Land Use Change and Climate Variation in the Three Gorges Reservoir Catchment from 2000 to 2015 Based on the Google Earth Engine
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Data Collection and Processing
2.2.1. GlobeLand30 Land Use Data
2.2.2. Land Use Data Derived from Landsat 8 OLI Data
2.2.3. Normalized Difference Vegetation Index
2.2.4. Land Surface Temperature
2.2.5. Meteorological Data
2.3. Methodology
2.3.1. Time Series Analysis
2.3.2. Correlation Analysis
3. Results
3.1. Land Use and Land Cover Changes
3.2. The Change of Seasonally Integrated Normalized Difference Vegetation Index (SINDVI)
3.3. The Change of Land Surface Temperature
3.4. The Change of Land Surface Temperature in Chongqing City
3.5. Climate Change in the TGRC and Southwest China
3.6. Relations between Seasonally Integrated Normalized Difference Vegetation Index and Land Surface Temperature
3.7. Significant Change of Land Surface Temperature and Seasonally Integrated Normalized Difference Vegetation Index in Different Regions
3.7.1. Forest in the Eastern Three Gorges Reservoir Catchment
3.7.2. Artificial Surface in the Western Three Gorges Reservoir Catchment
4. Discussion
4.1. Impacts of Land Use and Land Cover Change on Land Surface Temperature, Seasonally Integrated Normalized Difference Vegetation Index and Climate
4.2. Causes for Changes in Land Use and Land Cover Change, Seasonally Integrated Normalized Difference Vegetation Index, Land Surface Temperature and Climate
4.3. Mitigate the Impact of Environmental Change in Three Gorges Reservoir Catchment
4.4. Advantages of Data Processing and Visualizing using Google Earth Engine
4.5. Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Foley, J.A.; Defries, R.; Asner, G.P.; Carol, B.; Gordon, B.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Teng, M.; Zeng, L.; Zhou, Z.; Xiao, W.; Zhu, J.; Wang, P. Long-term changes of land use/cover in the Three Gorges Reservoir Area of the Yangtze River, China. Chin. J. Appl. Ecol. 2018, 29, 1585–1596. [Google Scholar]
- Rodríguez-Echeverry, J.; Echeverría, C.; Oyarzún, C.; Morales, L. Impact of land-use change on biodiversity and ecosystem services in the Chilean temperate forests. Landsc. Ecol. 2018, 33, 1–15. [Google Scholar] [CrossRef]
- Pappas, C.; Fatichi, S.; Burlando, P. On the impact of land use changes in terrestrial water cycle and the role of plant trait variability. Proceedings of EGU General Assembly, Vienna, Austria, 12–17 April 2015. [Google Scholar]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal characteristics, patterns and causes of land use changes in China since the late 1980s. Acta Geogr. Sin. 2014, 69, 3–14. [Google Scholar]
- Goldewijk, K.K. Estimating Global Land Use Change over the Past 300 Years: The HYDE Database. Glob. Biogeochem. Cycle 2001, 15, 417–433. [Google Scholar] [CrossRef]
- Bender, O.; Boehher, J.H.; Jens, D.; Schumacher, P.K. Using GIS to analyse long-term cultural landscape change in Southern Germany. Landsc. Urban Plan. 2005, 70, 111–125. [Google Scholar] [CrossRef] [Green Version]
- Rhemtulla, J.M.; Mladenoff, D.J.; Clayton, M.K. Legacies of historical land use on regional forest composition and structure in Wisconsin, USA (Mid-1800s-1930s-2000s). Ecol. Appl. 2009, 19, 1061–1078. [Google Scholar] [CrossRef]
- Liu, M.; Tian, H. China’s land cover and land use change from 1700 to 2005: Estimations from high-resolution satellite data and historical archives. Glob. Biogeochem. Cycle 2010, 24, GB3003. [Google Scholar] [CrossRef]
- Hu, N.; Li, X. A review of research methods of historical land use change. Adv. Earth Sci. 2012, 27, 758–768. [Google Scholar]
- Berberoglu, S.; Akin, A. Assessing different remote sensing techniques to detect land use/cover changes in the eastern Mediterranean. Int. J. Appl. Earth Obs. 2009, 11, 46–53. [Google Scholar] [CrossRef]
- Lai, L.; Huang, X.; Yang, H.; Chuai, X.; Zhang, M.; Zhong, T.; Chen, Z.; Chen, Y.; Wang, X.; Thompson, J.R. Carbon emissions from land-use change and management in China between 1990 and 2010. Sci. Adv. 2016, 2, e1601063. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Huang, X.; Yang, H.; Zhong, T. Environmental effects of land-use/cover change caused by urbanization and policies in Southwest China Karst area—A case study of Guiyang. Habitat Int. 2014, 44, 339–348. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, X.; Chuai, X.; Yang, H.; Lai, L.; Tan, J. Impact of land use type conversion on carbon storage in terrestrial ecosystems of China: A spatial-temporal perspective. Sci. Rep. 2015, 5, 10233. [Google Scholar] [CrossRef] [Green Version]
- Fuller, R.M.; Groom, G.B.; Jones, A.R. Land cover map of Great Britain: An automated classification of Landsat Thematic Mapper data. Photogramm. Eng. Remote Sens. 1994, 60, 553–562. [Google Scholar]
- Platt, R.V.; Rapoza, L. An evaluation of an object-oriented paradigm for land use/land cover classification. Prof. Geogr. 2008, 60, 87–100. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, A.; Wang, C.; Zheng, N. Evolving neural network using real coded genetic algorithm (GA) for multispectral image classification. Futur. Gener. Comp. Syst. 2004, 20, 1119–1129. [Google Scholar] [CrossRef]
- Liu, J.; Tian, H.; Liu, M.; Zhuang, D.; Melillo, J.M.; Zhang, Z. China’s changing landscape during the 1990s: Large-scale land transformations estimated with satellite data. Geophys. Res. Lett. 2005, 32, L02405. [Google Scholar] [CrossRef]
- Torbick, N.; Ledoux, L.; Salas, W.; Meng, Z. Regional mapping of plantation extent using multisensor imagery. Remote Sens. 2016, 8, 236. [Google Scholar] [CrossRef]
- Huang, H.; Chen, Y.; Clinton, N.; Wang, J.; Wang, X.; Liu, C.; Gong, P.; Yang, J.; Bai, Y.; Zheng, Y. Mapping major land cover dynamics in Beijing using all Landsat images in Google Earth Engine. Remote Sens. Environ. 2017, 202, 166–176. [Google Scholar] [CrossRef]
- Li, Q.; Ma, M.; Wu, X.; Yang, H. Snow cover and vegetation-induced decrease in global albedo from 2002 to 2016. J. Geophys. Res. Atmos. 2018, 123, 124–138. [Google Scholar] [CrossRef]
- Ma, M.; Veroustraete, F. Reconstructing pathfinder AVHRR land NDVI time-series data for the Northwest of China. Adv. Space Res. 2006, 37, 835–840. [Google Scholar] [CrossRef]
- Song, Z.; Li, R.; Qiu, R.; Liu, S.; Tan, C.; Li, Q.; Ge, W.; Han, X.; Tang, X.; Shi, W.; et al. Global land surface temperature influenced by vegetation cover and PM2.5 from 2001 to 2016. Remote Sens. 2018, 10, 2034. [Google Scholar] [CrossRef]
- Wang, J.; Meng, J.; Cai, Y. Assessing vegetation dynamics impacted by climate change in the southwestern karst region of China with AVHRR NDVI and AVHRR NPP time-series. Environ. Geol. 2008, 54, 1185–1195. [Google Scholar] [CrossRef]
- Cao, Z.; Li, Y.; Liu, Y.; Chen, Y.; Wang, Y. When and where did the loess plateau turn ‘green’? Analysis of the tendency and breakpoints of normalized difference vegetation index. Land Degrad. Dev. 2017, 29, 162–175. [Google Scholar] [CrossRef]
- Faqe Ibrahim, G.R. Urban Land Use Land Cover Changes and Their Effect on Land Surface Temperature: Case Study Using Dohuk City in the Kurdistan Region of Iraq. Climate 2017, 5, 13. [Google Scholar] [CrossRef]
- Weng, Q. A remote sensing?GIS evaluation of urban expansion and its impact on surface temperature in the Zhujiang Delta, China. Int. J. Remote Sens. 2001, 22, 1999–2014. [Google Scholar]
- Kayet, N.; Pathak, K.; Chakrabarty, A.; Sahoo, S. Spatial impact of land use/land cover change on surface temperature distribution in Saranda Forest, Jharkhand. Model. Earth Syst. Environ. 2016, 2, 127. [Google Scholar] [CrossRef]
- Kuenzer, C.; Dech, S. Thermal Infrared Remote Sensing: Sensors, Methods, Applications. Photogramm. Eng. Remote Sens. 2015, 81, 359–360. [Google Scholar]
- Wang, M.; Xu, H.; Fu, W.; Lin, Z.; Li, X.; Zhang, B.; Tang, F. Spatiotemporal variation of urban surface water and its influence on urban thermal environment. Sci. Geogr. Sin. 2016, 36, 1099–1105. [Google Scholar]
- Stone, R. Three Gorges Dam: Into the unknown. Science 2008, 321, 628–632. [Google Scholar] [CrossRef]
- Wu, J.; Huang, J.; Han, X.; Gao, X.; He, F.; Jiang, M.; Jiang, Z.; Primack, R.B.; Shen, Z. The Three Gorges Dam: An ecological perspective. Front. Ecol. Environ. 2004, 2, 241–248. [Google Scholar] [CrossRef]
- Shen, Z.; Gong, Y.; Li, Y.; Hong, Q.; Xu, L.; Liu, R. A comparison of WEPP and SWAT for modeling soil erosion of the Zhangjiachong watershed in the Three Gorges Reservoir Area. Agric. Water Manag. 2009, 96, 1435–1442. [Google Scholar] [CrossRef]
- Yang, H.; Xie, P.; Ni, L.; Flower, R.J. Pollution in the Yangtze. Science 2012, 337, 410. [Google Scholar] [CrossRef]
- Dewan, A.M.; Corner, R.J. The impact of land use and land cover changes on land surface temperature in a rapidly urbanizing megacity. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012. [Google Scholar]
- Houghton, R.A.; Hackler, J.L.; Lawrence, K.T. The U.S. carbon budget: Contributions from land-use change. Science 1999, 285, 574–578. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, X.; Xia, D.; Liu, Y. An analysis of land use change dynamics and its impacts on hydrological processes in the Jialing River basin. Water 2014, 6, 3758–3782. [Google Scholar] [CrossRef]
- Tasser, E.; Tappeiner, U. Impact of land use changes on mountain vegetation. Appl. Veg. Sci. 2002, 5, 173–184. [Google Scholar] [CrossRef]
- Qian, L.; Cui, H.; Chang, J. Impacts of land use and cover change on land surface temperature in the Zhujiang Delta. Pedosphere 2006, 16, 681–689. [Google Scholar] [CrossRef]
- Cao, Q.; Yu, D.; Georgescu, M.; Han, Z.; Wu, J. Impacts of land use and land cover change on regional climate: A case study in the agro-pastoral transitional zone of China. Environ. Res. Lett. 2016, 10, 124025. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Hao, B.; Han, X.; Ma, M.; Liu, Y.; Li, S. Research progress on the application of Google Earth Engine in geoscience and environmental sciences. Remote Sens. Technol. Appl. 2018, 33, 600–611. [Google Scholar]
- Zhang, J.; Liu, Z.; Sun, X. Changing landscape in the Three Gorges Reservoir Area of Yangtze River from 1977 to 2005: Land use/land cover, vegetation cover changes estimated using multi-source satellite data. Int. J. Appl. Earth Obs. 2009, 11, 403–412. [Google Scholar] [CrossRef]
- Huang, Z.; Zhou, W.; Zhou, J.; Zhu, M. Land use of the Three Gorges Reservoir Area and the effect on its landscape pattern in the recent 50 Years. Wuhan Univ. J. Nat. Sci. 2006, 11, 910–914. [Google Scholar]
- Li, H.; Liu, H.; Wu, W. Vegetation change in the Three Gorges Reservoir Area of Chongqing. Sci. Geogr. Sin. 2010, 30, 119–123. [Google Scholar]
- Wen, Z.; Wu, S.; Chen, J.; Lü, M. NDVI indicated long-term interannual changes in vegetation activities and their responses to climatic and anthropogenic factors in the Three Gorges Reservoir Region, China. Sci. Total Environ. 2017, 574, 947–959. [Google Scholar] [CrossRef] [PubMed]
- Feng, R.; Meng, X.; Wei, H.; Peng, Y. Distribution pattern of land surface temperature in the Three Gorges Reservoir Region (Chongqing section) of China based on MODIS. Chin. J. Ecol. 2013, 32, 2398–2406. [Google Scholar]
- Luo, H.; Shao, J.; Zhang, X. Retrieving land surface temperature based on the radioactive transfer equation in the middle reaches of the Three Gorges Reservoir Area. Resour. Sci. 2012, 34, 256–264. [Google Scholar]
- Shelestov, A.; Lavreniuk, M.; Kussul, N.; Novikov, A.; Skakun, S. Exploring Google Earth Engine platform for Big Data processing: Classification of multi-temporal satellite imagery for crop mapping. Front. Earth Sci. 2017, 5. [Google Scholar] [CrossRef]
- Xiong, J.; Thenkabail, P.S.; Gumma, M.K.; Teluguntla, P.; Poehnelt, J.; Congalton, R.G.; Yadav, K.; Thau, D. Automated cropland mapping of continental Africa using Google Earth Engine cloud computing. Isprs J. Photogramm. Remote Sens. 2017, 126, 225–244. [Google Scholar] [CrossRef]
- Peng, T.; Xu, G.; Xia, D. Trend of geological hazards and countermeasure of disaster reduction in the Three Gorges Reservoir Area. J. Mt. Res. 2004, 22, 719–724. [Google Scholar]
- Guo, H.; Zhou, Q.; Jiao, H.; Li, H. Research on the characteristics of land use changes in Three Gorges Reservoir Area. Res. Soil Water Conserv. 2016, 23, 313–317. [Google Scholar]
- Brovelli, M.; Molinari, M.; Hussein, E.; Chen, J.; Li, R. The first comprehensive accuracy assessment of GlobeLand30 at a national level: Methodology and results. Remote Sens. 2015, 7, 4191. [Google Scholar] [CrossRef]
- Rui, H.; Vollmer, B.; Teng, W.; Beaudoing, H.; Rodell, M.; Silberstein, D. 65 years of reprocessed GLDAS version 2.0 data and their exploration using the NASA GES DISC Giovanni. In Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 14–18 Decmber 2015. [Google Scholar]
- Wang, W.; Wang, X.; Wang, P. Assessing the applicability of GLDAS monthly precipitation data in China. Adv. Water Sci. 2014, 25, 769–778. [Google Scholar]
- Wang, X.; Wang, W.; Wang, P. Assessing applicability of GLDAS monthly temperature data in China. Water Resour. Power 2014, 32, 10–13. [Google Scholar]
- Wang, W.; Cui, W.; Wang, X.; Chen, X. Evaluation of GLDAS-1 and GLDAS-2 forcing data and Noah model simulations over China at monthly scale. J. Hydrometeorol. 2016, 17, 2815–2833. [Google Scholar] [CrossRef]
- Chen, J.; Ban, Y.; Li, S. China: Open access to Earth land-cover map. Nature 2015, 514, 434. [Google Scholar]
- NASA Landsat 8 Science. Available online: https://landsat.gsfc.nasa.gov/landsat-data-continuity-mission/ (accessed on 7 May 2019).
- Hu, Y.; Shang, L.; Zhang, Q.; Wang, Z. Land change patterns and driving mechanism in Beijing since 1990 based on GEE platform. Remote Sens. Technol. Appl. 2018, 4, 573–583. [Google Scholar]
- Varshney, A. Improved NDBI differencing algorithm for built-up regions change detection from remote-sensing data: An automated approach. Remote Sens. Lett. 2013, 4, 504–512. [Google Scholar] [CrossRef]
- Stow, D.; Daeschner, S.; Hope, A.; Douglas, D.; Petersen, A.; Myneni, R.; Zhou, L.; Oechel, W. Variability of the seasonally integrated normalized difference vegetation index across the north slope of Alaska in the 1990s. Int. J. Remote Sens. 2003, 24, 1111–1117. [Google Scholar] [CrossRef]
- Hanamean, J.R., Jr.; Pielke, R.A., Sr.; Castro, C.L.; Ojima, D.S.; Reed, B.C.; Gao, Z. Vegetation greenness impacts on maximum and minimum temperatures in northeast Colorado. Meteorol. Appl. 2003, 10, 203–215. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Zhang, Y. Urban heat island analysis using the Landsat TM data and ASTER data: A case study in Hong Kong. Remote Sens. 2011, 3, 1535–1552. [Google Scholar] [CrossRef]
- Yan, H.; Cao, M.; Liu, J.; Zhuang, D.; Guo, J.; Liu, M. Characterizing spatial patterns of multiple cropping system in China from multi-temporal remote sensing images. Trans. Chin. Soc. Agric. Eng. 2005, 21, 85–90. [Google Scholar]
- Gong, Z.; Hu, Y.; Li, H. Quantitative analysis of the relationship between the spatial distribution of water and surface temperature. Bull. Surv. Mapp. 2015, 12, 34–36. [Google Scholar]
- Liu, C.; Qi, S.; Tang, L.; He, L. Spatiotemporal pattern of evapotranspiration in Poyang Lake Basin under the joint influences of vegetation restoration and climate change. Geogr. Res. 2016, 35, 2373–2383. [Google Scholar]
- Pan, L.; Xiao, W.; Tang, W.; Lei, J.; Shi, Y.; Huang, Z.; Zeng, L.; Pang, H. Simulation of the climatic productivity of forest vegetation in Three Gorges Reservoir area. Acta Ecol. Sin. 2014, 34, 3064–3070. [Google Scholar]
- Chen, X.; Song, L.; Guo, Z.; Gao, X.; Zhang, Q. Climate change over the Three Gorge Reservoir and upper Yangtze with its possible effect. Resour. Environ. Yangtze Basin 2013, 22, 1466–1471. [Google Scholar]
- Chen, X.; Zhang, Q.; Ye, D.; Liao, Y.; Zhu, C.; Zou, X. Regional climate change over Three Gorges Reservoir Area. Resour. Environ. Yangtze Basin 2009, 18, 47–51. [Google Scholar]
- Yang, H.; Flower, R.J.; Thompson, J.R. Industry: Rural factories won’t fix Chinese pollution. Nature 2012, 490, 342. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Sayama, T.; Zhang, X.; Tanaka, K.; Takara, K.; Yang, H. Evaluation of low impact development approach for mitigating flood inundation at a watershed scale in China. J. Environ. Manag. 2017, 193, 430–438. [Google Scholar] [CrossRef]
- Hu, M.; Zhang, X.; Siu, Y.; Li, Y.; Tanaka, K.; Yang, H.; Xu, Y. Flood mitigation by permeable pavements in chinese sponge city construction. Water 2018, 10, 172. [Google Scholar] [CrossRef]
- Yang, H. China’s soil plan needs strong support. Nature 2016, 536, 375. [Google Scholar] [CrossRef]
- Cao, Y.; Bai, Z.; Zhou, W.; Wang, J. Forces driving changes in cultivated land and management countermeasures in the Three Gorges Reservoir Area, China. J. Mt. Sci. 2013, 10, 149–162. [Google Scholar] [CrossRef]
- Wang, X.; Cai, S.; Ren, X.; Chen, S. Ecological construction and protection in the wetland region of Three-Gorge Reservoir Area. Resour. Environ. Yangtze Basin 2004, 13, 149–152. [Google Scholar]
- Chen, J.; He, L.; Yang, H.; Ma, M.; Chen, Q.; Wu, S.; Xiao, Z. Empirical models for estimating monthly global solar radiation: A most comprehensive review and comparative case study in China. Renew. Sust. Energ. Rev. 2019, 108, 91–111. [Google Scholar] [CrossRef]
- Yang, H.; Flower, R.J.; Thompson, J.R. Pollution: China’s new leaders offer green hope. Nature 2013, 493, 163. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Liao, H.; Guo, Y.; Li, Q. Influence of land cover change on land surface temperature in moutainous city. Geogr. Res. 2009, 28, 673–684. [Google Scholar]
- Liu, K.; Su, H.; Li, X.; Wang, W.; Yang, L.; Liang, H. Quantifying spatial-temporal pattern of urban heat island in Beijing: An improved assessment using Land Surface Temperature (LST) time series observations from LANDSAT, MODIS, and Chinese New Satellite GaoFen-1. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2016, 9, 2028–2042. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, Y.; Su, L.; Hao, T.; Zheng, H. Effects of Land Use Change on Air Temperature of Heilongjiang Province in 1960-2010. Sci. Geogr. Sin. 2017, 37, 952–959. [Google Scholar]
- Liu, K.; Chen, S.; Zhang, L.; Yang, H.; Zhang, R.; Li, X. Analysis of the urban heat island effect in Shijiazhuang, China using satellite and airborne data. Remote Sens. 2015, 7, 4804–4833. [Google Scholar] [CrossRef]
- Li, D.; Liao, W.; Rigden, A.J.; Liu, X.; Wang, D.; Malyshev, S.; Shevliakova, E. Urban heat island: Aerodynamics or imperviousness? Sci. Adv. 2019, 5, eaau4299. [Google Scholar] [CrossRef]
- Xie, M.; Wang, Y.; Fu, M. An overview and perspective about causative factors of surface urban heat island effects. Prog. Geogr. 2011, 30, 35–41. [Google Scholar]
- Yao, Y.; Liu, P.; Chen, L. Spatiotemporal variation characteristics and causes of urban heat islands in Hefei City, Anhui Province of China based on remote sensing. Chin. J. Ecol. 2013, 32, 3351–3359. [Google Scholar]
- Song, Z.; Liang, S.; Feng, L.; He, T.; Song, X.; Zhang, L. Temperature changes in Three Gorges Reservoir Area and linkage with Three Gorges Project. J. Geophys. Res. Atmos. 2017, 122, 4866–4879. [Google Scholar] [CrossRef]
- Jones, P.D.; Wigley, T.M.L.; Folland, C.K.; Parker, D.E.; Angell, J.K.; Lebedeff, S.; Hansen, J.E. Evidence for global warming in the past decade. Nature 1988, 332, 790. [Google Scholar] [CrossRef]
- Han, L.; Zhang, Q.; Yao, Y.; Li, Y.; Jia, J.; Wang, J. Characteristics and origins of drought disasters in Southwest China in nearly 60 years. Acta Geogr. Sin. 2014, 69, 632–639. [Google Scholar]
- Zhang, W.; Jin, F.; Zhao, J.; Qi, L.; Ren, H. The possible influence of a nonconventional El Niño on the severe autumn drought of 2009 in Southwest China. J. Clim. 2013, 26, 8392–8405. [Google Scholar] [CrossRef]
- Zhao, S.; Cong, D.; He, K.; Yang, H.; Qin, Z. Spatial-temporal variation of drought in China from 1982 to 2010 based on a modified temperature vegetation drought index (mTVDI). Sci. Rep. 2017, 7, 17473. [Google Scholar] [CrossRef]
- Olorunfemi, I.E.; Fasinmirin, J.T.; Olufayo, A.A.; Komolafe, A.A. GIS and remote sensing-based analysis of the impacts of land use/land cover change (LULCC) on the environmental sustainability of Ekiti State, southwestern Nigeria. Environ. Dev. Sustain. 2018, 20, 1–32. [Google Scholar] [CrossRef]
- Tan, S.; Qi, R. Land Expropriation Conflicts during Rapid Urban Expansion. China Land Sci. 2011, 25, 26–30. [Google Scholar]
- Yang, H.; Huang, X.; Thompson, J.R.; Flower, R.J. China’s soil pollution: Urban brownfields. Science 2014, 344, 691–692. [Google Scholar] [CrossRef]
- Ge, W.; Yang, H.; Zhu, X.; Ma, M.; Yang, Y. Ghost city extraction and rate estimation in china based on npp-viirs night-time light data. ISPRS Int. J. Geo-Inf. 2017, 7, 219. [Google Scholar] [CrossRef]
- Ye, L.; Huang, X.; Yang, H.; Chen, Z.; Zhong, T.; Xie, Z. Effects of dual land ownerships and different land lease terms on industrial land use efficiency in Wuxi city, East China. Habitat Int. 2018, 78, 21–28. [Google Scholar] [CrossRef]
- Yang, H.; Huang, X.; Thompson, J.R.; Flower, R.J. Enforcement key to China’ environment. Science 2015, 347, 834–835. [Google Scholar] [CrossRef]
- Du, X.; Wen, Z.; Wang, N.; Cao, X. The backdrop and significance of ecological civilization construction. Eng. Sci. 2015, 17, 8–15. [Google Scholar]
- López-Moreno, J.I.; Vicente-Serrano, S.M.; Beguería, S.; García-Ruiz, J.M.; Portela, M.M.; Almeida, A.B. Dam effects on droughts magnitude and duration in a transboundary basin: The Lower River Tagus, Spain and Portugal. Water Resour. Res. 2009, 45, W02405. [Google Scholar] [CrossRef]
- Woldemichael, A.T.; Hossain, F.; Pielke, R., Sr.; Beltrán-Przekurat, A. Understanding the impact of dam-triggered land use/land cover change on the modification of extreme precipitation. Water Resour. Res. 2012, 48, W09547. [Google Scholar] [CrossRef]
Cultivated Land | Forest | Grassland | Shrub Land | Wetland | Water Body | Artificial Surface | |
---|---|---|---|---|---|---|---|
TSs | 854 | 393 | 146 | 39 | 29 | 674 | 349 |
VSs | 366 | 168 | 62 | 17 | 12 | 289 | 150 |
TN | 1220 | 561 | 208 | 56 | 41 | 963 | 499 |
Band Number | Spectral Range (µm) | Spatial Resolution (m) | Band Name |
---|---|---|---|
1 | 0.435–0.451 | 30 | Coastal/Aerosol |
2 | 0.452–0.512 | 30 | Blue |
3 | 0.533–0.590 | 30 | Green |
4 | 0.636–0.673 | 30 | Red |
5 | 0.851–0.879 | 30 | NIR |
6 | 1.566–1.651 | 30 | SWIR1 |
7 | 2.107–2.294 | 30 | SWIR2 |
8 | 0.503–0.676 | 15 | Pan |
9 | 1.363–1.384 | 30 | Cirrus |
10 | 10.60–11.19 | 100 | TIR-1 |
11 | 11.50–12.51 | 100 | TIR-2 |
Class Name | Area km2 2000 | Area % 2000 | Area km2 2010 | Area % 2010 | Area km2 2015 | Area % 2015 |
---|---|---|---|---|---|---|
Artificial Surface | 509.90 | 0.88 | 730.57 | 1.27 | 1008.96 | 1.75 |
Forest | 26,998.80 | 46.82 | 28,269.85 | 49.02 | 29,102.28 | 50.46 |
Waterbody | 776.10 | 1.35 | 954.73 | 1.66 | 1616.45 | 2.80 |
Wetland | 50.97 | 0.09 | 29.33 | 0.05 | 591.65 | 1.03 |
Shrub land | 312.59 | 0.54 | 318.21 | 0.55 | 985.45 | 1.71 |
Cultivated land | 23,727.43 | 41.14 | 23,687.01 | 41.07 | 22,544.68 | 39.09 |
Grassland | 5293.76 | 9.18 | 3679.85 | 6.38 | 1820.08 | 3.16 |
Total | 57,669.55 | 100 | 57,669.55 | 100 | 57,669.55 | 100 |
Decreasing | No Significant Change | Increasing | |
---|---|---|---|
Value range | <−0.1 | −0.1–0.1 | >0.1 |
Area percentage | 4.53% | 1.24% | 93.23% |
Class Name | This Study | Huang et al. | Guo et al. |
---|---|---|---|
Temporal (Year) | 2015 | 2015 | 2013 |
Artificial Surface | 1.75 | 2.80 | 2.96 |
Forest | 50.46 | 43.0 | 54.55 |
Waterbody | 2.80 | 2.0 | 2.64 |
Wetland | 1.03 | ||
Shrub land | 1.71 | 10.5 | |
Cultivated land | 39.09 | 40.4 | 37.38 |
Grassland | 3.16 | 0.3 | 2.41 |
Bare land | 1.1 | ||
Unused land | 0.03 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, B.; Ma, M.; Li, S.; Li, Q.; Hao, D.; Huang, J.; Ge, Z.; Yang, H.; Han, X. Land Use Change and Climate Variation in the Three Gorges Reservoir Catchment from 2000 to 2015 Based on the Google Earth Engine. Sensors 2019, 19, 2118. https://doi.org/10.3390/s19092118
Hao B, Ma M, Li S, Li Q, Hao D, Huang J, Ge Z, Yang H, Han X. Land Use Change and Climate Variation in the Three Gorges Reservoir Catchment from 2000 to 2015 Based on the Google Earth Engine. Sensors. 2019; 19(9):2118. https://doi.org/10.3390/s19092118
Chicago/Turabian StyleHao, Binfei, Mingguo Ma, Shiwei Li, Qiuping Li, Dalei Hao, Jing Huang, Zhongxi Ge, Hong Yang, and Xujun Han. 2019. "Land Use Change and Climate Variation in the Three Gorges Reservoir Catchment from 2000 to 2015 Based on the Google Earth Engine" Sensors 19, no. 9: 2118. https://doi.org/10.3390/s19092118
APA StyleHao, B., Ma, M., Li, S., Li, Q., Hao, D., Huang, J., Ge, Z., Yang, H., & Han, X. (2019). Land Use Change and Climate Variation in the Three Gorges Reservoir Catchment from 2000 to 2015 Based on the Google Earth Engine. Sensors, 19(9), 2118. https://doi.org/10.3390/s19092118