State-of-the-Art Internet of Things in Protected Agriculture
Abstract
:1. Introduction
2. The Structure of IoT in Protected Agriculture
2.1. Simple Review of Previous IoT Structure
2.2. Structure of IoT in Protected Agriculture
- (1).
- Perception layer: This layer consists of various sensors, terminal devices, agricultural machinery, wireless sensor network (WSN), RFID tags andreaders, etc. The common sensors are environmental sensors, animal and plant life information sensors and other sensors related to agriculture. Through these sensors, information such as temperature, humidity, wind speed, plant diseases, insect pests and animal vital signs can be obtained. The collected information is simply processed by the embedded device and uploaded to a higher layer through the network layer for further processing and analysis.
- (2).
- Network layer: The network layer is the infrastructure of IoT, which includes a converged network formed by various communication networks and the internet. The transmission medium can be wired technology such as CAN bus and RS485 bus or wireless technology like Zigbee, Bluetooth, LoRa and NB-IoT. The network layer not only transmits various kinds of agricultural related information collected by the perception layer to the higher layer, but also sends the control commands of the application layer to the perception layer, so that the related devices of the sensing layer take corresponding actions.
- (3).
- Middleware layer: IoT can provide different types of services for different devices. The technical specifications (processor, power supply, communication module) and system of each device are different and different devices cannot be connected and communicated with each other, which leads to heterogeneity problems. The middleware layer aggregates, filters and processes received data from IoT devices, which greatly reduces the processing time and cost of the above issues and provides developers with a more versatile tool to build their applications. It also simplifies the steps of new service development and new device deployment which enables them to integrate more quickly into older architectures, improving the interoperability of IoT.
- (4).
- Common platform layer: The common platform layer is responsible for the storage, decision-making, summary and statistics of agricultural information and the establishment of various algorithms and models for agricultural production process such as intelligent control, intelligent decision making, diagnostic reasoning, early warning and prediction. This layer is composed of cloud computing, fog computing, edge computing, Big Data, machine learning algorithm, other common core processing technologies as well as its establishment model.
- (5).
- Application layer: The application layer is the highest level of the architecture and the place where IoT’s value and utility are most apparent. There are lots of intelligent platforms or systems in this layer for the environmental monitoring and control of plants and animals, the early warning and management of diseases and insect pests, and agricultural product safety traceability, which can improve production efficiency as well as save time and cost.
3. The Crucial Technologies of IoT in Protected Agriculture
3.1. Sensor Technology
3.2. Data Transmission Technology
3.3. WSN
3.4. Cloud Computing
3.5. Edge Computing
3.6. Machine Learning
3.7. Big Data
4. IoT Applications in Protected Agriculture
4.1. Plant Management
4.2. Animal Farming
4.3. Agri-food Supply Chain Traceability
5. Disscussion
5.1. Hardware and Software Challenges
5.2. Network Challenge
5.3. Security Challenge
5.4. Other Challenges
5.5. Future Prospects
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sarma, S.; David, L.B.; Kevin, J.A. The Networked Physical World Proposals for Engineering the Next Generation of Computing, Commerce & Automatic-Identification. Available online: https://www.semanticscholar.org/paper/The-Networked-Physical-World-Proposals-for-the-Next-Sarma-Brock/88b4a255082d91b3c88261976c85a24f2f92c5c3#paper-header (accessed on 13 April 2019).
- Peña-López, I. ITU Internet Report 2005: The Internet of Things; International Telecommunication Union: Geneva, Switzerland, 2005. [Google Scholar]
- Ray, P.P. A survey on Internet of Things architectures. J. King Saud Univ. Comput. Inf. Sci. 2018, 30, 291–319. [Google Scholar] [Green Version]
- Islam, S.R.; Kwak, D.; Kabir, M.H.; Hossain, M.; Kwak, K.S. The internet of things for health care: A comprehensive survey. IEEE Access 2015, 3, 678–708. [Google Scholar]
- Asghari, P.; Rahmani, A.M.; Javadi, H.H.S. Internet of Things applications: A systematic review. Comput. Netw. 2019, 148, 241–261. [Google Scholar]
- Jensen, M.H.; Malter, A.J. Protected Agriculture: A Global Review; World Bank Publications: Washington, DC, USA, 1995. [Google Scholar]
- Mekala, M.S.; Viswanathan, P. A Survey: Smart agriculture IoT with cloud computing. In Proceedings of the 2017 International conference on Microelectronic Devices, Circuits and Systems (ICMDCS), Vellore, India, 10–12 August 2017; pp. 1–7. [Google Scholar]
- Kamilaris, A.; Prenafeta-Boldú, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90. [Google Scholar]
- Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.-J. Big Data in Smart Farming—A review. Agric. Syst. 2017, 153, 69–80. [Google Scholar]
- Dlodlo, N.; Kalezhi, J. The internet of things in agriculture for sustainable rural development. In Proceedings of the 2015 International Conference on Emerging Trends in Networks and Computer Communications (ETNCC), Windhoek, Namibia, 17–20 May 2015; pp. 13–18. [Google Scholar]
- Pang, Z.; Chen, Q.; Han, W.; Zheng, L. Value-centric design of the internet-of-things solution for food supply chain: Value creation, sensor portfolio and information fusion. Inf. Syst. Front. 2015, 17, 289–319. [Google Scholar]
- Liu, P.; Li, B.; Yu, X. Intelligent Control System of Cucumber Production in the Greenhouse Based on Internet of Things. In Proceedings of the International Conference on Cloud Computing and Security, Haikou, China, 8–10 June 2018; pp. 395–406. [Google Scholar]
- Ma, J.; Li, X.; Wen, H.; Fu, Z.; Zhang, L. A key frame extraction method for processing greenhouse vegetables production monitoring video. Comput. Electron. Agric. 2015, 111, 92–102. [Google Scholar]
- Talavera, J.M.; Tobón, L.E.; Gómez, J.A.; Culman, M.A.; Aranda, J.M.; Parra, D.T.; Quiroz, L.A.; Hoyos, A.; Garreta, L.E. Review of IoT applications in agro-industrial and environmental fields. Comput. Electron. Agric. 2017, 142, 283–297. [Google Scholar]
- Verdouw, C.N.; Robbemond, R.M.; Verwaart, T.; Wolfert, J.; Beulens, A.J.M. A reference architecture for IoT-based logistic information systems in agri-food supply chains. Enterp. Inf. Syst. UK 2018, 12, 755–779. [Google Scholar]
- Koshizuka, N.; Sakamura, K. Ubiquitous ID: Standards for Ubiquitous Computing and the Internet of Things. IEEE. Pervas. Comput. 2010, 9, 98–101. [Google Scholar]
- Sinha, N.; Pujitha, K.E.; Alex, J.S.R. Xively based sensing and monitoring system for IoT. In Proceedings of the 2015 International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India, 8–10 January 2015; pp. 1–6. [Google Scholar]
- Derhamy, H.; Eliasson, J.; Delsing, J.; Priller, P. A survey of commercial frameworks for the internet of things. In Proceedings of the 2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA), Luxembourg, 8–11 September 2015; pp. 1–8. [Google Scholar]
- ETSI. Machine-To-Machine Communications (M2M): Functional Architecture; International Telecommunication Union: Geneva, Switzerland, 2011; Volume 102, p. 690. [Google Scholar]
- La, H.J.; Kim, S.D. A Service-Based Approach to Designing Cyber Physical Systems. In Proceedings of the 2010 IEEE/ACIS 9th International Conference on Computer and Information Science, Yamagata, Japan, 18–20 August 2010; pp. 895–900. [Google Scholar]
- Carrez, F.; Bauer, M.; Boussad, M.; Bui, N.; Jardak, C.; De Loof, J.; Magerkurth, C.; Meissner, S.; Nettsträter, A.; Olivereau, A.; et al. Internet of Things—Architecture IoT-A, Deliverable D1. 5—Final Architectural Reference Model for the IoT v3.0; Framework Programme; European Union: Brussels, Belgium, 2013. [Google Scholar]
- Ge, W.; Zhao, C. State-of-the-art and developing strategies of agricultural internet of things. Trans. Chin. Soc. Agric. Mach. 2014, 45, 222–230. (In Chinese) [Google Scholar]
- Antonacci, A.; Arduini, F.; Moscone, D.; Palleschi, G.; Scognamiglio, V. Nanostructured (Bio) sensors for smart agriculture. Trac-Trend. Anal. Chem. 2018, 98, 95–103. [Google Scholar]
- Li, F.; Wang, X.; Sun, X.; Guo, Y.; Zhao, W. A dual-signal amplification strategy for kanamycin based on ordered mesoporous carbon-chitosan/gold nanoparticles-streptavidin and ferrocene labelled DNA. Anal. Chim. Acta 2018, 1033, 185–192. [Google Scholar] [PubMed]
- Zheng, Y.; Liu, Z.; Jing, Y.; Jie, L.; Zhan, H. An acetylcholinesterase biosensor based on ionic liquid functionalized graphene–gelatin-modified electrode for sensitive detection of pesticides. Sens. Actuators B Chem. 2015, 210, 389–397. [Google Scholar]
- Jiao, Y.; Fu, J.; Hou, W.; Shi, Z.; Guo, Y.; Xia, S.; Yang, Q.; Li, F. Homogeneous electrochemical aptasensor based on a dual amplification strategy for sensitive detection of profenofos residues. New J. Chem. 2018, 42, 14642–14647. [Google Scholar]
- Bao, J.; Huang, T.; Wang, Z.; Yang, H.; Geng, X.; Xu, G.; Samalo, M.; Sakinati, M.; Huo, D.; Hou, C. 3D graphene/copper oxide nano-flowers based acetylcholinesterase biosensor for sensitive detection of organophosphate pesticides. Sens. Actuators B Chem. 2019, 279, 95–101. [Google Scholar]
- Li, F.; Guo, Y.; Wang, X.; Sun, X. Multiplexed aptasensor based on metal ions labels for simultaneous detection of multiple antibiotic residues in milk. Biosens. Bioelectron. 2018, 115, 7–13. [Google Scholar] [PubMed]
- Negara, C.; Vieth, K.-U.; Lafontaine, M.; Freund, M. Automatic Fruit Sorting by Non-Destructive Determination of Quality Parameters Using Visible-near Infrared to Improve Wine Quality: II. Regression Analysis. NIR News 2014, 25, 4–6. [Google Scholar]
- Wenjun, J.; Zhou, S.; Jingyi, H.; Shuo, L. In situ measurement of some soil properties in paddy soil using visible and near-infrared spectroscopy. PLoS ONE 2014, 9, e105708. [Google Scholar]
- Shao, Y.; Zhao, C.; Bao, Y.; He, Y. Quantification of Nitrogen Status in Rice by Least Squares Support Vector Machines and Reflectance Spectroscopy. Food Bioprocess Technol. 2012, 5, 100–107. [Google Scholar]
- Nie, P.; Dong, T.; He, Y.; Qu, F. Detection of soil nitrogen using near infrared sensors based on soil pretreatment and algorithms. Sensors 2017, 17, 1102. [Google Scholar] [CrossRef]
- Soerensen, D.D.; Pedersen, L.J. Infrared skin temperature measurements for monitoring health in pigs: A review. Acta Vet. Scand. 2015, 57, 5. [Google Scholar]
- Tang, K. Technology development of agricultural internet of things in foreign countries and its inspiration to China. China Acad. J. Electron. Publ. House 2013, 28, 700–707. (In Chinese) [Google Scholar]
- Kumar, A.; Hancke, G.P. Energy Efficient Environment Monitoring System Based on the IEEE 802.15.4 Standard for Low Cost Requirements. IEEE Sens. J. 2014, 14, 2557–2566. [Google Scholar] [Green Version]
- Corkery, G.; Ward, S.; Kenny, C.; Hemmingway, P. Monitoring environmental parameters in poultry production facilities. In Proceedings of the Computer Aided Process Engineering-CAPE Forum 2013, Graz, Austria, 7–10 April 2013. [Google Scholar]
- Rajalakshmi, P.; Mahalakshmi, S.D. IOT based crop-field monitoring and irrigation automation. In Proceedings of the 2016 10th International Conference on Intelligent Systems and Control (ISCO), Coimbatore, India, 7–8 January 2016; pp. 1–6. [Google Scholar]
- Revathi, S.; Sivakumaran, N. Fuzzy Based Temperature Control of Greenhouse. IFAC-PapersOnLine 2016, 49, 549–554. [Google Scholar]
- Čolaković, A.; Hadžialić, M. Internet of Things (IoT): A review of enabling technologies, challenges, and open research issues. Comput. Netw. 2018, 144, 17–39. [Google Scholar]
- Raza, U.; Kulkarni, P.; Sooriyabandara, M. Low Power Wide Area Networks: An Overview. IEEE Commun. Surv. Tutor. 2017, 19, 855–873. [Google Scholar] [Green Version]
- Sinha, R.S.; Wei, Y.; Hwang, S.-H. A survey on LPWA technology: LoRa and NB-IoT. ICT Express 2017, 3, 14–21. [Google Scholar] [Green Version]
- Sforza, F. Communications System. U.S. Patent US8406275B2, 26 March 2013. [Google Scholar]
- Nolan, K.E.; Kelly, M.Y.; Nolan, M.; Brady, J.; Guibene, W. Techniques for resilient real-world IoT. In Proceedings of the 2016 International Wireless Communications and Mobile Computing Conference (IWCMC), Paphos, Cyprus, 5–9 September 2016; pp. 222–226. [Google Scholar]
- Raza, U.; Camerra, A.; Murphy, A.L.; Palpanas, T.; Picco, G.P. Practical data prediction for real-world wireless sensor networks. IEEE Trans. Knowl. Data Eng. 2015, 27, 2231–2244. [Google Scholar]
- Mikhaylov, K.; Petaejaejaervi, J.; Haenninen, T. Analysis of capacity and scalability of the LoRa low power wide area network technology. In Proceedings of the European Wireless 2016, 22th European Wireless Conference, Oulu, Finland, 18–20 May 2016; pp. 1–6. [Google Scholar]
- NB-IoT-Enabling New Business Opportunities; Tech Rep; Huawei Technol: Shenzhen, China, 2015.
- Srbinovska, M.; Gavrovski, C.; Dimcev, V.; Krkoleva, A.; Borozan, V. Environmental parameters monitoring in precision agriculture using wireless sensor networks. J. Clean. Prod. 2015, 88, 297–307. [Google Scholar]
- Ferentinos, K.P.; Katsoulas, N.; Tzounis, A.; Bartzanas, T.; Kittas, C. Wireless sensor networks for greenhouse climate and plant condition assessment. Biosyst. Eng. 2017, 153, 70–81. [Google Scholar]
- Ojha, T.; Misra, S.; Raghuwanshi, N.S. Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges. Comput. Electron. Agric. 2015, 118, 66–84. [Google Scholar]
- Mell, P.; Grance, T. The NIST Definition of Cloud Computing; U.S. Department of Commerce: Washington, DC, USA, 2011.
- Hashem, I.A.T.; Yaqoob, I.; Anuar, N.B.; Mokhtar, S.; Gani, A.; Ullah Khan, S. The rise of “big data” on cloud computing: Review and open research issues. Inf. Syst. 2015, 47, 98–115. [Google Scholar]
- Nativi, S.; Mazzetti, P.; Santoro, M.; Papeschi, F.; Craglia, M.; Ochiai, O. Big data challenges in building the global earth observation system of systems. Environ. Model. Softw. 2015, 68, 1–26. [Google Scholar]
- Rupanagudi, S.R.; Ranjani, B.S.; Nagaraj, P.; Bhat, V.G.; Thippeswamy, G. A novel cloud computing based smart farming system for early detection of borer insects in tomatoes. In Proceedings of the 2015 International Conference on Communication, Information & Computing Technology (ICCICT), Mumbai, India, 15–17 January 2015; pp. 1–6. [Google Scholar]
- Ferrández-Pastor, F.J.; García-Chamizo, J.M.; Nieto-Hidalgo, M.; Mora-Pascual, J.; Mora-Martínez, J. Developing Ubiquitous Sensor Network Platform Using Internet of Things: Application in Precision Agriculture. Sensors 2016, 16, 1141. [Google Scholar] [CrossRef]
- Botta, A.; de Donato, W.; Persico, V.; Pescapé, A. Integration of Cloud computing and Internet of Things: A survey. Future Gener. Comput. Syst. 2016, 56, 684–700. [Google Scholar]
- Satyanarayanan, M. The emergence of edge computing. Computer 2017, 50, 30–39. [Google Scholar]
- Shi, W.; Dustdar, S. The Promise of Edge Computing. Computer 2016, 49, 78–81. [Google Scholar]
- Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge computing: Vision and challenges. IEEE Internet Things 2016, 3, 637–646. [Google Scholar]
- Biamonte, J.; Wittek, P.; Pancotti, N.; Rebentrost, P.; Wiebe, N.; Lloyd, S. Quantum machine learning. Nature 2017, 549, 195–202. [Google Scholar] [Green Version]
- Rehman, T.U.; Mahmud, M.S.; Chang, Y.K.; Jin, J.; Shin, J. Current and future applications of statistical machine learning algorithms for agricultural machine vision systems. Comput. Electron. Agric. 2019, 156, 585–605. [Google Scholar]
- Zheng, B.; Myint, S.W.; Thenkabail, P.S.; Aggarwal, R.M. A support vector machine to identify irrigated crop types using time-series Landsat NDVI data. Int. J. Appl. Earth. Obs. 2015, 34, 103–112. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [PubMed]
- Edwards-Murphy, F.; Magno, M.; Whelan, P.M.; O’Halloran, J.; Popovici, E.M. b+ WSN: Smart beehive with preliminary decision tree analysis for agriculture and honey bee health monitoring. Comput. Electron. Agric. 2016, 124, 211–219. [Google Scholar]
- Russell, S.J.; Norvig, P. Artificial Intelligence: A Modern Approach; Pearson Education Limited: New York, NY, USA, 2018. [Google Scholar]
- Dubey, S.R.; Jalal, A.S. Adapted Approach for Fruit Disease Identification using Images. Image Process. Concepts Methodol. Tools Appl. 2014, 2, 51–65. [Google Scholar]
- Gili, A.; Álvarez, C.; Bagnato, R.; Noellemeyer, E. Comparison of three methods for delineating management zones for site-specific crop management. Comput. Electron. Agric. 2017, 139, 213–223. [Google Scholar]
- Liu, S.; Cossell, S.; Tang, J.; Dunn, G.; Whitty, M. A computer vision system for early stage grape yield estimation based on shoot detection. Comput. Electron. Agric. 2017, 137, 88–101. [Google Scholar]
- Shakoor, N.; Lee, S.; Mockler, T.C. High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field. Curr. Opin. Plant Biol. 2017, 38, 184–192. [Google Scholar]
- Crossa, J.; Pérez-Rodríguez, P.; Cuevas, J.; Montesinos-López, O.; Jarquín, D.; de los Campos, G.; Burgueño, J.; González-Camacho, J.M.; Pérez-Elizalde, S.; Beyene, Y.; et al. Genomic Selection in Plant Breeding: Methods, Models, and Perspectives. Trends Plant Sci. 2017, 22, 961–975. [Google Scholar]
- Montesinos-López, O.A.; Martín-Vallejo, J.; Crossa, J.; Gianola, D.; Hernández-Suárez, C.M.; Montesinos-López, A.; Juliana, P.; Singh, R. A benchmarking between deep learning, support vector machine and Bayesian threshold best linear unbiased prediction for predicting ordinal traits in plant breeding. G3 Genes Genomes Genet. 2019, 9, 601–618. [Google Scholar]
- Kyosuke, Y.; Wei, G.; Yosuke, Y.; Seishi, N. On plant detection of intact tomato fruits using image analysis and machine learning methods. Sensors 2014, 14, 12191–12206. [Google Scholar] [CrossRef]
- Rahnemoonfar, M.; Sheppard, C. Deep count: Fruit counting based on deep simulated learning. Sensors 2017, 17, 905. [Google Scholar] [CrossRef]
- Bendre, M.R.; Thool, R.C.; Thool, V.R. Big data in precision agriculture: Weather forecasting for future farming. In Proceedings of the 2015 1st International Conference on Next Generation Computing Technologies (NGCT), Dehradun, India, 4–5 September 2015; pp. 744–750. [Google Scholar]
- Zhou, K.; Fu, C.; Yang, S. Big data driven smart energy management: From big data to big insights. Renew. Sustain. Energy Rev. 2016, 56, 215–225. [Google Scholar]
- Kamilaris, A.; Kartakoullis, A.; Prenafeta-Boldú, F.X. A review on the practice of big data analysis in agriculture. Comput. Electron. Agric. 2017, 143, 23–37. [Google Scholar]
- Teitel, M.; Atias, M.; Barak, M. Gradients of temperature, humidity and CO2 along a fan-ventilated greenhouse. Biosyst. Eng. 2010, 106, 166–174. [Google Scholar]
- López, A.; Valera, D.L.; Molina-Aiz, F.D.; Peña, A. Sonic anemometry to evaluate airflow characteristics andtemperature distribution in empty Mediterranean greenhouses equipped with pad–fan and fog systems. Biosyst. Eng. 2012, 113, 334–350. [Google Scholar]
- Sreekantha, D.K.; Kavya, A.M. Agricultural crop monitoring using IOT—A study. In Proceedings of the 2017 11th International Conference on Intelligent Systems and Control (ISCO), Coimbatore, India, 5–6 January 2017; pp. 134–139. [Google Scholar]
- Kodali, R.K.; Jain, V.; Karagwal, S. IoT based smart greenhouse. In Proceedings of the 2016 IEEE Region 10 Humanitarian Technology Conference (R10-HTC), Agra, India, 21–23 December 2016; pp. 1–6. [Google Scholar]
- Mat, I.; Kassim, M.R.M.; Harun, A.N.; Yusoff, I.M. IoT in Precision Agriculture applications using Wireless Moisture Sensor Network. In Proceedings of the 2016 IEEE Conference on Open Systems (ICOS), Langkawi, Malaysia, 10–12 October 2016; pp. 24–29. [Google Scholar]
- Carmassi, G.; Bacci, L.; Bronzini, M.; Incrocci, L.; Maggini, R.; Bellocchi, G.; Massa, D.; Pardossi, A. Modelling transpiration of greenhouse gerbera (Gerbera jamesonii H. Bolus) grown in substrate with saline water in a Mediterranean climate. Sci. Hortic. 2013, 156, 9–18. [Google Scholar]
- Li, D.; Xu, L.; Tan, C.; Goodman, E.; Fu, D.; Xin, L. Digitization and visualization of greenhouse tomato plants in indoor environments. Sensors 2015, 15, 4019–4051. [Google Scholar] [CrossRef]
- Singh, M.C.; Singh, J.P.; Singh, K.G. Development of a microclimate model for prediction of temperatures inside a naturally ventilated greenhouse under cucumber crop in soilless media. Comput. Electron. Agric. 2018, 154, 227–238. [Google Scholar]
- Changqing, C.; Hui, L.; Wenjun, H. Internet of Agriculture-Based Low Cost Smart Greenhouse Remote Monitor System. In Proceedings of the 2018 Chinese Automation Congress (CAC), Zhejiang, China, 30 November 2018; pp. 3940–3945. [Google Scholar]
- He, C.; Shen, M.; Liu, L.; Okinda, C.; Yang, J.; Shi, H. Design and realization of a greenhouse temperature intelligent control system based on NB-IoT. J. South China Agric. Univ. 2018, 39, 117–124. [Google Scholar]
- Dan, L.I.U.; Xin, C.; Chongwei, H.; Liangliang, J. Intelligent agriculture greenhouse environment monitoring system based on IOT technology. In Proceedings of the 2015 IEEE International Conference on Intelligent Transportation, Big Data and Smart City, Halong Bay, Vietnam, 19–20 December 2015; pp. 487–490. [Google Scholar]
- Elijah, O.; Rahman, T.A.; Orikumhi, I.; Leow, C.Y.; Hindia, M.N. An Overview of Internet of Things (IoT) and Data Analytics in Agriculture: Benefits and Challenges. IEEE Internet Things J. 2018, 5, 3758–3773. [Google Scholar]
- Deng, X.; Dou, Y.; Hu, D. Robust closed-loop control of vegetable production in plant factory. Comput. Electron. Agric. 2018, 155, 244–250. [Google Scholar]
- Liao, M.S.; Chen, S.F.; Chou, C.Y.; Chen, H.Y.; Yeh, S.H.; Chang, Y.C.; Jiang, J.A. On precisely relating the growth of Phalaenopsis leaves to greenhouse environmental factors by using an IoT-based monitoring system. Comput. Electron. Agric. 2017, 136, 125–139. [Google Scholar]
- Zamora-Izquierdo, M.A.; Santa, J.; Martínez, J.A.; Martínez, V.; Skarmeta, A.F. Smart farming IoT platform based on edge and cloud computing. Biosyst. Eng. 2019, 177, 4–17. [Google Scholar]
- Katsoulas, N.; Bartzanas, T.; Kittas, C. Online professional irrigation scheduling system for greenhouse crops. Acta Hortic. 2017, 1154, 221–228. [Google Scholar]
- Larsen, A.E.; Patton, M.; Martin, E.A. High highs and low lows: Elucidating striking seasonal variability in pesticide use and its environmental implications. Sci. Total Environ. 2019, 651, 828–837. [Google Scholar]
- Silva, V.; Mol, H.G.J.; Zomer, P.; Tienstra, M.; Ritsema, C.J.; Geissen, V. Pesticide residues in European agricultural soils—A hidden reality unfolded. Sci. Total Environ. 2019, 653, 1532–1545. [Google Scholar]
- Pixia, D.; Xiangdong, W. Recognition of greenhouse cucumber disease based on image processing technology. Open J. Appl. Sci. 2013, 3, 27. [Google Scholar]
- Ahmed, R.Z.; Biradar, R.C.; Chaudhari, S.S. Cluster-based data aggregation for pest identification in coffee plantations using wireless sensor networks. Comput. Electr. Eng. 2016, 56, 591–607. [Google Scholar]
- Tirelli, P.; Borghese, N.A.; Pedersini, F.; Galassi, G.; Oberti, R. Automatic monitoring of pest insects traps by Zigbee-based wireless networking of image sensors. In Proceedings of the 2011 IEEE International Instrumentation and Measurement Technology Conference, Binjiang, China, 10–12 May 2011; pp. 1–5. [Google Scholar]
- Ahouandjinou, A.S.R.M.; Kiki, P.M.A.F.; Assogba, K. Smart environment monitoring system by using sensors ultrasonic detection of farm pests. In Proceedings of the 2017 2nd International Conference on Bio-engineering for Smart Technologies (BioSMART), Paris, France, 30 August–1 September 2017; pp. 1–5. [Google Scholar]
- Foughali, K.; Fathallah, K.; Frihida, A. Using Cloud IOT for disease prevention in precision agriculture. Procedia Comput. Sci. 2018, 130, 575–582. [Google Scholar]
- Kim, Y.-B.; Choi, D.-O. Design of Business Management System for Livestock Pens Based of IoT. J. Korean Entertain. Ind. Assoc. 2014, 8, 207–216. [Google Scholar]
- Ilapakurti, A.; Vuppalapati, C. Building an IoT Framework for Connected Dairy. In Proceedings of the 2015 IEEE First International Conference on Big Data Computing Service and Applications, Redwood City, CA, USA, 30 March–2 April 2015; pp. 275–285. [Google Scholar]
- Oriwoh, E.; Sant, P.; Epiphaniou, G. Guidelines for internet of things deployment approaches–the thing commandments. Procedia Comput. Sci. 2013, 21, 122–131. [Google Scholar]
- Chen, J.; Sung, W.; Lin, G. Automated Monitoring System for the Fish Farm Aquaculture Environment. In Proceedings of the 2015 IEEE International Conference on Systems, Man and Cybernetics, Kowloon, China, 9–12 October 2015; pp. 1161–1166. [Google Scholar]
- Vijayakumar, N.; Ramya, R. The real time monitoring of water quality in IoT environment. In Proceedings of the 2015 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), Coimbatore, India, 19–20 March 2015; pp. 1–5. [Google Scholar]
- Wiranto, G.; Mambu, G.A.; Hiskia; Hermida, I.D.P.; Widodo, S. Design of online data measurement and automatic sampling system for continuous water quality monitoring. In Proceedings of the 2015 IEEE International Conference on Mechatronics and Automation (ICMA), Beijing, China, 2–5 August 2015; pp. 2331–2335. [Google Scholar]
- Scalera, A.; Brizzi, P.; Tomasi, R.; Gregersen, T.; Mertens, K.; Maselyne, J.; Van den Weghe, H. The PigWise project: A novel approach in livestock farming through synergistic performances monitoring at individual level. In Proceedings of the Conference on Sustainable Agriculture through ICT Innovation, Turin, Italy, 24–27 June 2013; pp. 1–8. [Google Scholar]
- Memon, M.H.; Kumar, W.; Memon, A.; Chowdhry, B.S.; Aamir, M.; Kumar, P. Internet of Things (IoT) enabled smart animal farm. In Proceedings of the 2016 3rd IEEE International Conference on Computing for Sustainable Global Development, New Delhi, India, 16–18 March 2016; pp. 2067–2072. [Google Scholar]
- Encinas, C.; Ruiz, E.; Cortez, J.; Espinoza, A. Design and implementation of a distributed IoT system for the monitoring of water quality in aquaculture. In Proceedings of the 2017 Wireless Telecommunications Symposium (WTS), Chicago, IL, USA, 26–28 April 2017; pp. 1–7. [Google Scholar]
- Soto-Zarazúa, G.M.; Peniche-Vera, R.; Rico-García, E.; Toledano-Ayala, M.; Ocampo-Velázquez, R.; Herrera-Ruiz, G. An automated recirculation aquaculture system based on fuzzy logic control for aquaculture production of tilapia (Oreochromis niloticus). Aquacult. Int. 2011, 19, 797–808. [Google Scholar]
- Stutz, P.V.; Golani, L.K.; Witkin, J.M. Animal models of fatigue in major depressive disorder. Physiol. Behav. 2019, 199, 300–305. [Google Scholar] [PubMed]
- Shinde, T.A.; Prasad, J.R. IoT based animal health monitoring with naive Bayes classification. Int. J. Emerg. Trends Technol. 2017, 1, 8104–8107. [Google Scholar]
- Jingqiu, G.; Zhihai, W.; Ronghua, G.; Huarui, W. Cow behavior recognition based on image analysis and activities. Int. J. Agric. Biol. Eng. 2017, 10, 165–174. [Google Scholar]
- Yazdanbakhsh, O.; Zhou, Y.; Dick, S. An intelligent system for livestock disease surveillance. In. Sci. 2017, 378, 26–47. [Google Scholar]
- Benhai, X.; Liang, Y.; Xiaohua, P.; Zhengang, Y. Review on application of Internet of Things technology in animal husbandry in China. Trans. Chin. Soc. Agric. Eng. 2015, 31, 237–246. (In Chinese) [Google Scholar]
- Liu, S.; Xu, L.; Li, D.; Duan, Q.; Wei, X. Research on remote system for disease diagnosis of penaeus vannamei based on internet of things. J. China Agric. Univ. 2014, 19, 189–195. (In Chinese) [Google Scholar]
- Liu, X.; Sha, Z.; Wang, C.; Li, D.; Bureau, D.P. A web-based combined nutritional model to precisely predict growth, feed requirement and waste output of gibel carp (Carassius auratus gibelio) in aquaculture operations. Aquaculture 2018, 492, 335–348. [Google Scholar]
- Keeffe, S.O.; Manap, H.; Dooly, G.; Lewis, E. Real-time monitoring of agricultural ammonia emissions based on optical fibre sensing technology. In Proceedings of the SENSORS, Kona, HI, USA, 1–4 November 2010; pp. 1140–1143. [Google Scholar]
- Pan, L.; Yang, S.X. An Electronic Nose Network System for Online Monitoring of Livestock Farm Odors. IEEE-ASME Trans. Mech. 2009, 14, 371–376. [Google Scholar]
- Costa, C.; Antonucci, F.; Pallottino, F.; Aguzzi, J.; Sarriá, D.; Menesatti, P. A Review on Agri-food Supply Chain Traceability by Means of RFID Technology. Food Bioprocess Technol. 2013, 6, 353–366. [Google Scholar]
- Clemens, R.L. Meat traceability in Japan. Iowa Ag Rev. 2015, 9, 2. [Google Scholar]
- Li, H.; Zhang, B.; Zhang, L.; Xue, Y.; He, M.; Ren, C. A food traceability framework for dairy and other low-margin products. IBM J. Res. Dev. 2016, 60, 1–8. [Google Scholar]
- Chen, C.; Xu, X. Design and application of traceability and supervision platform for broiler based on Internet of Things. Trans. Chin. Soc. Agric. Eng. 2017, 33, 224–231. (In Chinese) [Google Scholar]
- Ndraha, N.; Hsiao, H.-I.; Vlajic, J.; Yang, M.-F.; Lin, H.-T.V. Time-temperature abuse in the food cold chain: Review of issues, challenges, and recommendations. Food Control 2018, 89, 12–21. [Google Scholar]
- Sichao, L.; Xifu, W. Toward an intelligent solution for perishable food cold chain management. In Proceedings of the 2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 26–28 August 2016; pp. 852–856. [Google Scholar]
- Zhao, G.; Yu, H.; Wang, G.; Sui, Y.; Zhang, L. Applied Research of IOT and RFID Technology in Agricultural Product Traceability System; Springer International Publishing: Cham, Switzerland, 2015; pp. 506–514. [Google Scholar]
- Pigini, D.; Conti, M. NFC-based traceability in the food chain. Sustainability 2017, 9, 1910. [Google Scholar] [CrossRef]
- Badia-Melis, R.; Mishra, P.; Ruiz-García, L. Food traceability: New trends and recent advances. A review. Food Control 2015, 57, 393–401. [Google Scholar]
- Liu, Y.; Wang, H.; Wang, J.; Qian, K.; Kong, N.; Wang, K.; Zheng, L.; Shi, Y.; Engels, D.W. Enterprise-oriented IoT name service for agricultural product supply chain management. Int. J. Distrib. Sens. Netw. 2015, 11, 308165. [Google Scholar]
- Verdouw, C.N.; Wolfert, J.; Beulens, A.J.M.; Rialland, A. Virtualization of food supply chains with the internet of things. J. Food Eng. 2016, 176, 128–136. [Google Scholar] [Green Version]
- Wang, J.; Yue, H. Food safety pre-warning system based on data mining for a sustainable food supply chain. Food Control 2017, 73, 223–229. [Google Scholar]
- Galvez, J.F.; Mejuto, J.C.; Simal-Gandara, J. Future challenges on the use of blockchain for food traceability analysis. Trac-Trend. Anal. Chem. 2018, 107, 222–232. [Google Scholar]
- Kshetri, N. 1 Blockchain’s roles in meeting key supply chain management objectives. Int. J. Inf. Manag. 2018, 39, 80–89. [Google Scholar]
- Feng, T. A supply chain traceability system for food safety based on HACCP. blockchain & Internet of things. In Proceedings of the 2017 International Conference on Service Systems and Service Management, Dalian, China, 16–18 June 2017; pp. 1–6. [Google Scholar]
- Leng, K.; Bi, Y.; Jing, L.; Fu, H.-C.; Van Nieuwenhuyse, I. Research on agricultural supply chain system with double chain architecture based on blockchain technology. Future Gener. Comput. Syst. 2018, 86, 641–649. [Google Scholar]
- Chen, R.-Y. Autonomous tracing system for backward design in food supply chain. Food Control 2015, 51, 70–84. [Google Scholar]
- Tzounis, A.; Katsoulas, N.; Bartzanas, T.; Kittas, C. Internet of Things in agriculture, recent advances and future challenges. Biosyst. Eng. 2017, 164, 31–48. [Google Scholar]
- Bannister, K.; Giorgetti, G.; Gupta, S.K. Wireless sensor networking for hot applications: Effects of temperature on signal strength, data collection and localization. In Proceedings of the 5th Workshop on Embedded Networked Sensors, Charlottesville, VA, USA, 2–3 June 2008; pp. 1–5. [Google Scholar]
- Boano, C.A.; Tsiftes, N.; Voigt, T.; Brown, J.; Roedig, U. The impact of temperature on outdoor industrial sensornet applications. IEEE Trans. Ind. Inform. 2010, 6, 451–459. [Google Scholar]
- Sheng, P.; Guo, Y.; Li, P. Intelligent measurement and control system of facility agriculture based on ZigBee and 3G. Trans. Chin. Soc. Agric. Mach. 2012, 43, 229–233. (In Chinese) [Google Scholar]
- Wang, X.; Chao, Y.; Mao, S. TensorBeat: Tensor Decomposition for Monitoring Multi-Person Breathing Beats with Commodity WiFi. ACM Trans. Intell. Syst. Technol. 2017, 9, 8. [Google Scholar]
- Lin, J.; Yu, W.; Zhang, N.; Yang, X.; Zhang, H.; Zhao, W. A Survey on Internet of Things: Architecture, Enabling Technologies, Security and Privacy and Applications. IEEE Internet Things J. 2017, 4, 1125–1142. [Google Scholar]
- Sicari, S.; Rizzardi, A.; Grieco, L.A.; Coen-Porisini, A. Security, privacy and trust in Internet of Things: The road ahead. Comput. Netw. 2015, 76, 146–164. [Google Scholar]
- Jebri, S.; Abid, M.; Bouallegue, A. Stac-protocol: Secure and trust anonymous communication protocol for iot. In Proceedings of the 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC), Valencia, Spain, 26–30 June 2017; pp. 365–370. [Google Scholar]
- Lee, J.Y.; Lin, W.C.; Huang, Y.H. A lightweight authentication protocol for internet of things. In Proceedings of the 2014 IEEE International Symposium on Next-Generation Electronics, Kwei-Shan, Taiwan, 7–10 May 2014; pp. 1–2. [Google Scholar]
- Shen, J.; Chang, S.; Shen, J.; Liu, Q.; Sun, X. A lightweight multi-layer authentication protocol for wireless body area networks. Future Gener. Comput. Syst. 2018, 78, 956–963. [Google Scholar]
- TongKe, F. Smart agriculture based on cloud computing and IOT. J. Converg. Inf. Technol. 2013, 8. [Google Scholar] [CrossRef]
- Daoliang, L.; Hao, Y. State-of-the-art Review for Internet of Things in Agriculture. Trans. Chin. Soc. Agric. Mach. 2018, 49, 1–20. (In Chinese) [Google Scholar]
- Ray, P.P. Internet of things for smart agriculture: Technologies, practices and future direction. J. Ambient Intell. Smart Environ. 2017, 9, 395–420. [Google Scholar]
- Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements, and future directions. Future Gener. Comput. Syst. 2013, 29, 1645–1660. [Google Scholar] [Green Version]
- Vatari, S.; Bakshi, A.; Thakur, T. Green house by using IOT and cloud computing. In Proceedings of the IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bangalore, India, 20–21 May 2016; pp. 246–250. [Google Scholar]
- Shaikh, F.K.; Exposito, E.; Zeadally, S. Enabling technologies for green Internet of Things. IEEE. Syst. J. 2017, 11, 983–994. [Google Scholar]
Wireless Technology | Wireless Standard | Frequency Band | Network Type | Transmission Range | Data Rate &Power |
---|---|---|---|---|---|
Wi-Fi | IEEE802.11 a/c/b/d/g/n | 2.4 GHz, 5–60 GHz | WLAN | 20–100 m | 1 Mb/s–6.75 Gb/s, 1 W |
Bluetooth | Bluetooth (Formerly IEEE 802.15.1) | 2.4 GHz | WPAN | 10–300 m | 1 Mb/s–48 Mb/s, 1 w |
6LowPAN | IEEE 802.15.4 | 908.42 MHz/2.4 GHz | WPAN | 20–100m | 20 Kb/s–250 Kb/s,1 mW |
Sigfox | Sigfox | 908.42 MHz | LPWAN | <50 km | 10–1000 b/s, N/A |
LoRaWAN | LoRaWAN | Various | LPWAN | <15 km | 0.3–50 Kb/s, N/A |
NB-loT | 3GPP | 180 KHz | LPWAN | <15 km | 0–200 Kb/s, N/A |
Mobile cellular technology | 2G-GSM, GPRS 3G-UMTS, CDMA2000 4G-LTE | 865 MHz, 2.4 GHz | GERAN | Entire cellular area | 2G: 50–100 kb/s 3G: 200 kb/s 4G: 0.1–1 Gb/s, 1 W |
Zigbee | IEEE 802.15.4 | 2400–2483.5 MHz | Mesh | 0–10 m | 250 Kbps, 1 mW |
NFC | ISO/IEC 13157 | 13.56 MHz | Point to Point | 0.1m | 424 Kbps, 1–2 mW |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, X.; An, X.; Zhao, Q.; Liu, H.; Xia, L.; Sun, X.; Guo, Y. State-of-the-Art Internet of Things in Protected Agriculture. Sensors 2019, 19, 1833. https://doi.org/10.3390/s19081833
Shi X, An X, Zhao Q, Liu H, Xia L, Sun X, Guo Y. State-of-the-Art Internet of Things in Protected Agriculture. Sensors. 2019; 19(8):1833. https://doi.org/10.3390/s19081833
Chicago/Turabian StyleShi, Xiaojie, Xingshuang An, Qingxue Zhao, Huimin Liu, Lianming Xia, Xia Sun, and Yemin Guo. 2019. "State-of-the-Art Internet of Things in Protected Agriculture" Sensors 19, no. 8: 1833. https://doi.org/10.3390/s19081833
APA StyleShi, X., An, X., Zhao, Q., Liu, H., Xia, L., Sun, X., & Guo, Y. (2019). State-of-the-Art Internet of Things in Protected Agriculture. Sensors, 19(8), 1833. https://doi.org/10.3390/s19081833