [Google Scholar] [CrossRef]
- Fernandez-Gallego, J.A.; Kefauver, S.C.; Vatter, T.; Gutiérrez, N.A.; Nieto-Taladriz, M.T.; Araus, J.L. Low-cost assessment of grain yield in durum wheat using RGB images. Eur. J. Agron. 2019, 105, 146–156. [Google Scholar] [CrossRef]
- Gracia-Romero, A.; Vergara-Díaz, O.; Thierfelder, C.; Cairns, J.E.; Kefauver, S.C.; Araus, J.L. Phenotyping Conservation Agriculture Management Effects on Ground and Aerial Remote Sensing Assessments of Maize Hybrids Performance in Zimbabwe. Remote Sens. 2018, 10, 349. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Racine, J. RStudio: A Platform-Independent IDE for R and Sweave. J. Appl. Econom. 2011, 27, 167–172. [Google Scholar] [CrossRef]
- Below, F.E. Nitrogen metabolism and crop productivity. In Handbook of Plant and Crop Physiology; Pessarakli, M., Ed.; Marcel Dekker, Inc.: New York, NY, USA; Basel, Switzerland, 1995; pp. 275–301. [Google Scholar]
- Uribelarrea, M.; Crafts-Brandner, S.J.; Below, F.E. Physiological N response of field-grown maize hybrids (Zea m ays L.) with divergent yield potential and grain protein concentration. Plant Soil 2009, 316, 151–160. [Google Scholar] [CrossRef]
- Ding, L.; Wang, K.J.; Jiang, G.M.; Biswas, D.K.; Xu, H.; Li, L.F.; Li, Y.H. Effects of nitrogen deficiency on photosynthetic traits of maize hybrids released in different years. Ann. Bot. 2005, 96, 925–930. [Google Scholar] [CrossRef]
- Hirel, B.; Martin, A.; Terce-Laforgue, T.; Gonzalez-Morob, M.; Estavillob, J. Physiology of maize I: A comprehensive and integrated view of nitrogen metabolism in a C4 plant. Physiol. Plant. 2005, 124, 167–177. [Google Scholar] [CrossRef]
- Muruli, B.I.; Paulsen, G.M. Improvement of nitrogen use efficiency and its relationship to other traits in maize. Maydica 1981, 26, 63–73. [Google Scholar]
- Gallais, A.; Coque, M. Genetic variation and selection for nitrogen use efficiency in maize: A synthesis. Maydica 2005, 50, 531–537. [Google Scholar]
- Westgate, M.E. Physiology of flowering in maize: Identifying avenues to improve kernel set during drought. In Developing Drought and Low-N Tolerant Maize; Edmeades, G.O., Banziger, M., Mickelson, H.R., Pena-Valdivia, C.B., Eds.; CIMMYT: El Batán, Mexico, 1997; pp. 136–141. [Google Scholar]
- Beyene, Y.; Mugo, S.; Semagn, K.; Asea, G.; Trevisan, W.; Tarekegne, A.; Tefera, T.; Gethi, J.; Kiula, B.; Gakunga, J.; et al. Genetic distance among doubled haploid maize lines andtheir testcross performance under drought stress and non-stress conditions. Euphytica 2013, 192, 379–392. [Google Scholar] [CrossRef]
- Edmeades, G.O.; Bolaños, J.; Chapman, S.C.; Lafitte, H.R.; Bänziger, M. Selection improves tolerance to mid/late season drought in tropical maize populations. Gains in biomass, grain yield and harvest index. Crop Sci. 1999, 39, 1306–1315. [Google Scholar] [CrossRef]
- Bänziger, M.; Edmeades, G.O.; Lafitte, H.R. Selection for drought tolerance increases maize yields over a range of N levels. Crop Sci. 1999, 39, 1035–1040. [Google Scholar] [CrossRef]
- Araus, J.L.; Slafer, G.A.; Reynolds, M.P.; Royo, C. Plant breeding and drought in C3 cereals: What should we breed for. Ann. Bot. 2002, 89, 925–940. [Google Scholar] [CrossRef]
- Pattee, H.E.; Giesbrecht, F.G.; Young, C.T. Comparison of Peanut Butter Color Determination by CIELAB L * * a * b * and Hunter Color-Difference Methods and the Relationship of Roasted Peanut Color to Roasted Peanut Flavor Responsef. J. Agric. Food Chem. 1991, 39, 519–523. [Google Scholar] [CrossRef]
- Penczek, J.; Boynton, P.A.; Splett, D. Color Error in Digital Camera Image Capture Process. J. Digit. Imaging 2014, 27, 182–191. [Google Scholar] [CrossRef]
- Berra, E.F.; Gaulton, R.; Barr, S. Commercial Off-the-Shelf Digital Cameras on Unmanned Aerial Vehicles for Multitemporal Monitoring of Vegetation Reflectance and NDVI. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4878–4886. [Google Scholar] [CrossRef]
- Yu, W. Practical Anti-Vignetting Methods for Digital Cameras. IEEE Trans. Consum. Electron. 2004, 50, 975–983. [Google Scholar] [CrossRef]
- Lukina, E.V.; Stone, M.L.; Raun, W.R. Estimating vegetation coverage in wheat using digital images. J. Plant Nutr. 1999, 22, 341–350. [Google Scholar] [CrossRef]
- Sankaran, S.; Khot, L.R.; Espinoza, C.Z.; Jarolmasjed, S.; Sathuvalli, V.R.; Vandemark, G.J.; Miklas, P.N.; Carter, A.H.; Pumphrey, M.O.; Knowles, R.R.N.; et al. Low- altitude, high-resolution aerial imaging systems for row and field crop phenotyping: A review. Eur. J. Agron. 2015, 70, 112–123. [Google Scholar] [CrossRef]
- Aparicio, N.; Villegas, D.; Casadesus, J.; Araus, J.L.; Royo, C. Spectral vegetation indices as nondestructive tools for determining durum wheat yield. Agron. J. 2000, 92, 83–91. [Google Scholar] [CrossRef]
- Maresma, Á.; Ariza, M.; Martínez, E.; Lloveras, J.; Martínez-Casasnovas, J. Analysis of Vegetation Indices to Determine Nitrogen Application and Yield Prediction in Maize (Zea mays L.) from a Standard UAV Service. Remote Sens. 2016, 8, 973. [Google Scholar] [CrossRef]
- Vergara-Díaz, O.; Zaman-Allah, M.; Masuka, B.; Hornero, A.; Zarco-Tejada, P.; Prasanna, B.; Cairns, J.; Araus, J. A Novel Remote Sensing Approach for Prediction of Maize Yield Under Different Conditions of Nitrogen Fertilization. Front. Plant Sci. 2016, 7, 666. [Google Scholar] [CrossRef]
- Araus, J.L.; Kefauver, S.C.; Zaman-Allah, M.; Olsen, M.S.; Cairns, J.E. Translating high throughput phenotyping into genetic gain. Trend. Plant Sci. 2018, 23, 451–466. [Google Scholar] [CrossRef]
- Moriondo, M.; Maselli, F.; Bindi, M. A simple model of regional wheat yield based on NDVI data. Eur. J. Agron. 2007, 26, 266–274. [Google Scholar] [CrossRef]
- Gitelson, A.; Viña, A.; Arkebauer, T.; Rundquist, D.; Keydan, G.; Leavitt, B. Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef] [Green Version]
- Daughtry, C.; Hunt, E.; McMurtrey, J. Assessing crop residue cover using shortwave infrared reflectance. Remote Sens. Environ. 2004, 90, 126–134. [Google Scholar] [CrossRef]
- Hobbs, T.J. The use of NOAA-AVHRR NDVI data to assess herbage production in the arid rangelands of Central Australia. Int. J. Remote Sens. 1995, 16, 1289–1302. [Google Scholar] [CrossRef]
- Elazab, A.; Bort, J.; Zhou, B.; Serret, M.D.; Nieto-Taladriz, M.T.; Araus, J.L. The combined use of vegetation indices and stable isotopes to predict durum wheat grain yield under contrasting water conditions. Agric. Water Manag. 2015, 158, 196–208. [Google Scholar] [CrossRef]
- Marti, J.; Bort, J.; Slafer, G.A.; Araus, J.L. Can wheat yield be assessed by early measurements of Normalized Difference Vegetation Index. Ann. Appl. Bot. 2007, 150, 253–257. [Google Scholar] [CrossRef]
- Li, Y.; Chen, D.; Walker, C.N.; Angus, J.F. Estimating the nitrogen status of crops using a digital camera. Field Crops Res. 2010, 118, 221–227. [Google Scholar] [CrossRef]
- Vetsch, J.A.; Randall, G.W. Corn production as affected by nitrogen application timing and tillage. Agron. J. 2004, 96, 502–509. [Google Scholar] [CrossRef]
- Chapman, S.; Baretto, H. Using a chlorophyll meter to estimate specific leaf nitrogen of tropical maize during vegetative growth. Agron. J. 1997, 89, 557–562. [Google Scholar] [CrossRef]
- Dwyer, L.M.; Anderson, A.M.; Ma, B.L.; Stewart, D.W.; Tollenaar, M.; Gregorich, E. Quantifying the nonlinearity in chlorophyll meter response to corn leaf nitrogen concentration. Can. J. Plant Sci. 1995, 75, 179–182. [Google Scholar] [CrossRef] [Green Version]
- Hirel, B.; Lea, P.J. Ammonia assimilation. In Plant Nitrogen; INRA Springer: Berlin/Heidelberg, Germany, 2001; pp. 79–99. [Google Scholar]
- Masclaux, C.; Quillere, I.; Gallais, A.; Hirel, B. The challeng of remobilization in plant nitrogen economy. A survey of physio- agronomic and molecular approaches. Ann. Appl. Biol. 2001, 138, 69–81. [Google Scholar] [CrossRef]
- Teal, R.K.; Girma, B.K.; Freeman, K.W.; Arnall, D.B. In-season prediction of corn grain yield potential using normalized difference vegetation index. Agron. J. 2006, 98, 1488–1494. [Google Scholar] [CrossRef]
- Ahmad, I.S.; Reid, J.F. Evaluation of Colour Representations for Maize Images. J. Agric. Eng. Res. 1996, 63, 185–195. [Google Scholar] [CrossRef]
- Morgounov, A.; Gummadov, N.; Belen, S.; Kaya, Y.; Keser, M.; Mursalova, J. Association of digital photo parameters and NDVI with winter wheat grain yield in variable environments. Turk. J. Agric. For. 2014, 38, 624–632. [Google Scholar] [CrossRef]
- Gracia-Romero, A.; Kefauver, S.; Vergara-Díaz, O.; Zaman-Allah, M.; Prasanna, B.; Cairns, J.; Araus, J. Comparative Performance of Ground vs. Aerially Assessed RGB and Multispectral Indices for Early-Growth Evaluation of Maize Performance under Phosphorus Fertilization. Front. Plant Sci. 2017, 8, 2004. [Google Scholar] [CrossRef]
- Osborne, S.; Schepers, J.; Francis, D.; Schlemmer, M. Detection of Phosphorus and Nitrogen Deficiencies in Corn Using Spectral Radiance Measurements. Agron. J. 2002, 94, 1215–1221. [Google Scholar] [CrossRef]
- Blackmer, T.M.; Schepers, J.S.; Varvel, G.E.; Walter-Shea, E.A. Nitrogen deficiency detection using reflected shortwave radiation from irrigated corn canopies. Agron. J. 1996, 88, 1–5. [Google Scholar] [CrossRef]
- Ma, B.L.; Morrison, M.J.; Dwyer, M. Canopy light reflectance and field greenness to assess nitrogen fertilization and yield of maize. Agron. J. 1996, 88, 915–920. [Google Scholar] [CrossRef]
Minimum | Maximum | Average | N (%) | |
---|---|---|---|---|
GY (Mg/ha) at LOW | 1.53 | 4.43 | 2.93 ± 0.58 | 25–35 |
GY (Mg/ha) at OP | 6.68 | 12.30 | 9.62 ± 1.24 | 100 |
GYLI (%) | 46.88 | 85.22 | 69.01 ± 7.48 |
LOW | OP | |||
---|---|---|---|---|
Genotype | GY(Mg/ha) | Yield Group | GY(Mg/ha) | Yield Group |
CZH128 | 3.35 | HY | 10.93 | HY |
CZH15024 | 3.50 | HY | 11.13 | HY |
CZH15028 | 3.88 | HY | 10.60 | HY |
CZH15045 | 3.38 | HY | 10.13 | HY |
CZH15057 | 3.82 | HY | 11.40 | HY |
11C4393 | 3.37 | HY | 10.97 | HY |
LOCAL CHECK2 | 2.44 | HY | 10.59 | HY |
CZH15027 | 2.32 | LY | 8.44 | LY |
PHB30G19 | 2.28 | LY | 8.46 | LY |
MRI 634 | 2.29 | LY | 7.97 | LY |
GY | ||||||||
---|---|---|---|---|---|---|---|---|
UAV RGB VIs | r | P | Ground RGB VIs | r | P | Additional Field Sensors | r | P |
GGA | 0.445 | *** | GGA | 0.483 | *** | SPADV (18/02/16) | 0.542 | *** |
GY | 0.407 | *** | GA | 0.466 | *** | SPADR (01/03/16) | 0.506 | *** |
Hue | 0.381 | *** | Hue | 0.485 | *** | NDVI | 0.375 | *** |
Intensity | −0.305 | *** | Intensity | 0.095 | ||||
Saturation | −0.427 | *** | Saturation | −0.227 | * | |||
Lightness | −0.291 | *** | Lightness | 0.144 | * | |||
a* | −0.36 | *** | a* | −0.383 | *** | |||
b* | −0.397 | *** | b* | −0.089 | ||||
u* | −0.383 | *** | u* | −0.449 | *** | |||
v* | −0.297 | *** | v* | 0.014 | ||||
NDLab | 0.359 | *** | NDLab | 0.468 | *** | |||
NDLuv | −0.378 | *** | NDLuv | 0.442 | *** | |||
CSI | −0.428 | *** | CSI | −0.321 | *** | |||
TGI | 0.229 | * | TGI | −0.043 | ||||
NGRDI | 0.406 | *** | NGRDI | −0.027 |
R | P | ANOVA | |
---|---|---|---|
GGA | 0.758 | *** | *** |
GA | 0.766 | *** | *** |
Hue | 0.731 | *** | *** |
Intensity | −0.062 | ns | *** |
Saturation | 0.509 | *** | ns |
Lightness | −0.039 | ns | *** |
a* | 0.617 | *** | *** |
b* | 0.424 | *** | *** |
u* | 0.723 | *** | *** |
v* | 0.33 | *** | *** |
NDLab | 0.781 | *** | *** |
NDLuv | −0.676 | *** | *** |
CSI | 0.457 | *** | *** |
TGI | −0.163 | * | * |
NGRDI | −0.223 | * | ** |
GY | ||||
---|---|---|---|---|
Agronomic Data | LOW | OP | ||
r | r | |||
PH | 0.191 | ** | 0.131 | ns |
SEN | −0.213 | ** | NA | ns |
AD | −0.46 | *** | 0.272 | ** |
ASI | −0.53 | *** | 0.161 | * |
Parameters | Stepwise Equations | R2 | RSE | P |
---|---|---|---|---|
Agronomic Data + Field sensors | GY = − AD*0.28 + SPADV*0.03 + SPADR*0.02 − ASI*0.78 + 5.97 | 0.61 | 0.539 | *** |
Agronomic Data + Ground RGB VIs (*) | GY = − ASI*0.189 − AD*0.128 − SEN*0.237 + PH*0.01 + b*0.11 − v*0.064 + NDLab*15.20 − NDLuv*6.99 + 3.36 | 0.588 | 0.556 | *** |
Agronomic Data + UAV RGB VIs (*) | GY = − ASI*0.20 − SEN*0.26 − AD*0.13 + PH*0.01 − Saturation*84.97 − u*1.37 + v*1.61 + TGI*0.02 + NDLuv*3.95 + 31.8 | 0.604 | 0.546 | *** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buchaillot, M.L.; Gracia-Romero, A.; Vergara-Diaz, O.; Zaman-Allah, M.A.; Tarekegne, A.; Cairns, J.E.; Prasanna, B.M.; Araus, J.L.; Kefauver, S.C. Evaluating Maize Genotype Performance under Low Nitrogen Conditions Using RGB UAV Phenotyping Techniques. Sensors 2019, 19, 1815. https://doi.org/10.3390/s19081815
Buchaillot ML, Gracia-Romero A, Vergara-Diaz O, Zaman-Allah MA, Tarekegne A, Cairns JE, Prasanna BM, Araus JL, Kefauver SC. Evaluating Maize Genotype Performance under Low Nitrogen Conditions Using RGB UAV Phenotyping Techniques. Sensors. 2019; 19(8):1815. https://doi.org/10.3390/s19081815
Chicago/Turabian StyleBuchaillot, Ma. Luisa, Adrian Gracia-Romero, Omar Vergara-Diaz, Mainassara A. Zaman-Allah, Amsal Tarekegne, Jill E. Cairns, Boddupalli M. Prasanna, Jose Luis Araus, and Shawn C. Kefauver. 2019. "Evaluating Maize Genotype Performance under Low Nitrogen Conditions Using RGB UAV Phenotyping Techniques" Sensors 19, no. 8: 1815. https://doi.org/10.3390/s19081815
APA StyleBuchaillot, M. L., Gracia-Romero, A., Vergara-Diaz, O., Zaman-Allah, M. A., Tarekegne, A., Cairns, J. E., Prasanna, B. M., Araus, J. L., & Kefauver, S. C. (2019). Evaluating Maize Genotype Performance under Low Nitrogen Conditions Using RGB UAV Phenotyping Techniques. Sensors, 19(8), 1815. https://doi.org/10.3390/s19081815