Monitoring for Coastal Resilience: Preliminary Data from Five Italian Sandy Beaches †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. The Video-Monitoring System and Data Processing
2.3. Wave Climate
2.4. Beach Classification Parameters
3. Results
3.1. Beach Classification
3.2. Nearshore Morphological Settings in Time
3.3. Rates of Variability
4. Discussion and Conclusions
- the sandbar morphologic variability is much larger than the shoreline displacement. This is very likely related to the exposure of sandbars to more intense forcing flows than those experienced by the near-shoreline sediments;
- for the first time, evidence of NOM-type sand bar evolution patterns along Italian coasts was recorded;
- the major erosional phenomena along the analyzed beaches coincide with discrete changes in the nearshore morphological patterns that occur in relation to the rapid seaward migration of the outer bars or to the decay of the offshore bar. In view of the results of our analysis, the reciprocal roles of wave obliquity and beach slope can be summarized as per Table 7;
- the larger shoreline displacements have been observed along those beaches that are characterized by a NOM-type evolution of the entire sandbar system. This suggests that quasi-steady sandbar systems are related to more stable shorelines. However, more detailed analyses are needed to verify if such behaviour also leads to more resilient coastlines (i.e., with a lesser retreat in the long term);
- high-frequency remote sensing technology can provide fundamental insight about such long-term shoreline evolution. Moreover, it can provide important information for coastal management purposes, especially along natural coasts were dynamics could be very fast and where no other (historic) data are available.
Author Contributions
Funding
Conflicts of Interest
Abbreviations
BLIM | BarLine Intensity Mapper |
GCP | Ground Control Point |
NOM | Net Offshore Migration (pattern) |
SPAW | Shoreward Propagating Accretionary Wave |
References
- Shi, F.; Kirby, J.T.; Harris, J.C.; Geiman, J.D.; Grilli, S.T. A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation. Ocean Model. 2012, 43–44, 36–51. [Google Scholar] [CrossRef]
- Soldini, L.; Antuono, M.; Brocchini, M. Numerical modeling of the influence of the beach profile on wave run-up. J. Waterw. Port Coast. Ocean Eng. 2013, 139, 61–71. [Google Scholar] [CrossRef]
- Postacchini, M.; Lalli, F.; Memmola, F.; Bruschi, A.; Bellafiore, D.; Lisi, I.; Zitti, G.; Brocchini, M. A model chain approach for coastal inundation: Application to the bay of Alghero. Estuar. Coast. Shelf Sci. 2019, 219, 56–70. [Google Scholar] [CrossRef]
- Klein, R.J.; Smit, M.J.; Goosen, H.; Hulsbergen, C.H. Resilience and vulnerability: Coastal dynamics or Dutch dikes? Geogr. J. 1998, 164, 259–268. [Google Scholar] [CrossRef]
- Masselink, G.; van Heteren, S. Response of wave-dominated and mixed-energy barriers to storms. Mar. Geol. 2014, 352, 321–347. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Douglas, B.; Leatherman, S. Do storms cause long-term beach erosion along the U.S. east barrier coast? J. Geol. 2002, 110, 493–502. [Google Scholar] [CrossRef]
- Ferreira, Ó. The role of storm groups in the erosion of sandy coasts. Earth Surf. Process. Landf. 2006, 31, 1058–1060. [Google Scholar] [CrossRef]
- Coco, G.; Senechal, N.; Rejas, A.; Bryan, K.; Capo, S.; Parisot, J.; Brown, J.; MacMahan, J. Beach response to a sequence of extreme storms. Geomorphology 2014, 204, 493–501. [Google Scholar] [CrossRef] [Green Version]
- Karunarathna, H.; Pender, D.; Ranasinghe, R.; Short, A.D.; Reeve, D.E. The effects of storm clustering on beach profile variability. Mar. Geol. 2014, 348, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Phillips, M.S.; Harley, M.D.; Turner, I.L.; Splinter, K.D.; Cox, R.J. Shoreline recovery on wave-dominated sandy coastlines: The role of sandbar morphodynamics and nearshore wave parameters. Mar. Geol. 2017, 385, 146–159. [Google Scholar] [CrossRef]
- Gallagher, E.L.; Elgar, S.; Guza, R.T. Observations of sand bar evolution on a natural beach. J. Geophys. Res. Oceans 1998, 103, 3203–3215. [Google Scholar] [CrossRef] [Green Version]
- Hoefel, F.; Elgar, S. Wave-induced sediment transport and sandbar migration. Science 2003, 299, 1885–1887. [Google Scholar] [CrossRef]
- Wright, L.; Short, A. Morphodynamic variability of surf zones and beaches: A synthesis. Mar. Geol. 1984, 56, 93–118. [Google Scholar] [CrossRef]
- Masselink, G.; Short, A.D. The effect of tide range on beach morphodynamics and morphology: A conceptual beach model. J. Coast. Res. 1993, 9, 785–800. [Google Scholar]
- Shand, R.; Bailey, D.; Shepherd, M. An inter-site comparison of net offshore bar migration characteristics and environmental conditions. J. Coast. Res. 1999, 15, 750–765. [Google Scholar]
- Ruessink, B.; Kroon, A. The behaviour of a multiple bar system in the nearshore zone of Terschelling, The Netherlands: 1965–1993. Mar. Geol. 1994, 121, 187–197. [Google Scholar] [CrossRef]
- Roelvink, J.A.; Stive, M.J.F. Bar-generating cross-shore flow mechanisms on a beach. J. Coast. Res. 1989, 94, 4785–4800. [Google Scholar] [CrossRef]
- Van Enckevort, I.; Ruessink, B. Video observations of nearshore bar behaviour. Part 1: Alongshore uniform variability. Cont. Shelf Res. 2003, 23, 501–512. [Google Scholar] [CrossRef]
- Wijnberg, K.M.; Terwindt, J.H. Extracting decadal morphological behaviour from high-resolution, long-term bathymetric surveys along the Holland coast using eigenfunction analysis. Mar. Geol. 1995, 126, 301–330. [Google Scholar] [CrossRef]
- Aleman, N.; Certain, R.; Robin, N.; Barusseau, J.P. Morphodynamics of slightly oblique nearshore bars and their relationship with the cycle of net offshore migration. Mar. Geol. 2017, 392, 41–52. [Google Scholar] [CrossRef]
- Bouvier, C.; Balouin, Y.; Castelle, B. Video monitoring of sandbar-shoreline response to an offshore submerged structure at a microtidal beach. Geomorphology 2017, 295, 297–305. [Google Scholar] [CrossRef]
- Castelle, B.; Turner, I.; Ruessink, B.; Tomlinson, R. Impact of storms on beach erosion: Broadbeach (Gold Coast, Australia). J. Coast. Res. 2007, 534–539. Available online: https://www.jstor.org/stable/26481646 (accessed on 10 April 2019).
- Price, T.; Ruessink, B. State dynamics of a double sandbar system. Cont. Shelf Res. 2011, 31, 659–674. [Google Scholar] [CrossRef]
- Splinter, K.D.; Turner, I.L.; Reinhardt, M.; Ruessink, G. Rapid adjustment of shoreline behavior to changing seasonality of storms: Observations and modelling at an open-coast beach. Earth Surf. Process. Landf. 2017, 42, 1186–1194. [Google Scholar] [CrossRef]
- Angnuureng, D.B.; Almar, R.; Senechal, N.; Castelle, B.; Addo, K.A.; Marieu, V.; Ranasinghe, R. Shoreline resilience to individual storms and storm clusters on a meso-macrotidal barred beach. Geomorphology 2017, 290, 265–276. [Google Scholar] [CrossRef]
- Splinter, K.; Harley, M.; Turner, I. Remote sensing is changing our view of the coast: Insights from 40 years of monitoring at Narrabeen-Collaroy, Australia. Remote Sens. 2018, 10, 1744. [Google Scholar] [CrossRef]
- Aagaard, T.; Holm, J. Digitization of wave run-up using video records. J. Coast. Res. 1989, 5, 547–551. [Google Scholar]
- Vousdoukas, M.I.; Wziatek, D.; Almeida, L.P. Coastal vulnerability assessment based on video wave run-up observations at a mesotidal, steep-sloped beach. Ocean Dyn. 2011, 62, 123–137. [Google Scholar] [CrossRef] [Green Version]
- Ibaceta, R.; Almar, R.; Catalán, P.; Blenkinsopp, C.; Almeida, L.; Cienfuegos, R. Assessing the performance of a low-cost method for video-monitoring the water surface and bed level in the swash zone of natural beaches. Remote Sens. 2018, 10, 49. [Google Scholar] [CrossRef]
- Archetti, R.; Paci, A.; Carniel, S.; Bonaldo, D. Optimal index related to the shoreline dynamics during a storm: The case of Jesolo beach. Nat. Hazard. Earth Syst. Sci. 2016, 16, 1107–1122. [Google Scholar] [CrossRef]
- Parlagreco, L.; Archetti, R.; Simeoni, U.; Devoti, S.; Valentini, A.; Silenzi, S. Video-monitoring of a barred nourished beach (Latium, Central Italy). J. Coast. Res. 2011, SI 64, 110–114. [Google Scholar]
- Armaroli, C.; Ciavola, P. Dynamics of a nearshore bar system in the northern Adriatic: A video-based morphological classification. Geomorphology 2011, 126, 201–216. [Google Scholar] [CrossRef]
- Brignone, M.; Schiaffino, C.F.; Isla, F.I.; Ferrari, M. A system for beach video-monitoring: Beachkeeper plus. Comput. Geosci. 2012, 49, 53–61. [Google Scholar] [CrossRef]
- Valentini, N.; Saponieri, A.; Damiani, L. A new video monitoring system in support of coastal zone management at Apulia region, Italy. Ocean Coast. Manag. 2017, 142, 122–135. [Google Scholar] [CrossRef]
- Bonaldo, D.; Antonioli, F.; Archetti, R.; Bezzi, A.; Correggiari, A.; Davolio, S.; Falco, G.D.; Fantini, M.; Fontolan, G.; Furlani, S.; et al. Integrating multidisciplinary instruments for assessing coastal vulnerability to erosion and sea level rise: Lessons and challenges from the Adriatic Sea, Italy. J. Coast. Conserv. 2018, 23, 19–37. [Google Scholar] [CrossRef]
- Melito, L.; Parlagreco, L.; Perugini, E.; Postacchini, M.; Zitti, G.; Brocchini, M. Monitoring for coastal resilience: A project for five Italian beaches. In Proceedings of the 2018 IEEE International Workshop on Metrology for the Sea, Bari, Italy, 8–10 October 2018; pp. 76–81. [Google Scholar] [CrossRef]
- Postacchini, M.; Soldini, L.; Lorenzoni, C.; Mancinelli, A. Medium-term dynamics of a middle Adriatic barred beach. Ocean Sci. 2017, 13, 719–734. [Google Scholar] [CrossRef] [Green Version]
- Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar] [CrossRef]
- Holland, K.; Holman, R.; Lippmann, T.; Stanley, J.; Plant, N. Practical use of video imagery in nearshore oceanographic field studies. IEEE J. Ocean. Eng. 1997, 22, 81–92. [Google Scholar] [CrossRef]
- Bouguet, J.Y. Camera Calibration Toolbox for Matlab. Available online: http://www.vision.caltech.edu/bouguetj/calib_doc/ (accessed on 8 March 2019).
- Holman, R.; Sallenger, A.; Lippmann, T.; Haines, J. The application of video image processing to the study of nearshore processes. Oceanography 1993, 6, 78–85. [Google Scholar] [CrossRef]
- Lippmann, T.C.; Holman, R.A. The spatial and temporal variability of sand bar morphology. J. Geophys. Res. 1990, 95, 11575–11590. [Google Scholar] [CrossRef]
- Pape, L.; Plant, N.G.; Ruessink, B.G. On cross-shore migration and equilibrium states of nearshore sandbars. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Perugini, E. The Application of Video-Monitoring Data to Understand Coastal And Estuarine Processes. PhD Thesis, Università Politecnica delle Marche, Ancona, Italy, 2019. [Google Scholar]
- Ribas, F.; Ojeda, E.; Price, T.D.; Guillen, J. Assessing the suitability of video imaging for studying the dynamics of nearshore sandbars in tideless beaches. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2482–2497. [Google Scholar] [CrossRef]
- Wijnberg, K.M.; Holman, R. Video-observations of shoreward propagating accretionary waves. In Proceedings of the RCEM 2007, Enschede, NL, USA, 7–21 September 2007; pp. 737–743. [Google Scholar]
- Castelle, B.; Marieu, V.; Bujan, S.; Splinter, K.D.; Robinet, A.; Sénéchal, N.; Ferreira, S. Impact of the winter 2013–2014 series of severe Western Europe storms on a double-barred sandy coast: Beach and dune erosion and megacusp embayments. Geomorphology 2015, 238, 135–148. [Google Scholar] [CrossRef]
- Boccotti, P. Wave Mechanics for Ocean Engineering; Elsevier: Amsterdam, The Netherlands, 2000. [Google Scholar]
- Short, A.D.; Aagaard, T. Single and multi-bar beach change models. J. Coast. Res. 1993, SI 15, 141–157. [Google Scholar]
- Battjes, J. Surf similarity. In Proceedings of the 14th International Conference on Coastal Engineering. American Society of Civil Engineers, Copenhagen, Denmark, 24–28 June 1974. [Google Scholar] [CrossRef]
- Zanke, U. Berechnung der Sinkgeschwindigkeiten von Sedimenten; University of Hannover: Hannover, Germany, 1977; Volume 46. (In German) [Google Scholar]
- Van Rijn, L.C. Sediment transport, Part II: Suspended load transport. J. Hydraul. Eng. 1984, 110, 1613–1641. [Google Scholar] [CrossRef]
- Gómez-Pujol, L.; Orfila, A.; Cañellas, B.; Alvarez-Ellacuria, A.; Méndez, F.; Medina, R.; Tintoré, J. Morphodynamic classification of sandy beaches in low energetic marine environment. Mar. Geol. 2007, 242, 235–246. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, J.A.; Guillén, J.; Falqués, A. Comment on the article “Morphodynamic classification of sandy beaches in low energetic marine environment”. Mar. Geol. 2008, 255, 96–101. [Google Scholar] [CrossRef]
- Lisi, I.; Molfetta, M.; Bruno, M.; Risio, M.D.; Damiani, L. Morphodynamic classification of sandy beaches in enclosed basins: The case study of Alimini (Italy). J. Coast. Res. 2011, SI 64, 180–184. [Google Scholar]
- Swart, R.L.D.; Ribas, F.; Ruessink, G.; Simarro, G.; Guillén Aranda, J. Characteristics and dynamics of crescentic bar events in an open, tideless beach. In Proceedings of the Coastal Dynamics 2017, Helsingør, Denmark, 12–16 June 2017; pp. 555–566. [Google Scholar]
- Plant, N.G.; Holman, R.A.; Freilich, M.H.; Birkemeier, W.A. A simple model for interannual sandbar behavior. J. Geophys. Res. Oceans 1999, 104, 15755–15776. [Google Scholar] [CrossRef] [Green Version]
- Ruessink, B.G.; Wijnberg, K.M.; Holman, R.A.; Kuriyama, Y.; van Enckevort, I.M.J. Intersite comparison of interannual nearshore bar behavior. J. Geophys. Res. Oceans 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Smit, M.; Reniers, A.; Ruessink, B.; Roelvink, J. The morphological response of a nearshore double sandbar system to constant wave forcing. Coast. Eng. 2008, 55, 761–770. [Google Scholar] [CrossRef]
- Ruessink, B.; Pape, L.; Turner, I. Daily to interannual cross-shore sandbar migration: Observations from a multiple sandbar system. Cont. Shelf Res. 2009, 29, 1663–1677. [Google Scholar] [CrossRef]
- Aleman, N.; Robin, N.; Certain, R.; Barusseau, J.P.; Gervais, M. Net offshore bar migration variability at a regional scale: Inter-site comparison (Languedoc-Roussillon, France). J. Coast. Res. 2013, SI 65, 1715–1720. [Google Scholar] [CrossRef]
- Di Leonardo, D.; Ruggiero, P. Regional scale sandbar variability: Observations from the U.S. Pacific Northwest. Cont. Shelf Res. 2015, 95, 74–88. [Google Scholar] [CrossRef]
- Tătui, F.; Vespremeanu-Stroe, A.; Ruessink, G.B. Alongshore variability of cross-shore bar behavior on a nontidal beach. Earth Surf. Process. Landf. 2016, 41, 2085–2097. [Google Scholar] [CrossRef]
- Walstra, D.J.; Wesselman, D.; van der Deijl, E.; Ruessink, G. On the intersite variability in inter-annual nearshore sandbar cycles. J. Mar. Sci. Eng. 2016, 4, 15. [Google Scholar] [CrossRef]
Location | Sea | Coordinates | Height (m) | Cameras Azimuth (N) | Focal Length (mm) | Monitored Beach (m) |
---|---|---|---|---|---|---|
Senigallia | Adriatic | 28.0 | 60 115 | 8 12 | 800 | |
Torre del Cerrano | Adriatic | 37.5 | 40 330 | 12 25 | 1000 | |
Rodi Garganico | Adriatic | 54.0 | 310 345 | 8 8 | 500 | |
Sabaudia | Tyrrhenian | 21.1 | 165 240 | 12 6 | 800 | |
Terracina | Tyrrhenian | 39.0 | 95 165 | 25 8 | 1000 |
Location | Dataset Specifics & Days of Feature Occurrence | |||||
---|---|---|---|---|---|---|
Senigallia | Time interval: 16 December 2016–9 February 2019 Number of days: 786 | |||||
feature | sl | b1 | b2 | b3 | b4 | b5 |
n° of days | 370 | 447 | 282 | 89 | 9 | 307 |
% occurrence | 47 | 57 | 36 | 11 | 19 | 39 |
Torre del Cerrano | Time interval: 15 May 2016–14 January 2019 Number of days: 985 | |||||
feature | sl | b1 | b2 | b3 | ||
n° of days | 515 | 458 | 214 | 15 | ||
% occurrence | 52 | 47 | 22 | 2 | ||
Sabaudia | Time interval: 13 October 2015–22 December 2018 Number of days: 1167 | |||||
feature | sl | spaw | b1 | b2 | ||
n° of days | 812 | 155 | 604 | 157 | ||
% occurrence | 70 | 13 | 52 | 13 | ||
Terracina | Time interval: 28 September 2007–28 December 2018 Number of days: 4110 | |||||
feature | sl | b1 | b2 | b3 | b4 | |
n° of days | 1307 | 54 | 285 | 484 | 218 | |
% occurrence | 32 | 1 | 7 | 12 | 5 |
Senigallia | Torre del Cerrano | Rodi Garganico | Terracina | Sabaudia | |
---|---|---|---|---|---|
(m) | 2.04 | 1.91 | 1.99 | 2.26 | 2.41 |
(m) | 2.81 | 2.67 | 2.67 | 3.18 | 3.33 |
(s) | 7.30 | 7.42 | 7.41 | 8.71 | 8.59 |
Slope (%) | TR (m) | (mm) | [13] | [49] | RTR [14] | Ir [50] | |
---|---|---|---|---|---|---|---|
Senigallia | 0.5 | 0.6 | 0.25 | 11.3 | 497 | 0.2 | 0.03 |
Torre del Cerrano | 0.5 | 0.5 | 0.30 | 8.6 | 447 | 0.2 | 0.03 |
Rodi Garganico | 0.8 | 0.4 | 0.30 | 8.6 | 209 | 0.1 | 0.05 |
Sabaudia | 1.3 | 0.4 | 0.30 | 9.3 | 55 | 0.1 | 0.09 |
Terracina | 1.7 | 0.4 | 0.30 | 8.9 | 67 | 0.1 | 0.08 |
Location | Number of Bars | Consecutive Days of Bar Setting | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Single | Double | Three | Four | |||||||
Senigallia | 40% | 60% | 102 four | 316 three | 368 four | |||||
Torre del Cerrano | 69% | 31% | 307 three | 678 double | ||||||
Terracina | 26% | 74% | 455 single | 1863 double | 317 single | 795 double | 303 single | 377 double | ||
Sabaudia | 100% | all double |
Senigallia | Torre del Cerrano | Terracina | Sabaudia | |
---|---|---|---|---|
EPR (m/month) | 0.9 | 0.3 |
Low Wave Obliquity | High Wave Obliquity | |
---|---|---|
Low Ir | No trend–stable bars and shoreline | Cyclic behaviour (NOM) with low rates of change |
High Ir | 3D patterns with high rates of change | Cyclic behaviour (NOM) with high rates of change |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parlagreco, L.; Melito, L.; Devoti, S.; Perugini, E.; Soldini, L.; Zitti, G.; Brocchini, M. Monitoring for Coastal Resilience: Preliminary Data from Five Italian Sandy Beaches. Sensors 2019, 19, 1854. https://doi.org/10.3390/s19081854
Parlagreco L, Melito L, Devoti S, Perugini E, Soldini L, Zitti G, Brocchini M. Monitoring for Coastal Resilience: Preliminary Data from Five Italian Sandy Beaches. Sensors. 2019; 19(8):1854. https://doi.org/10.3390/s19081854
Chicago/Turabian StyleParlagreco, Luca, Lorenzo Melito, Saverio Devoti, Eleonora Perugini, Luciano Soldini, Gianluca Zitti, and Maurizio Brocchini. 2019. "Monitoring for Coastal Resilience: Preliminary Data from Five Italian Sandy Beaches" Sensors 19, no. 8: 1854. https://doi.org/10.3390/s19081854
APA StyleParlagreco, L., Melito, L., Devoti, S., Perugini, E., Soldini, L., Zitti, G., & Brocchini, M. (2019). Monitoring for Coastal Resilience: Preliminary Data from Five Italian Sandy Beaches. Sensors, 19(8), 1854. https://doi.org/10.3390/s19081854