Immobilization of Allantoinase for the Development of an Optical Biosensor of Oxidative Stress States
Abstract
:1. Introduction
2. Materials and Methods
2.1. Enzyme Expression and Purification
2.2. Enzymatic Activity
2.3. Enzyme Encapsulation
2.4. Secondary and Tertiary Structure Measurements
2.5. Stability Measurements
2.6. Fluorescent Quantification of Allantoin by Immobilized Allantoinase
3. Results and Discussion
3.1. Effect of Silica Gel Encapsulation on Allantoinase Secondary and Tertiary Structure
3.2. Analysis of Catalytic Parameters and Influence of Silica Gel Matrix on puuE Activity
3.3. Application of the Encapsulated Enzyme as a Biosensor
3.4. Reusability of the Biosensor and Stability over Time
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Plank, M.S.; Calderon, T.C.; Asmerom, Y.; Boskovic, D.S.; Anglees, D.M. Biochemical measurement of neonatal hypoxia. JoVE 2011, 54, e2948. [Google Scholar] [CrossRef]
- Caussé, E.; Fournier, P.; Roncalli, J.; Salvayre, R.; Galinier, M. Serum allantoin and aminothiols as biomarkers of chronic heart failure. Acta Cardiol. 2017, 72, 397–403. [Google Scholar] [CrossRef]
- Chung, W.-Y.; Benzie, I.F.F. Plasma allantoin measurement by isocratic liquid chromatography with tandem mass spectrometry: Method evaluation and application in oxidative stress biomonitoring. Clin. Chim. Acta 2013, 424, 237–244. [Google Scholar] [CrossRef]
- Kand’ár, R.; Žáková, P.; Mužáková, V. Monitoring of antioxidant properties of uric acid in humans for a consideration measuring of levels of allantoin in plasma by liquid chromatography. Clin. Chim. Acta 2006, 365, 249–256. [Google Scholar] [CrossRef]
- Yardim-Akaydin, S.; Sepici, A.; Özkan, Y.; Torun, M.; Şimşek, B.; Sepici, V. Oxidation of uric acid in rheumatoid arthritis: Is allantoin a marker of oxidative stress? Free Radic. Res. 2004, 38, 623–628. [Google Scholar] [CrossRef]
- Kaur, H.; Halliwell, B. Action of biologically relevant oxidizing species upon uric acid. Identification of uric acid oxidation products. Chem. Biol. Interact. 1990, 73, 235–247. [Google Scholar] [CrossRef]
- Peluso, I.; Raguzzini, A. Salivary and urinary total antioxidant capacity as biomarkers of oxidative stress in humans. Pathol. Res. Int. 2016, 2016, 5480267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, R.; Stamp, L.K.; Kettle, A.J. Detection of allantoin in clinical samples using hydrophilic liquid chromatography with stable isotope dilution negative ion tandem mass spectrometry. J. Chromatogr. B 2012, 891–892, 85–89. [Google Scholar] [CrossRef]
- Soukup, M.; Biesiada, I.; Henderson, A.; Idowu, B.; Rodeback, D.; Ridpath, L.; Bridges, E.G.; Nazar, A.M.; Bridges, K.G. Salivary uric acid as a noninvasive biomarker of metabolic syndrome. Diabetol. Metab. Syndr. 2012, 4, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ames, B.N.; Cathcart, R.; Schwiers, E.; Hochstein, P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: A hypothesis. Proc. Natl. Acad. Sci. USA 1981, 78, 6858–6862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanďár, R. The ratio of oxidized and reduced forms of selected antioxidants as a possible marker of oxidative stress in humans. Biomed. Chromatogr. 2016, 30, 13–28. [Google Scholar] [CrossRef] [PubMed]
- Wayner, D.D.M.; Burton, G.W.; Ingold, K.U.; Barclay, L.R.C.; Locke, S.J. The relative contributions of vitamin E, urate, ascorbate and proteins to the total peroxyl radical-trapping antioxidant activity of human blood plasma. Biochim. Biophys. Acta (BBA) Gen. Subj. 1987, 924, 408–419. [Google Scholar] [CrossRef] [Green Version]
- Il’yasova, D.; Scarbrough, P.; Spasojevic, I. Urinary biomarkers of oxidative status. Clin. Chim. Acta 2012, 413, 1446–1453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seidel, A.; Parker, H.; Turner, R.; Dickerhof, N.; Khalilova, I.S.; Wilbanks, S.M.; Kettle, A.J.; Jameson, G.N.L. Uric acid and thiocyanate as competing substrates of lactoperoxidase. J. Biol. Chem. 2014, 289, 21937–21949. [Google Scholar] [CrossRef] [Green Version]
- Benzie, I.F.F.; Chung, W.-Y.; Tomlinson, B. Simultaneous measurement of allantoin and urate in plasma: Analytical evaluation and potential clinical application in oxidant:antioxidant balance studies. Clin. Chem. 1999, 45, 901–904. [Google Scholar]
- Grootveld, M.; Halliwell, B. Measurement of allantoin and uric acid in human body fluids. A potential index of free-radical reactions in vivo? Biochem. J. 1987, 243, 803–808. [Google Scholar] [CrossRef] [Green Version]
- Muratsubaki, H.; Enomoto, K.; Soejima, A.; Satake, K. An enzyme cycling method for measurement of allantoin in human serum. Anal. Biochem. 2008, 378, 65–70. [Google Scholar] [CrossRef]
- Pavitt, D.V.; de Fonseka, S.; Al-Khalaf, N.; Cam, J.M.; Reaveley, D.A. Assay of serum allantoin in humans by gas chromatography–mass spectrometry. Clin. Chim. Acta 2002, 318, 63–70. [Google Scholar] [CrossRef]
- Martinez-Moral, M.-P.; Kannan, K. Allantoin as a marker of oxidative stress: Inter- and intraindividual variability in urinary concentrations in healthy individuals. Environ. Sci. Technol. Lett. 2019, 6, 283–288. [Google Scholar] [CrossRef]
- Gruber, J.; Tang, S.Y.; Jenner, A.M.; Mudway, I.; Blomberg, A.; Behndig, A.; Kasiman, K.; Lee, C.-Y.J.; Seet, R.C.S.; Zhang, W.; et al. Allantoin in human plasma, serum, and nasal-lining fluids as a biomarker of oxidative stress: Avoiding artifacts and establishing real in vivo concentrations. Antioxid. Redox Signal. 2009, 11, 1767–1776. [Google Scholar] [CrossRef] [Green Version]
- Tolun, A.A.; Zhang, H.; Il’yasova, D.; Sztáray, J.; Young, S.P.; Millington, D.S. Allantoin in human urine quantified by ultra-performance liquid chromatography–tandem mass spectrometry. Anal. Biochem. 2010, 402, 191–193. [Google Scholar] [CrossRef] [Green Version]
- Marchetti, M.; Ronda, L.; Faggiano, S.; Liuzzi, A.; Percudani, R.; Bettati, S. Fluorescence quantification of allantoin in biological samples by cap-immobilized allantoinase/resorcinol assay. Sens. Actuators B Chem. 2018, 255, 2820–2828. [Google Scholar] [CrossRef]
- Ramazzina, I.; Cendron, L.; Folli, C.; Berni, R.; Monteverdi, D.; Zanotti, G.; Percudani, R. Logical identification of an allantoinase analog (puuE) recruited from polysaccharide deacetylases. J. Biol. Chem. 2008, 283, 23295–23304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruno, S.; Ronda, L.; Abbruzzetti, S.; Viappiani, C.; Bettati, S.; Maji, S.; Mozzarelli, A. Protein encapsulation, conformations, and nanobiotools. In Encyclopedia of Nanoscience and Nanotechnology; Nalwa, E.H.S., Ed.; American Scientific Publishers: Valencia, CA, USA, 2011; Volume 21, pp. 481–517. [Google Scholar]
- Ronda, L.; Bruno, S.; Campanini, B.; Mozzarelli, A.; Abbruzzetti, S.; Viappiani, C.; Cupane, A.; Levantino, M.; Bettati, S. Immobilization of proteins in silica gel: Biochemical and biophysical properties. Curr. Org. Chem. 2015, 19, 1653–1668. [Google Scholar] [CrossRef] [Green Version]
- Shtelzer, S.; Braun, S. An optical biosensor-based upon glucose oxidase immobilized in sol-gel silicate matrix. Biotechnol. Appl. Biochem. 1994, 19, 293–305. [Google Scholar] [CrossRef]
- Ellerby, L.M.; Nishida, C.R.; Nishida, F.; Yamanaka, S.A.; Dunn, B.; Valentine, J.S.; Zink, J.I. Encapsulation of proteins in transparent porous silicate glasses prepared by the sol-gel method. Science 1992, 255, 1113. [Google Scholar] [CrossRef]
- Chiriac, A.P.; Neamtu, I.; Nita, L.E.; Nistor, M.T. Sol gel method performed for biomedical products implementation. Mini Rev. Med. Chem. 2010, 10, 990–1013. [Google Scholar] [CrossRef]
- Bruno, S.; Ronda, L.; Bettati, S.; Mozzarelli, A. Trapping hemoglobin in rigid matrices: Fine tuning of oxygen binding properties by modulation of encapsulation protocols. Artif. Cells Blood Substit. Biotechnol. 2007, 35, 69–79. [Google Scholar] [CrossRef]
- Ronda, L.; Bettati, S.; Bruno, S. Immobilization of proteins in ormosil gels: Functional properties and applications. Curr. Org. Chem. 2015, 19, 1677–1683. [Google Scholar] [CrossRef]
- Ronda, L.; Pioselli, B.; Bruno, S.; Micalella, C.; Bettati, S.; Mozzarelli, A. Biocatalysis in a confined environment. Lessons from enzymes immobilized in wet, nanoporous silica gels. Chim. Oggi/Chem. Today 2007, 25, 10–15. [Google Scholar]
- Henry, E.R.; Mozzarelli, A.; Viappiani, C.; Abbruzzetti, S.; Bettati, S.; Ronda, L.; Bruno, S.; Eaton, W.A. Experiments on hemoglobin in single crystals and silica gels distinguish among allosteric models. Biophys. J. 2015, 109, 1264–1272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pioselli, B.; Bettati, S.; Demidkina, T.V.; Zakomirdina, L.N.; Phillips, R.S.; Mozzarelli, A. Tyrosine phenol-lyase and tryptophan indole-lyase encapsulated in wet nanoporous silica gels: Selective stabilization of tertiary conformations. Protein Sci. 2004, 13, 913–924. [Google Scholar] [CrossRef] [PubMed]
- Pioselli, B.; Bettati, S.; Mozzarelli, A. Confinement and crowding effects on tryptophan synthase α2β2 complex. FEBS Lett. 2005, 579, 2197–2202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ronda, L.; Bruno, S.; Viappiani, C.; Abbruzzetti, S.; Mozzarelli, A.; Lowe, K.C.; Bettati, S. Circular dichroism spectroscopy of tertiary and quaternary conformations of human hemoglobin entrapped in wet silica gels. Protein Sci. 2006, 15, 1961–1967. [Google Scholar] [CrossRef] [Green Version]
- Samuni, U.; Dantsker, D.; Juszczak, L.J.; Bettati, S.; Ronda, L.; Mozzarelli, A.; Friedman, J.M. Spectroscopic and functional characterization of T state hemoglobin conformations encapsulated in silica gels. Biochemistry 2004, 43, 13674–13682. [Google Scholar] [CrossRef] [PubMed]
- Viappiani, C.; Abbruzzetti, S.; Ronda, L.; Bettati, S.; Henry, E.R.; Mozzarelli, A.; Eaton, W.A. Experimental basis for a new allosteric model for multisubunit proteins. Proc. Natl. Acad. Sci. USA 2014, 111, 12758–12763. [Google Scholar] [CrossRef] [Green Version]
- Viappiani, C.; Bettati, S.; Bruno, S.; Ronda, L.; Abbruzzetti, S.; Mozzarelli, A.; Eaton, W.A. New insights into allosteric mechanisms from trapping unstable protein conformations in silica gels. Proc. Natl. Acad. Sci. USA 2004, 101, 14414–14419. [Google Scholar] [CrossRef] [Green Version]
- Ronda, L.; Abbruzzetti, S.; Bruno, S.; Bettati, S.; Mozzarelli, A.; Viappiani, C. Ligand-induced tertiary relaxations during the T-to-R quaternary transition in hemoglobin. J. Phys. Chem. B 2008, 112, 12790–12794. [Google Scholar] [CrossRef]
- Ronda, L.; Faggiano, S.; Bettati, S.; Hellmann, N.; Decker, H.; Weidenbach, T.; Mozzarelli, A. Hemocyanin from E. californicum encapsulated in silica gels: Oxygen binding and conformational states. Gene 2007, 398, 202–207. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Protein Fluorescence. In Principles of Fluorescence Spectroscopy; Lakowicz, J.R., Ed.; Springer US: Boston, MA, USA, 2006; pp. 529–575. [Google Scholar]
- Vivian, J.T.; Callis, P.R. Mechanisms of tryptophan fluorescence shifts in proteins. Biophys. J. 2001, 80, 2093–2109. [Google Scholar] [CrossRef] [Green Version]
- Alptekin, Ö.; Tükel, S.S.; Yıldırım, D.; Alagöz, D. Immobilization of catalase onto Eupergit C and its characterization. J. Mol. Catal. B Enzym. 2010, 64, 177–183. [Google Scholar] [CrossRef]
- Lu, Q.; Kim, Y.; Bassim, N.; Raman, N.; Collins, G.E. Catalytic activity and thermal stability of horseradish peroxidase encapsulated in self-assembled organic nanotubes. Analyst 2016, 141, 2191–2198. [Google Scholar] [CrossRef] [PubMed]
- Nothling, M.D.; Ganesan, A.; Condic-Jurkic, K.; Pressly, E.; Davalos, A.; Gotrik, M.R.; Xiao, Z.; Khoshdel, E.; Hawker, C.J.; O’Mara, M.L.; et al. Simple design of an enzyme-inspired supported catalyst based on a catalytic triad. Chem 2017, 2, 732–745. [Google Scholar] [CrossRef] [Green Version]
- Bar-Even, A.; Noor, E.; Savir, Y.; Liebermeister, W.; Davidi, D.; Tawfik, D.S.; Milo, R. The moderately efficient enzyme: Evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry 2011, 50, 4402–4410. [Google Scholar] [CrossRef]
- Cendron, L.; Ramazzina, I.; Puggioni, V.; Maccacaro, E.; Liuzzi, A.; Secchi, A.; Zanotti, G.; Percudani, R. The structure and function of a microbial allantoin racemase reveal the origin and conservation of a catalytic mechanism. Biochemistry 2016, 55, 6421–6432. [Google Scholar] [CrossRef]
- Kahn, K.; Tipton, P.A. Kinetics and mechanism of allantoin racemization. Bioorganic Chem. 2000, 28, 62–72. [Google Scholar] [CrossRef]
- Copeland, R.A. Kinetics of single-substrate enzyme reactions. In Enzymes, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2002; pp. 109–145. [Google Scholar]
- Renkin, E.M. Filtration, diffusion, and molecular sieving through porous cellulose membranes. J. Gen. Physiol. 1954, 38, 225–243. [Google Scholar] [CrossRef]
- Campanini, B.; Bologna, S.; Cannone, F.; Chirico, G.; Mozzarelli, A.; Bettati, S. Unfolding of Green Fluorescent Protein mut2 in wet nanoporous silica gels. Protein Sci. 2005, 14, 1125–1133. [Google Scholar] [CrossRef] [Green Version]
- Campanini, B.; Pioselli, B.; Raboni, S.; Felici, P.; Giordano, I.; D’Alfonso, L.; Collini, M.; Chirico, G.; Bettati, S. Role of histidine 148 in stability and dynamics of a highly fluorescent GFP variant. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2013, 1834, 770–779. [Google Scholar] [CrossRef]
- Chirico, G.; Cannone, F.; Beretta, S.; Diaspro, A.; Campanini, B.; Bettati, S.; Ruotolo, R.; Mozzarelli, A. Dynamics of green fluorescent protein mutant2 in solution, on spin-coated glasses, and encapsulated in wet silica gels. Protein Sci. 2002, 11, 1152–1161. [Google Scholar] [CrossRef] [Green Version]
- Shen, C.; Kostić, N.M. Kinetics of photoinduced electron-transfer reactions within sol-gel silica glass doped with zinc cytochrome c. Study of electrostatic effects in confined liquids. J. Am. Chem. Soc. 1997, 119, 1304–1312. [Google Scholar] [CrossRef]
puuE | kcat (s−1) | KM (mM) | kcat/KM (M−1 s−1) |
---|---|---|---|
Free | 101.57 ± 14.26 | 1.35 ± 0.43 | 7.52 ± 2.62 × 104 |
Silica gel | — | — | 1.27 ± 0.12 × 104 |
Volume (µL) | [puuE] in Gel (µM) | Thickness (µM) | dc (µM) | kcat/KM (M−1 s−1) |
---|---|---|---|---|
25 | 8.75 | 75.8 | 30 | 1.74 ± 0.49 × 104 |
50 | 4.37 | 151.5 | 43 | 1.27 ± 0.12 × 104 |
100 | 2.19 | 303.0 | 60 | 1.04 ± 0.04 × 104 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marchetti, M.; Ronda, L.; Percudani, R.; Bettati, S. Immobilization of Allantoinase for the Development of an Optical Biosensor of Oxidative Stress States. Sensors 2020, 20, 196. https://doi.org/10.3390/s20010196
Marchetti M, Ronda L, Percudani R, Bettati S. Immobilization of Allantoinase for the Development of an Optical Biosensor of Oxidative Stress States. Sensors. 2020; 20(1):196. https://doi.org/10.3390/s20010196
Chicago/Turabian StyleMarchetti, Marialaura, Luca Ronda, Riccardo Percudani, and Stefano Bettati. 2020. "Immobilization of Allantoinase for the Development of an Optical Biosensor of Oxidative Stress States" Sensors 20, no. 1: 196. https://doi.org/10.3390/s20010196
APA StyleMarchetti, M., Ronda, L., Percudani, R., & Bettati, S. (2020). Immobilization of Allantoinase for the Development of an Optical Biosensor of Oxidative Stress States. Sensors, 20(1), 196. https://doi.org/10.3390/s20010196