Variability of Coordination in Typically Developing Children Versus Children with Autism Spectrum Disorder with and without Rhythmic Signal
Abstract
:1. Introduction
2. Methods
2.1. Population
2.2. Tools
2.3. Protocol
2.4. Post Analysis
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Baio, J.; Wiggins, L.; Christensen, D.L.; Maenner, M.J.; Daniels, J.; Warren, Z.; Kurzius-Spencer, M.; Zahorodny, W.; Rosenberg, C.R.; White, T.; et al. Prevalence of autism spectrum disorder among children aged 8 Years—Autism and developmental disabilities monitoring network, 11 Sites, United States, 2014. MMWR Surveill. Summ. 2018, 67, 1–23. [Google Scholar] [CrossRef]
- Torres, E.B.; Caballero, C.; Mistry, S. Aging with autism departs greatly from typical aging. Sensors 2020, 20, 572. [Google Scholar] [CrossRef] [Green Version]
- Fournier, K.A.; Hass, C.J.; Naik, S.K.; Lodha, N.; Cauraugh, J.H. Motor coordination in autism spectrum disorders: A synthesis and meta-analysis. J. Autism Dev. Disord. 2010, 40, 1227–1240. [Google Scholar] [CrossRef]
- Randall, M.; Egberts, K.J.; Samtani, A.; Scholten, R.J.P.M.; Hooft, L.; Livingstone, N.; Sterling-Levis, K.; Woolfenden, S.; Williams, K. Diagnostic tests for autism spectrum disorder (ASD) in preschool children. Cochrane Database Syst. Rev. 2018. [Google Scholar] [CrossRef] [Green Version]
- Wilson, R.B.; McCracken, J.T.; Rinehart, N.J.; Jeste, S.S. What’s missing in autism spectrum disorder motor assessments? J. Neurodev. Disord. 2018, 10, 33. [Google Scholar] [CrossRef] [Green Version]
- Wilson, R.B.; Enticott, P.G.; Rinehart, N.J. Motor development and delay: Advances in assessment of motor skills in autism spectrum disorders. Curr. Opin. Neurol. 2018, 31, 134–139. [Google Scholar] [CrossRef]
- Pan, C.-Y.; Chu, C.-H.; Tsai, C.-L.; Sung, M.-C.; Huang, C.-Y.; Ma, W.-Y. The impacts of physical activity intervention on physical and cognitive outcomes in children with autism spectrum disorder. Autism 2017, 21, 190–202. [Google Scholar] [CrossRef]
- Kaur, M.; Srinivasan, S.M.; Bhat, A.N. Comparing motor performance, praxis, coordination, and interpersonal synchrony between children with and without Autism Spectrum Disorder (ASD). Res. Dev. Disabil. 2018, 72, 79–95. [Google Scholar] [CrossRef]
- Stanish, H.I.; Curtin, C.; Must, A.; Phillips, S.; Maslin, M.; Bandini, L.G. Physical Activity Levels, Frequency, and Type Among Adolescents with and Without Autism Spectrum Disorder. J. Autism Dev. Disord. 2017, 47, 785–794. [Google Scholar] [CrossRef]
- Pan, C.Y.; Frey, G.C. Identifying physical activity determinants in youth with autistic spectrum disorders. J. Phys. Act. Health 2005, 2, 412–422. [Google Scholar] [CrossRef]
- Pan, C.Y. Age, social engagement, and physical activity in children with autism spectrum disorders. Res. Autism Spectr. Disord. 2009, 3, 22–31. [Google Scholar] [CrossRef]
- Memari, A.H.; Ghaheri, B.; Ziaee, V.; Kordi, R.; Hafizi, S.; Moshayedi, P. Physical activity in children and adolescents with autism assessed by triaxial accelerometry. Pediatr. Obes. 2013, 8, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Yavuz-Kodat, E.; Reynaud, E.; Geoffray, M.-M.; Limousin, N.; Franco, P.; Bourgin, P.; Schroder, C.M. Validity of Actigraphy Compared to Polysomnography for Sleep Assessment in Children with Autism Spectrum Disorder. Front. Psychiatry 2019, 10, 551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, M.; Evans, V.; Hanvey, G.; Johnson, C. Assessment of Sleep in Children with Autism Spectrum Disorder. Children 2017, 4, 72. [Google Scholar] [CrossRef] [PubMed]
- Goldman, S.E.; Alder, M.L.; Burgess, H.J.; Corbett, B.A.; Hundley, R.; Wofford, D.; Fawkes, D.B.; Wang, L.; Laudenslager, M.L.; Malow, B.A. Characterizing sleep in adolescents and adults with autism spectrum disorders. J. Autism Dev. Disord. 2017, 47, 1682–1695. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, M.S.; Mazefsky, C.A.; Ioannidis, S.; Erdogmus, D.; Siegel, M. Predicting aggression to others in youth with autism using a wearable biosensor. Autism Res. 2019, 12, 1286–1296. [Google Scholar] [CrossRef]
- Hardy, M.W.; LaGasse, A.B. Rhythm, movement, and autism: Using rhythmic rehabilitation research as a model for autism. Front. Integr. Neurosci. 2013, 7, 19. [Google Scholar] [CrossRef] [Green Version]
- Migueles, J.H.; Cadenas-Sanchez, C.; Ekelund, U.; Delisle Nyström, C.; Mora-Gonzalez, J.; Löf, M.; Labayen, I.; Ruiz, J.R.; Ortega, F.B. Accelerometer Data Collection and Processing Criteria to Assess Physical Activity and Other Outcomes: A Systematic Review and Practical Considerations. Sports Med. 2017, 47, 1821–1845. [Google Scholar] [CrossRef]
- Krishnan, V.; Jaric, S. Effects of task complexity on coordination of inter-limb and within-limb forces in static bimanual manipulation. Motor Control 2010, 14, 528–544. [Google Scholar] [CrossRef] [Green Version]
- Ridderikhoff, A.; Peper, C.; Lieke, E.; Beek, P.J. Unraveling Interlimb Interactions Underlying Bimanual Coordination. J. Neurophysiol. 2005, 94, 3112–3125. [Google Scholar] [CrossRef]
- Fritz, C.O.; Morris, P.E.; Richler, J.J. Effect size estimates: Current use, calculations, and interpretation. J. Exp. Psychol. Gen. 2012, 141, 2–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gowen, E.; Hamilton, A. Motor abilities in autism: A review using a computational context. J. Autism Dev. Disord. 2013, 43, 323–344. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, P.; Romero, V.; Amaral, J.L.; Duncan, A.; Barnard, H.; Richardson, M.J.; Schmidt, R.C. Evaluating the importance of social motor synchronization and motor skill for understanding autism. Autism Res. 2017, 10, 1687–1699. [Google Scholar] [CrossRef] [PubMed]
- Marco, E.J.; Hinkley, L.B.N.; Hill, S.S.; Nagarajan, S.S. Sensory processing in autism: A review of neurophysiologic findings. Pediatr. Res. 2011, 69, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Moran, M.F.; Foley, J.T.; Parker, M.E.; Weiss, M.J. Two-legged hopping in autism spectrum disorders. Front. Integr. Neurosci. 2013, 7, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuchs, A.; Kelso, J.A. A theoretical note on models of interlimb coordination. J. Exp. Psychol. Hum. Percept. Perform. 1994, 20, 1088–1097. [Google Scholar] [CrossRef]
- Serrien, D.J.; Li, Y.; Steyvers, M.; Debaere, F.; Swinnen, S.P. Proprioceptive regulation of interlimb behavior: Interference between passive movement and active coordination dynamics. Exp. Brain Res. 2001, 140, 411–419. [Google Scholar] [CrossRef]
- Fuentes, C.T.; Mostofsky, S.H.; Bastian, A.J. No proprioceptive deficits in autism despite movement-related sensory and execution impairments. J. Autism Dev. Disord. 2011, 41, 1352–1361. [Google Scholar] [CrossRef]
- Morrison, S.; Armitano, C.N.; Raffaele, C.T.; Deutsch, S.I.; Neumann, S.A.; Caracci, H.; Urbano, M.R. Neuromotor and cognitive responses of adults with autism spectrum disorder compared to neurotypical adults. Exp. Brain Res. 2018, 236, 2321–2332. [Google Scholar] [CrossRef]
- Mottron, L.; Belleville, S.; Rouleau, G.A.; Collignon, O. Linking neocortical, cognitive, and genetic variability in autism with alterations of brain plasticity: The Trigger-Threshold-Target model. Neurosci. Biobehav. Rev. 2014, 47, 735–752. [Google Scholar] [CrossRef] [Green Version]
- Geurts, H.M.; Grasman, R.P.P.P.; Verté, S.; Oosterlaan, J.; Roeyers, H.; van Kammen, S.M.; Sergeant, J.A. Intra-individual variability in ADHD, autism spectrum disorders and Tourette’s syndrome. Neuropsychologia 2008, 46, 3030–3041. [Google Scholar] [CrossRef] [PubMed]
- Adamo, N.; Huo, L.; Adelsberg, S.; Petkova, E.; Castellanos, F.X.; Di Martino, A. Response time intra-subject variability: Commonalities between children with autism spectrum disorders and children with ADHD. Eur. Child Adolesc. Psychiatry 2014, 23, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Rinehart, N.J.; Tonge, B.J.; Bradshaw, J.L.; Iansek, R.; Enticott, P.G.; McGinley, J. Gait function in high-functioning autism and Asperger’s disorder: Evidence for basal-ganglia and cerebellar involvement? Eur. Child Adolesc. Psychiatry 2006, 15, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Manicolo, O.; Brotzmann, M.; Hagmann-von Arx, P.; Grob, A.; Weber, P. Gait in children with infantile/atypical autism: Age-dependent decrease in gait variability and associations with motor skills. Eur. J. Paediatr. Neurol. 2019, 23, 117–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
TD (n = 19) | ASD (n = 8) | p Value | |
---|---|---|---|
Age (years) | 5.0 (4.4–6.0) | 5.2 (5.0–6.6) | 0.322 |
Sex | 8 girls, 11 boys | 2 girls, 6 boys | 0.395 |
BMI (kg/m2) | 14.4 (13.6–16.7) | 15.4 (13.4–16.7) | 0.710 |
TD (n = 19) | ASD (n = 8) | Between-Groups F,p | Effect Size r | |||
---|---|---|---|---|---|---|
Self-Selected Rhythm | Rhythmic Signal | Self-Selected Rhythm | Rhythmic Signal | |||
Left arm Acc. | 3.31 (2.49–4.22) * | 2.38 (1.35–4.13) | 0.71 (0.02–3.55) * | 0.68 (0.02–3.26) | 6.444, 0.018 | −0.412 |
Left leg Acc. | 3.77 (3.06–4.17) * | 3.78 (1.60–4.22) | 0.66 (0.03–3.94) * | 0.69 (0.10–3.51) | 6.324, 0.019 | −0.445 |
Right arm Acc. | 3.26 (1.45–3.91) | 1.93 (0.80–3.69) | 1.89 (0.07–3.50) | 0.91 (0.09–3.14) | NS | NS |
Right leg Acc. | 3.51 (3.28–3.96) | 3.44 (2.10–4.14) | 0.73 (0.02–4.06) | 0.54 (0.01–3.78) | NS | NS |
TL arms | 0.13 (−0.78–0.64) | 0.05 (−0.49–1.11) | 0.87 (−0.35–2.86) | 1.22 (−1.68–2.26) | NS | NS |
TL legs | 0.22 (−0.87–0.57) | 0.61 (−0.08–0.91) | 1.30 (−3.00–2.73) | 0.64 (−4.28–3.17) | NS | NS |
LV arms | 0.61 (0.39–1.31) | 0.56 (0.41–0.98) * | 1.53 (0.88–3.15) | 1.68 (0.94–6.55) * | 9.812, 0.004 | −0.583 |
LV legs | 0.55 (0.46–0.97) ** | 0.58 (0.34–0.95) | 2.41 (1.68–6.28) ** | 1.80 (0.55–3.20) | 18.707, <0.001 | −0.685 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabis, L.V.; Shefer, S.; Portnoy, S. Variability of Coordination in Typically Developing Children Versus Children with Autism Spectrum Disorder with and without Rhythmic Signal. Sensors 2020, 20, 2769. https://doi.org/10.3390/s20102769
Gabis LV, Shefer S, Portnoy S. Variability of Coordination in Typically Developing Children Versus Children with Autism Spectrum Disorder with and without Rhythmic Signal. Sensors. 2020; 20(10):2769. https://doi.org/10.3390/s20102769
Chicago/Turabian StyleGabis, Lidia V., Shahar Shefer, and Sigal Portnoy. 2020. "Variability of Coordination in Typically Developing Children Versus Children with Autism Spectrum Disorder with and without Rhythmic Signal" Sensors 20, no. 10: 2769. https://doi.org/10.3390/s20102769
APA StyleGabis, L. V., Shefer, S., & Portnoy, S. (2020). Variability of Coordination in Typically Developing Children Versus Children with Autism Spectrum Disorder with and without Rhythmic Signal. Sensors, 20(10), 2769. https://doi.org/10.3390/s20102769