Radioisotope Identification and Nonintrusive Depth Estimation of Localized Low-Level Radioactive Contaminants Using Bayesian Inference
Abstract
1. Introduction
2. Materials and Methods
2.1. Bayesian Inference
2.2. Model Specification
2.3. Procedures on Spectral Analysis
2.4. Experimental Setup
3. Results
3.1. Case 1: Single Radioisotope
3.2. Case 2: Multiple Radioisotopes and Data Acqusition Time
3.3. Effect of Gain Shift
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Characterization of Radioactively Contaminated Sites for Remediation Purposes. Available online: https://www-pub.iaea.org/MTCD/publications/PDF/te_1017_prn.pdf (accessed on 20 December 2019).
- Radiological Characterisation for Decommissioning of Nuclear Installations. Available online: https://www.oecd-nea.org/rwm/docs/2013/rwm-wpdd2013-2.pdf (accessed on 20 December 2019).
- Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM). (NUREG-1575, Revision 1). Available online: https://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr1575/r1/ (accessed on 20 December 2019).
- Sullivan, P.O.; Nokhamzon, J.G.; Cantrel, E. Decontamination and Dismantling of Radioactive Concrete Structures. NEA News 2010, 28, 27–29. [Google Scholar]
- Dennis, F.; Morgan, G.; Henderson, F. Dounreay Hot Particles: The Story so Far. J. Radiol. Prot. 2007, 27, A3–A11. [Google Scholar] [CrossRef] [PubMed]
- Dounreay Particles Advisory Group. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/696380/DPAG_3rd__Report_September_2006.pdf (accessed on 20 December 2019).
- Popp, A.; Ardouin, C.; Alexander, M.; Blackley, R.; Murray, A. Improvement of a High Risk Category Source Buried in the Grounds of a Hospital in Cambodia. In Proceedings of the 3th International Congress of the International Radiation Protection Association (IRPA), Glasgow, UK, 14–18 May 2012; pp. 1–10. [Google Scholar]
- Control of Orphan Sources and Other Radioactive Material in the Metal Recycling and Production Industries. Available online: https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1509_web.pdf (accessed on 20 December 2019).
- Maeda, K.; Sasaki, S.; Kumai, M.; Sato, I.; Suto, M.; Ohsaka, M.; Goto, T.; Sakai, H.; Chigira, T.; Murata, H. Distribution of Radioactive Nuclides of Boring Core Samples Extracted from Concrete Structures of Reactor Buildings in the Fukushima Daiichi Nuclear Power Plant. J. Nucl. Sci. Technol. 2014, 51, 1006–1023. [Google Scholar] [CrossRef]
- Shippen, B.A.; Joyce, M.J. Extension of the Linear Depth Attenuation Method for the Radioactivity Depth Analysis Tool (RADPAT). IEEE Trans. Nucl. Sci. 2011, 58, 1145–1150. [Google Scholar] [CrossRef]
- Shippen, A.; Joyce, M.J. Profiling the Depth of Caesium-137 Contamination in Concrete via a Relative Linear Attenuation Model. Appl. Radiat. Isot. 2010, 68, 631–634. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.C.; Joyce, M.J.; Mellor, M. The Advancement of a Technique Using Principal Component Analysis for the Non-Intrusive Depth Profiling of Radioactive Contamination. IEEE Trans. Nucl. Sci. 2012, 59, 1448–1452. [Google Scholar] [CrossRef]
- Adams, J.C.; Joyce, M.J.; Mellor, M. Depth Profiling 137Cs and 60Co Non-Intrusively for a Suite of Industrial Shielding Materials and at Depths beyond 50mm. Appl. Radiat. Isot. 2012, 70, 1150–1153. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.C.; Mellor, M.; Joyce, M.J. Determination of the Depth of Localized Radioactive Contamination by 137Cs and 60Co in Sand with Principal Component Analysis. Environ. Sci. Technol. 2011, 45, 8262–8267. [Google Scholar] [CrossRef] [PubMed]
- Ukaegbu, I.K.; Gamage, K.A.A. A Novel Method for Remote Depth Estimation of Buried Radioactive Contamination. Sensors 2018, 18, 507. [Google Scholar] [CrossRef] [PubMed]
- Ukaegbu, I.K.; Gamage, K.A.A. A Model for Remote Depth Estimation of Buried Radioactive Wastes Using CdZnTe Detector. Sensors 2018, 18, 1612. [Google Scholar] [CrossRef] [PubMed]
- Ukaegbu, I.K.; Gamage, K.A.A.; Aspinall, M.D. Nonintrusive Depth Estimation of Buried Radioactive Wastes Using Ground Penetrating Radar and a Gamma Ray Detector. Remote Sens. 2019, 11, 141. [Google Scholar] [CrossRef]
- Adams, J.C.; Mellor, M.; Joyce, M.J. Depth Determination of Buried Caesium-137 and Cobalt-60 Sources Using Scatter Peak Data. IEEE Trans. Nucl. Sci. 2010, 57, 2752–2757. [Google Scholar] [CrossRef]
- Kim, J.; Lim, K.T.; Park, K.; Cho, G. A Bayesian Approach for Remote Depth Estimation of Buried Low-Level Radioactive Waste with a NaI (Tl) Detector. Sensors 2019, 19, 5365. [Google Scholar] [CrossRef] [PubMed]
- Wagenmakers, E.-J.; Lee, M.; Lodewyckx, T.; Iverson, G.J. Bayesian Versus Frequentist Inference. In Bayesian Evaluation of Informative Hypotheses; Springer: New York, NY, USA, 2008; pp. 181–207. [Google Scholar] [CrossRef]
- Philosophy of Statistics. Available online: https://plato.stanford.edu/entries/statistics/#pagetopright (accessed on 20 December 2019).
- Andrieu, C.; Freitas, N.; Doucet, A.; Jordan, M.I. An Introduction to MCMC for Machine Learning. Mach. Learn. 2003, 50, 5–43. [Google Scholar] [CrossRef]
- Mullachery, V.; Khera, A.; Husain, A. Bayesian Neural Networks. arXiv 2018, arXiv:1801.07710. [Google Scholar]
- Kucukelbir, A.; Tran, D.; Gelman, A.; Blei, D.M. Automatic Differentiation Variational Inference. J. Mach. Learn. Res. 2017, 18, 430–474. [Google Scholar]
- Kim, J.; Taek, K.; Kim, J.; Kim, Y.; Kim, H. Quantification and Uncertainty Analysis of Low-Resolution Gamma-Ray Spectrometry Using Bayesian Inference. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2019, in press. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Lim, K.T.; Ko, K.; Ko, E.; Cho, G. Radioisotope Identification and Nonintrusive Depth Estimation of Localized Low-Level Radioactive Contaminants Using Bayesian Inference. Sensors 2020, 20, 95. https://doi.org/10.3390/s20010095
Kim J, Lim KT, Ko K, Ko E, Cho G. Radioisotope Identification and Nonintrusive Depth Estimation of Localized Low-Level Radioactive Contaminants Using Bayesian Inference. Sensors. 2020; 20(1):95. https://doi.org/10.3390/s20010095
Chicago/Turabian StyleKim, Jinhwan, Kyung Taek Lim, Kilyoung Ko, Eunbie Ko, and Gyuseong Cho. 2020. "Radioisotope Identification and Nonintrusive Depth Estimation of Localized Low-Level Radioactive Contaminants Using Bayesian Inference" Sensors 20, no. 1: 95. https://doi.org/10.3390/s20010095
APA StyleKim, J., Lim, K. T., Ko, K., Ko, E., & Cho, G. (2020). Radioisotope Identification and Nonintrusive Depth Estimation of Localized Low-Level Radioactive Contaminants Using Bayesian Inference. Sensors, 20(1), 95. https://doi.org/10.3390/s20010095