A Real-Time Automatic Plate Recognition System Based on Optical Character Recognition and Wireless Sensor Networks for ITS
Abstract
:1. Introduction
2. Background
2.1. The SPANS Parking Service Framework
2.1.1. The Data Center
2.1.2. The Parking Slots Information
- Park_Id: Parking space identification;
- Desc_park: Description of the parking space;
- X_coor: Coordinate “X” of the parking space;
- Y_coor: “Y” coordinate of parking space in parking areas;
- Width: Width of parking space;
- Height: Height of the parking space;
- Status: Stores the current status of the parking space. 0 is available; 1 is busy;
- Plate_N: Stores the plate license information.
2.2. Optical Character Recognition
2.3. Related Works
3. The Propose Vehicular Identification System Based on OCR for ITS
3.1. System Overview
3.2. The Algorithm
Algorithm 1: The proposed algorithm |
1. Start Video Capture 2. Read Video_Frame 3. Resize Video_Frame 4. Gray_Frame = Transform to grayscale (Video_Frame) 5. Apply filter to remove the noise (Gray_Frame) 6. Frame_Edges = Detect edges (Gray_Frame) 7. Frame_Contours = Find contours (Frame_Edges) 8. Sort (Frame_Contours) 9. Declare Number_Plate_Contour 10. Declare Largest_Rectangle 11. for Contour in Frame_Contours do 12. Perimeter_Rectangle = Calculate perimeter (Contour) 13. Approx_Rectangle = Find the approximate rectangle (Perimeter_Rectangle) 14. if (length (Approx_Rectangle) == 4) then 15. Number_Plate_Contour = Approx_Rectangle 16. Largest_Rectangle = Find area (Approx_Rectangle) 17. break 18. x,y,w,h = Calculate up-right bounding rectangle (Largest_Rectangle) 19. Cropped_Frame = Crop using x,y,w,h (Video_Frame) 20. Draw Largest_Rectangle contours on Video_Frame 21. Transform to grayscale (Cropped_Frame) 22. Frame_Threshold = Binarize (Cropped_Frame) 23. Kernel = New square object of size 1x1 24. Image_Dilation = Dilates using Kernel (Frame_Threshold) 25. Dilated_Image_Contours = Find contours (Image_Dilation) 26. Sorted_Dilated_Contours = Sort (Dilated_Image_Contours) 27. for Dilated_Contour in Sorted_Dilated_Contours 28. x,y,w,h = Calculate up-right bounding rectangle (Dilated_Contour) 29. Draw a rectangle of dimensions x,y,w,h on Video_Frame 30. end for 31. Transform to binary (Gray_Frame) 32. License_Plate_Characters = Transform to string (Gray_Frame) 33. if length(License_Plate_Characters) > 0 then 34. Get License_Plate_Characters 35. end if 36. return Video_Frame |
4. Evaluation Scenario and Performance Measurements
5. Numerical Results
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Detlev Mohr. The Road to 2020 and Beyond: What’s Driving the Global Automotive Industry? Available online: https://www.mckinsey.com/~/media/mckinsey/dotcom/client_service/Automotive%20and%20Assembly/PDFs/McK_The_road_to_2020_and_beyond.ashx (accessed on 9 September 2019).
- Meneguette, R.I.; Geraldo Filho, P.R.; Guidoni, D.L.; Pessin, G.; Villas, L.A.; Ueyama, J. Increasing intelligence in inter-vehicle communications to reduce traffic congestions: Experiments in urban and highway environments. PLoS ONE 2016, 11, e0159110. [Google Scholar] [CrossRef] [PubMed]
- Suryady, Z.; Sinniah, G.R.; Haseeb, S.; Siddique, M.T.; Ezani, M.F. Rapid development of smart parking system with cloud-based platforms. In Proceedings of the 5th International Conference on Information and Communication Technology for The Muslim World, Kuching, Malaysia, 17–18 November 2014; pp. 1–6. [Google Scholar]
- Barone, R.E.; Giuffrè, T.; Siniscalchi, S.M.; Morgano, M.A.; Tesoriere, G. Architecture for parking management in smart cities. IET Intell. Transp. Syst. 2014, 8, 445–452. [Google Scholar] [CrossRef]
- Mahalakshmi, S.; Tejaswini, S. Study of Character Recognition Methods in Automatic License Plate Recognition (ALPR) System. Int. Res. J. Eng. Technol. IRJET 2017, 4, 1420–1426. [Google Scholar]
- Patel, C.I.; Shah, D.; Patel, A. Automatic Number Plate Recognition System (ANPR): A Survey. Int. J. Comput. Appl. 2013, 69, 21–33. [Google Scholar] [CrossRef]
- Cheng, G.; Zhou, P.; Han, J. Learning Rotation-Invariant Convolutional Neural Networks for Object Detection in VHR Optical Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7405–7415. [Google Scholar] [CrossRef]
- Cheng, G.; Zhou, P.; Han, J.; Xu, D. Learning Rotation-Invariant and Fisher Discriminative Convolutional Neural Networks for Object Detection. IEEE Trans. Image Process. 2019, 28, 265–278. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Basu, S.; Nasipuri, M. Automatic Localization and Recognition of License Plate Characters for Indian Vehicles. Int. J. Comput. Sci. Emerg. Technol. IJCSET 2011, 2, 520–533. [Google Scholar]
- Khaparde, D.; Detroja, H.; Shah, J.; Dikey, R.; Thakare, B. Survey on Automatic Number Plate Recognition System. Int. J. Comput. Appl. 2018, 69, 28–32. [Google Scholar] [CrossRef]
- Jing, Y.; Youssefi, B.; Mirhassani, M.; Muscedere, B. An efficient FPGA implementation of optical character recognition for license plate recognition. In Proceedings of the 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering, Windsor, ON, Canada, 30 April–3 May 2017. [Google Scholar]
- Yimyam, M.; Ketcham, M. The Automated Parking Fee Calculation Using License Plate Recognition System. In Proceedings of the 2017 International Conference on Digital Arts, Media and Technology, Chiang Mai, Thailand, 1–4 March 2017. [Google Scholar]
- Pan, M.; Yan, J.; Xiao, Z. Vehicle license plate character segmentation. Intenational J. Autom. Comput. 2008, 5, 425–432. [Google Scholar] [CrossRef]
- Neto, F.; Han, D.; Jeong, M. Online license plate matching procedures using license-plate recognition machine and new weighted edit distance. Transp. Res. Part C Emerg. Technol. 2012, 21, 306–320. [Google Scholar] [CrossRef]
- Castro, M.; Teixeira, M.A.; Meneguetti, R.I. Automatic Parking Management System based on Wireless Sensor Network for ITS. In Proceedings of the 1st Workshop of Urban Computing—CoUrb, Campos de jordão, Brazil, 15–10 May 2017. [Google Scholar]
- Kaehler, A.; Bradski, G. Learning OpenCV 3: Computer Vision in C++ with the OpenCV Library; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2016. [Google Scholar]
- Pi, R. Raspberry pi. 2017. Available online: https://www.raspberrypi.org/ (accessed on 15 August 2019).
- Namysl, M.; Konya, I. Efficient, Lexicon-Free OCR using Deep Learning. In Proceedings of the 15th International Conference on Document Analysis and Recognition (ICDAR 2019), Sydney, Australia, 20–25 September 2019. [Google Scholar]
- Du, S.; Ibrahim, M.; Shehata, M.; Badawy, W. Automatic License Plate Recognition (ALPR): A State-of-the-Art Review. IEEE Trans. Circuits Syst. Video Technol. 2013, 23, 311–325. [Google Scholar] [CrossRef]
- Tesseract. Available online: https://opensource.google/projects/tesseract (accessed on 10 July 2019).
- Peixoto, S.P.; Cámara-Chávez, G.; Menotti, D.; Gonçalves, G.; Schwartz, W.R. Brazilian License Plate Character Recognition using Deep Learning. In Proceedings of the XI Workshop de Visão Computacional—WVC 2015, São Carlos, Brazil, 5–7 October 2015. [Google Scholar]
- Silva, F.A.; Artero, A.O.; de Paiva, M.S.V.; Barbosa, R.L. Um Algoritmo Rápido para o Reconhecimento de Caracteres. In Proceedings of the VII Workshop de Visão Computacional, Curitiba Brazil, 22–25 May 2011; pp. 149–154. (In Portuguese). [Google Scholar]
- Galindo, J.C.F.; Castro, C.L.; Braga, A.P. Sistema Automático para Reconhecimento de Placas de Automóveis Baseado em Processamento Digital de Imagens e Redes Perceptron de Múltiplas Camadas. In Proceedings of the 2016 XIX Encontro Nacional de Modelagem Computacional, João Pessoa, Brazil, 18–21 October 2016; pp. 19–21. (In Portuguese). [Google Scholar]
- Naito, T.; Tsukada, T.; Kozuka, K.; Yamamoto, S. Robust license-plate recognition method for passing vehicles under outside environment. IEEE Trans. Veh. Technol. 2000, 49, 2309–2319. [Google Scholar] [CrossRef]
- Shapiro, V.; Gluhchev, G.; Dimov, D. Towards a Multinational Car License Plate Recognition system. Mach. Vis. Appplcations 2006, 17, 173–183. [Google Scholar] [CrossRef]
- Tomasi, C.; Manduchi, R. Bilateral filtering for gray and color images. In Proceedings of the Sixth International Conference on Computer Vision, Bombay, India, 4–7 January 1998. [Google Scholar]
- Car Image, Placa Mercosul. Available online: https://www.gazetadopovo.com.br/automoveis/governo-desiste-de-acabar-com-placa-mercosul-e-promete-melhorar-seguranca-6kye5lwot82kfv6qhsa7pez4v/ (accessed on 18 September 2019). (In Portuguese).
- Teixeira, M.A.; Salman, T.; Zolanvari, M.; Jain, R.; Meskin, N.; Samaka, M. SCADA System Testbed for Cybersecurity Research Using Machine Learning Approach. Future Internet 2018, 10, 76. [Google Scholar] [CrossRef] [Green Version]
- Meneguette, R.I.; De Grande, R.E.; Loureiro, A.A.F. Intelligent Transport System in Smart Cities; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Manliguez, C. Generalized Confusion Matrix for Multiple Classes. Available online: https://www.researchgate.net/publication/310799885_Generalized_Confusion_Matrix_for_Multiple_Classes (accessed on 25 August 2019).
Predicted Character | |||||||
---|---|---|---|---|---|---|---|
Class 1 | Class 2 | Class 3 | Class 4 | … | Class n | ||
Actual Character | Class 1 | x11 | x12 | x13 | x14 | … | x1n |
Class 2 | x21 | x22 | x23 | x24 | … | x2n | |
Class 3 | x31 | x32 | x33 | x33 | … | x3n | |
Class 4 | x41 | x42 | x43 | x44 | … | x4n | |
… | … | … | … | … | … | … | |
Class n | xn1 | xn2 | xn3 | xn4 | xnn |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dalarmelina, N.d.V.; Teixeira, M.A.; Meneguette, R.I. A Real-Time Automatic Plate Recognition System Based on Optical Character Recognition and Wireless Sensor Networks for ITS. Sensors 2020, 20, 55. https://doi.org/10.3390/s20010055
Dalarmelina NdV, Teixeira MA, Meneguette RI. A Real-Time Automatic Plate Recognition System Based on Optical Character Recognition and Wireless Sensor Networks for ITS. Sensors. 2020; 20(1):55. https://doi.org/10.3390/s20010055
Chicago/Turabian StyleDalarmelina, Nicole do Vale, Marcio Andrey Teixeira, and Rodolfo I. Meneguette. 2020. "A Real-Time Automatic Plate Recognition System Based on Optical Character Recognition and Wireless Sensor Networks for ITS" Sensors 20, no. 1: 55. https://doi.org/10.3390/s20010055
APA StyleDalarmelina, N. d. V., Teixeira, M. A., & Meneguette, R. I. (2020). A Real-Time Automatic Plate Recognition System Based on Optical Character Recognition and Wireless Sensor Networks for ITS. Sensors, 20(1), 55. https://doi.org/10.3390/s20010055