Cylindrical IR-ATR Sensors for Process Analytics
Abstract
:1. Introduction
2. Planar ATR Sensors
2.1. Results on Isocyanate Solutions Using a Planar ATR Photometer
2.2. Results on Isocyanate Solutions Using a Planar ATR Sensor with a FPI Microspectrometer
2.3. FTIR Reference Spectra with a Planar ATR Element
3. Cylindrical Sensor Concept and Experimental Realization
3.1. Concept of a Future Process Instrument with a Cylindrical ATR Element
3.2. Optical Simulation of Tubular ATR Configurations
3.3. Experimental Details
4. Experimental Results with Cylindrical ATR Elements
4.1. ATR Setup in Transmission Geometry
4.1.1. CO2 Pressure Steps
4.1.2. Acetonitrile in Isopropanol Solutions
4.2. ATR Setup in Reflection Geometry
4.2.1. CO2 Pressure Steps
4.2.2. Acetonitril in Isopropanol Solutions
5. Discussion
6. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Harrick, N.J. Electric Field Strengths at Totally Reflecting Interfaces. J. Opt. Soc. Am. 1965, 55, 851. [Google Scholar] [CrossRef]
- Harrick, N.J. Internal Reflection Spectroscopy; Interscience Publ: New York, NY, USA, 1967; ISBN 0-470-35250-7. [Google Scholar]
- Heise, H.M.; Voigt, G.; Lampen, P.; Kupper, L.; Rudloff, S.; Werner, G. Multivariate Calibration for the Determination of Analytes in Urine Using Mid-Infrared Attenuated Total Reflection Spectroscopy. Appl. Spectrosc. 2001, 55, 434–443. [Google Scholar] [CrossRef]
- Lambrecht, A.; Beyer, T.; Hebestreit, K.; Mischler, R.; Petrich, W. Continuous glucose monitoring by means of fiber-based, mid-infrared laser spectroscopy. Appl. Spectrosc. 2006, 60, 729–736. [Google Scholar] [CrossRef] [PubMed]
- Su, W.-H.; Sun, D.-W. Mid-infrared (MIR) Spectroscopy for Quality Analysis of Liquid Foods. Food Eng. Rev. 2019, 11, 142–158. [Google Scholar] [CrossRef]
- Anton Paar. Carbo 520 Optical. Available online: https://www.anton-paar.com/us-en/products/details/carbo-520-optical/ (accessed on 16 March 2020).
- Centec. CARBOTEC NIR. Available online: https://www.centec.de/sensors/electronics-semiconductor/carbotec-nir/ (accessed on 16 March 2020).
- Lu, R.; Mizaikoff, B.; Li, W.-W.; Qian, C.; Katzir, A.; Raichlin, Y.; Sheng, G.-P.; Yu, H.-Q. Determination of Chlorinated Hydrocarbons in Water Using Highly Sensitive Mid-Infrared Sensor Technology. Sci. Rep. 2013, 3, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambrecht, A.; Pfeifer, M.; Konz, W.; Herbst, J.; Axtmann, F. Broadband spectroscopy with external cavity quantum cascade lasers beyond conventional absorption measurements. Analyst 2014, 139, 2070–2078. [Google Scholar] [CrossRef] [PubMed]
- Sim, S.F.; Jeffrey Kimura, A.L. Partial Least Squares (PLS) Integrated Fourier Transform Infrared (FTIR) Approach for Prediction of Moisture in Transformer Oil and Lubricating Oil. J. Spectrosc. 2019, 2019, 5916506. [Google Scholar] [CrossRef]
- Helmdach, L.; Feth, M.P.; Minnich, C.; Ulrich, J. Application of ATR-MIR Spectroscopy in the Pilot Plant-Scope and Limitations Using the Example of Paracetamol Crystallizations. Available online: http://www.sciencedirect.com/science/article/pii/S0255270113000913# (accessed on 20 May 2020).
- Dubé, M.A.; Li, L. In-Line Monitoring of SBR Emulsion Polymerization Using ATR-FTIR Spectroscopy. Polym. Plast. Technol. Eng. 2010, 49, 648–656. [Google Scholar] [CrossRef]
- Specac Ltd. Golden Gate | Versatile ATR Accessory. Available online: https://www.specac.com/en/products/ftir-acc/atr/atr/golden-gate (accessed on 17 March 2020).
- Hellma GmbH. DPR 207/DMD 270 ATR Small Diameter Probe. Available online: https://www.hellma.com/en/process-analytics/process-probes/ir-products/ (accessed on 20 May 2020).
- Art Photonics GmbH. Fiber Optic ATR-Probes. Available online: https://artphotonics.com/product/fiber-optic-atr-probes/ (accessed on 17 March 2020).
- IFS GmbH. MIR Fiber Probes with Diamond ATR FTIR Technology. Available online: https://ifs-aachen.de/ (accessed on 17 March 2020).
- Eccleston, R.; Wolf, C.; Balsam, M.; Schulte, F.; Bongards, M.; Rehorek, A. Mid-Infrared Spectroscopy for Monitoring of Anaerobic Digestion Processes-Prospects and Challenges. Chem. Eng. Technol. 2016, 39, 627–636. [Google Scholar] [CrossRef]
- Baumgartner, B.; Freitag, S.; Gasser, C.; Lendl, B. A pocket-sized 3D-printed attenuated total reflection-infrared filtometer combined with functionalized silica films for nitrate sensing in water. Sens. Actuators B Chem. 2020, 310, 127847. [Google Scholar] [CrossRef]
- Thomson, M.A.; Melling, P.J. Am Slepski. Real-time monitoring of isocyanate chemistry using a fiber-optic FTIR probe. Abstr. Pap. Am. Chem. Soc. 2001, 221, U316. [Google Scholar]
- Friebe, A.; Siesler, H.W. In situ monitoring of an isocyanate reaction by fiber-optic FT-IR/ATR-spectroscopy. Vib. Spectrosc. 2007, 43, 217–220. [Google Scholar] [CrossRef]
- The National Institute for Occupational Safety and Health. Toluene Diisocyanate (TDI) and Toluenediamine (TDA): Evidence of Carcinogenicity: Current Intelligence Bulletin 53. DHHS (NIOSH) Publication Number 90–101. Available online: https://www.cdc.gov/niosh/docs/90-101/default.html (accessed on 17 March 2020).
- Theuer, M.; Hennig, S.; Ferstl, W.; Konz, W.; Lambrecht, A. ATR-Photometer zur Bestimmung der Isocyanatkonzentration in Prozessanwendungen. tm-Tech. Mess. 2015, 82, 16–23. [Google Scholar] [CrossRef]
- Allan, D.W. Statistics of atomic frequency standards. Proc. IEEE 1966, 54, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Werle, P.; Mucke, R.; Slemr, F. The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption-spectroscopy (Tdlas). Appl. Phys. B-Photophysics Laser Chem. 1993, 57, 131–139. [Google Scholar] [CrossRef]
- Geoerg, D.; Schalk, R.; Methner, F.-J.; Beuermann, T. MIR-ATR sensor for process monitoring. Meas. Sci. Technol. 2015, 26, 065501. [Google Scholar] [CrossRef]
- Herman, D.I.; Waxman, E.M.; Ycas, G.; Giorgetta, F.R.; Newbury, N.R.; Coddington, I.R. Real-time liquid-phase organic reaction monitoring with mid-infrared attenuated total reflectance dual frequency comb spectroscopy. J. Mol. Spectrosc. 2019, 356, 39–45. [Google Scholar] [CrossRef]
Filter-No.: | Planar (P) or Cylindrical (C) Use | Center Wavenumber (CWL) /cm−1 | Half Power Bandwidth (HPBW) /cm−1 | Peak Transmittance /% | Detector Type (Element Size) |
---|---|---|---|---|---|
1 | P-signal#1 [22] | 2350 | 100 | 81 | LMM-242 (2 × 2 mm2) |
2 | P-signal#2 [22] | 2345 | 330 | 90 | LMM-242 |
3 | P-reference#1 [20] | 2530 | 60 | 88 | LMM-242 |
4 | C-signal CO2 | 2342 | 93 | 88 | LRM-202 (1.2 × 0.8 mm2) |
5 | C-reference CO2 | 2532 | 58 | 83 | LRM-202 |
6 | C-signal acetonitrile | 2257 | 138 | 90 | LRM-254 (1.4 × 1.4 mm2) |
7 | C-reference acetonitrile | 2532 | 58 | 84 | LRM-254 |
Sample | Spectral Position of Maximum Absorbance/cm−1 | Full Width at Half Maximum (FWHM)/cm−1 | Absorbance at Spectral Position of Maximum Absorbance/mAU | Maximum Absorbance for 1% (m/m) Solution Resp. 1 Bar Pressure of CO2/mAU | Relative Absorption Strength Compared to Acetonitrile in Isopropanol |
---|---|---|---|---|---|
Acetonitrile in isopropanol | 2230 (2270) | 20 (13) | 155 (41) for 20% (m/m) | 7.75 | 1.0 |
TDI in MCB | 2240 | 50 | 395 for 1% (m/m) | 395 | 51.0 |
Basonat in propylene carbonate | 2255 | 80 | 63 for 1% (m/m) | 63 | 8.1 |
Gaseous CO2 | 2338 (2317) | 20 (30) | 73 (69) for 4 bar | 18.25 | 2.35 |
Sample | Absorbance Change for 1% (m/m) Solution Resp. 1 Bar CO2 Pressure Step/mAU) | Allan Deviation σA (1 min)/mAU | NEC (1 σ)/ppm (m/m) resp. mbar | Estimated NEC for Basonat/TDI/ ppm (m/m) |
---|---|---|---|---|
Transmission | ||||
Acetonitrile in isopropanol | 0.68 | 0.053 | 780 | 96/15 |
Gaseous CO2 | 1.85 | 0.087 | 47 mbar | 136/22 |
Reflection | ||||
Acetonitrile in isopropanol | 2.6 | 0.22 | 846 | 104/17 |
Gaseous CO2 | 6.63 | 0.36 | 54 mbar | 157/25 |
Sample | Absorbance Change/mAU | Standard Deviation (Averaging Time τ)/mAU | NEC( 1 σ)/ppm (m/m) |
---|---|---|---|
Basonat in propylene carbonate (photometer) Digitized data from [22] | 7.05 (4600 ppm (m/m)) | 0.14 (1 min) | 91 |
TDI in MCB (photometer) Digitized data from [22] | 3.7 (100 ppm (m/m)) | 1.7 (1 min) | 46 |
Basonat in propylene carbonate (FPI) (s. chapter 2) | 1 (100 ppm (m/m)) | 0.25 (2.5 min) | 25 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lambrecht, A.; Bolwien, C.; Erb, J.; Fuhr, H.; Sulz, G. Cylindrical IR-ATR Sensors for Process Analytics. Sensors 2020, 20, 2917. https://doi.org/10.3390/s20102917
Lambrecht A, Bolwien C, Erb J, Fuhr H, Sulz G. Cylindrical IR-ATR Sensors for Process Analytics. Sensors. 2020; 20(10):2917. https://doi.org/10.3390/s20102917
Chicago/Turabian StyleLambrecht, Armin, Carsten Bolwien, Jochen Erb, Hendrik Fuhr, and Gerd Sulz. 2020. "Cylindrical IR-ATR Sensors for Process Analytics" Sensors 20, no. 10: 2917. https://doi.org/10.3390/s20102917
APA StyleLambrecht, A., Bolwien, C., Erb, J., Fuhr, H., & Sulz, G. (2020). Cylindrical IR-ATR Sensors for Process Analytics. Sensors, 20(10), 2917. https://doi.org/10.3390/s20102917