Shifting the Specificity of E. coli Biosensor from Inorganic Arsenic to Phenylarsine Oxide through Genetic Engineering
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. E. coli-Based Biosensors for Arsenic Species
2.3. Biosensor Assays for Selectivity and Specificity
2.4. Quantification of PAO in Artificially Contaminated Water Samples
2.5. Homology Modelling
3. Results
3.1. Toxic Effects of Arsenic Species on the Growth of E. coli
3.2. Specificity of ArsR WT toward Arsenic Species
3.3. Modulating Selectivity to Arsenic Species by Rearranging Cysteines in ArsR
3.4. PAO-Specific E. coli Cell-Based Biosensor
3.5. Computational Structural Analysis for ArsR and Mutants
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Verma, N.; Singh, M. Biosensors for heavy metals. Biometals 2005, 18, 121–129. [Google Scholar] [CrossRef]
- Zhou, Y.; Tang, L.; Zeng, G.; Zhang, C.; Zhang, Y.; Xie, X. Current progress in biosensors for heavy metal ions based on DNAzymes/DNA molecules functionalized nanostructures: A review. Sens. Actuators B Chem. 2016, 223, 280–294. [Google Scholar] [CrossRef]
- Kim, H.; Jang, G.; Yoon, Y. Specific heavy metal/metalloid sensors: Current state and perspectives. Appl. Microbiol. Biotechnol. 2020, 104, 907–914. [Google Scholar] [CrossRef]
- Rawson, D.M.; Willmer, A.J.; Turner, A.P. Whole-cell biosensors for environmental monitoring. Biosensors 1989, 4, 299–311. [Google Scholar] [CrossRef]
- Harms, H.; Wells, M.C.; Van der Meer, J.R. Whole-cell living biosensors—Are they ready for environmental application? Appl. Microbiol. Biotechnol. 2006, 70, 273–280. [Google Scholar] [CrossRef]
- Nivens, D.E.; McKnight, T.; Moser, S.; Osbourn, S.; Simpson, M.; Sayler, G. Bioluminescent bioreporter integrated circuits: Potentially small, rugged and inexpensive whole-cell biosensors for remote environmental monitoring. J. Appl. Microbiol. 2004, 96, 33–46. [Google Scholar] [CrossRef]
- Close, D.M.; Ripp, S.; Sayler, G.S. Reporter proteins in whole-cell optical bioreporter detection systems, biosensor integrations, and biosensing applications. Sensors 2009, 9, 9147–9174. [Google Scholar] [CrossRef] [Green Version]
- Hynninen, A.; Virta, M. Whole-cell bioreporters for the detection of bioavailable metals. In Whole Cell Sensing System II; Springer: Berlin/Heidelberg, Germany, 2009; pp. 31–63. [Google Scholar]
- Singh, V.K.; Xiong, A.; Usgaard, T.R.; Chakrabarti, S.; Deora, R.; Misra, T.K.; Jayaswal, R.K. ZntR is an autoregulatory protein and negatively regulates the chromosomal zinc resistance operon znt of Staphylococcus aureus. Mol. Microbiol. 1999, 33, 200–207. [Google Scholar] [CrossRef]
- Carlin, A.; Shi, W.; Dey, S.; Rosen, B.P. The ars operon of Escherichia coli confers arsenical and antimonial resistance. J. Bacteriol. 1995, 177, 981–986. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.; Close, D.M.; Sayler, G.S.; Ripp, S. Genetically modified whole-cell bioreporters for environmental assessment. Ecol. Indic. 2013, 28, 125–141. [Google Scholar] [CrossRef] [Green Version]
- Islam, S.K.; Vijayaraghavan, R.; Zhang, M.; Ripp, S.; Caylor, S.D.; Weathers, B.; Moser, S.; Terry, S.; Blalock, B.J.; Sayler, G.S. Integrated circuit biosensors using living whole-cell bioreporters. IEEE Trans. Circuits Syst. I Regul. Pap. 2007, 54, 89–98. [Google Scholar] [CrossRef]
- Yagur-Kroll, S.; Belkin, S. Molecular manipulations for enhancing luminescent bioreporters performance in the detection of toxic chemicals. In Bioluminescence: Fundamentals and Applications in Biotechnology-Volume 2; Springer: Berlin/Heidelberg, Germany, 2014; pp. 137–149. [Google Scholar]
- Islam, S.; Weathers, B.; Terry, S.; Zhang, M.; Blalock, B.; Caylor, S.; Ripp, S.; Sayler, G. Genetically-Engineered Whole-Cell Bioreporters on Integrated Circuits for Very Low-Level Chemical Sensing. In Proceedings of the 35th European Solid-State Device Research Conference, Grenoble, France, 16 September 2005; pp. 351–354. [Google Scholar]
- Hughes, M.F. Arsenic toxicity and potential mechanisms of action. Toxicol. Lett. 2002, 133, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Sharma, V.K.; Sohn, M. Aquatic arsenic: Toxicity, speciation, transformations, and remediation. Environ. Int. 2009, 35, 743–759. [Google Scholar] [CrossRef] [PubMed]
- Taylor, V.; Goodale, B.; Raab, A.; Schwerdtle, T.; Reimer, K.; Conklin, S.; Karagas, M.R.; Francesconi, K.A. Human exposure to organic arsenic species from seafood. Sci. Total Environ. 2017, 580, 266–282. [Google Scholar] [CrossRef] [PubMed]
- Bednar, A.; Garbarino, J.; Ranville, J.; Wildeman, T. Presence of organoarsenicals used in cotton production in agricultural water and soil of the southern United States. J. Agric. Food Chem. 2002, 50, 7340–7344. [Google Scholar] [CrossRef]
- Chen, J.; Sun, S.; Li, C.-Z.; Zhu, Y.-G.; Rosen, B.P. Biosensor for organoarsenical herbicides and growth promoters. Environ. Sci. Technol. 2014, 48, 1141–1147. [Google Scholar] [CrossRef]
- Pinel-Raffaitin, P.; Le Hecho, I.; Amouroux, D.; Potin-Gautier, M. Distribution and fate of inorganic and organic arsenic species in landfill leachates and biogases. Environ. Sci. Technol. 2007, 41, 4536–4541. [Google Scholar] [CrossRef]
- Turpeinen, R.; Pantsar-Kallio, M.; Häggblom, M.; Kairesalo, T. Influence of microbes on the mobilization, toxicity and biomethylation of arsenic in soil. Sci. Total Environ. 1999, 236, 173–180. [Google Scholar] [CrossRef]
- Kohlmeyer, U.; Jantzen, E.; Kuballa, J.; Jakubik, S. Benefits of high resolution IC–ICP–MS for the routine analysis of inorganic and organic arsenic species in food products of marine and terrestrial origin. Anal. Bioanal. Chem. 2003, 377, 6–13. [Google Scholar] [CrossRef]
- Herce-Pagliai, C.; Moreno, I.; Gonzalez, G.; Repetto, M.; Camean, A. Determination of total arsenic, inorganic and organic arsenic species in wine. Food Addit. Contam. 2002, 19, 542–546. [Google Scholar] [CrossRef]
- Lee, W.; Kim, H.; Jang, G.; Kim, B.-G.; Yoon, Y. Antimony sensing whole-cell bioreporters derived from ArsR genetic engineering. Appl. Microbiol. Biotechnol. 2020, 104, 2691–2699. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Rosen, B.P. Biosensors for inorganic and organic arsenicals. Biosensors 2014, 4, 494–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Nadar, V.S.; Rosen, B.P. A novel MAs (III)-selective ArsR transcriptional repressor. Mol. Microbiol. 2017, 106, 469–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, Y.; Lee, W.; Jang, G.; Kim, B.-G.; Yoon, Y. Modulating the sensing properties of Escherichia coli-based bioreporters for cadmium and mercury. Appl. Microbiol. Biotechnol. 2018, 102, 4863–4872. [Google Scholar] [CrossRef] [PubMed]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef] [Green Version]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef] [Green Version]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [Green Version]
- Maki, T.; Watarai, H.; Kakimoto, T.; Takahashi, M.; Hasegawa, H.; Ueda, K. Seasonal dynamics of dimethylarsenic acid degrading bacteria dominated in Lake Kibagata. Geomicrobiol. J. 2006, 23, 311–318. [Google Scholar] [CrossRef]
- Stolz, J.F.; Perera, E.; Kilonzo, B.; Kail, B.; Crable, B.; Fisher, E.; Ranganathan, M.; Wormer, L.; Basu, P. Biotransformation of 3-nitro-4-hydroxybenzene arsonic acid (roxarsone) and release of inorganic arsenic by Clostridium species. Environ. Sci. Technol. 2007, 41, 818–823. [Google Scholar] [CrossRef]
- Castlehouse, H.; Smith, C.; Raab, A.; Deacon, C.; Meharg, A.A.; Feldmann, J. Biotransformation and accumulation of arsenic in soil amended with seaweed. Environ. Sci. Technol. 2003, 37, 951–957. [Google Scholar] [CrossRef]
- Shi, W.; Wu, J.; Rosen, B.P. Identification of a putative metal binding site in a new family of metalloregulatory proteins. J. Biol. Chem. 1994, 269, 19826–19829. [Google Scholar] [PubMed]
- Gibson, A.E.; Noel, R.J.; Herlihy, J.T.; Ward, W.F. Phenylarsine oxide inhibition of endocytosis: Effects on asialofetuin internalization. Am. J. Physiol. Cell Physiol. 1989, 257, C182–C184. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Morales, P.; Minami, Y.; Luong, E.; Klausner, R.D.; Samelson, L.E. Tyrosine phosphorylation in T cells is regulated by phosphatase activity: Studies with phenylarsine oxide. Proc. Natl. Acad. Sci. USA 1990, 87, 9255–9259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Host Cell | Reporter Domain | Sensing Domain |
---|---|---|
E. coli DH5α | pArs-eGFP | Endogenous ArsR WT |
E. coli DH5α deleting arsR | pArs-eGFP | pCDF-ArsR WT |
(E. coli DH5α-arsR) | pCDF-ArsR C37S | |
pCDF-ArsR C37S/T38C | ||
pCDF-ArsR C37S/A39C | ||
pCDF-ArsR C37S/L36C |
Spiked Concentration [μM] | Determined Concentration [μM] | Accuracy (%) |
---|---|---|
0.3 | 0.314 ± 0.016 | 95.7 |
0.9 | 0.999 ± 0.067 | 90.1 |
1.2 | 1.155 ± 0.095 | 96.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Jeon, Y.; Lee, W.; Jang, G.; Yoon, Y. Shifting the Specificity of E. coli Biosensor from Inorganic Arsenic to Phenylarsine Oxide through Genetic Engineering. Sensors 2020, 20, 3093. https://doi.org/10.3390/s20113093
Kim H, Jeon Y, Lee W, Jang G, Yoon Y. Shifting the Specificity of E. coli Biosensor from Inorganic Arsenic to Phenylarsine Oxide through Genetic Engineering. Sensors. 2020; 20(11):3093. https://doi.org/10.3390/s20113093
Chicago/Turabian StyleKim, Hyojin, Yangwon Jeon, Woonwoo Lee, Geupil Jang, and Youngdae Yoon. 2020. "Shifting the Specificity of E. coli Biosensor from Inorganic Arsenic to Phenylarsine Oxide through Genetic Engineering" Sensors 20, no. 11: 3093. https://doi.org/10.3390/s20113093
APA StyleKim, H., Jeon, Y., Lee, W., Jang, G., & Yoon, Y. (2020). Shifting the Specificity of E. coli Biosensor from Inorganic Arsenic to Phenylarsine Oxide through Genetic Engineering. Sensors, 20(11), 3093. https://doi.org/10.3390/s20113093