Soft Sensor with Deep Learning for Functional Region Detection in Urban Environments
Abstract
:1. Introduction
2. Related Work
2.1. Image Recognition
2.2. Geodemographic Classification
2.3. Big Data and Smart Card Data
3. Method
3.1. Passenger Flow Stage
3.1.1. SCD Processing
3.1.2. ResNet Model
3.2. Built Environment Stage
3.2.1. Point of Interest Data Processing
3.2.2. Online to Offline (OTO) Data Processing
3.2.3. SAE-DNN Model
3.3. Final Prediction
3.4. Parameters Learning
4. Experiments
4.1. Study Area
4.2. Data Description
4.2.1. Smart Card (SCD)
4.2.2. Points of Interest (POI)
4.2.3. Online to Offline (OTO): Meituan
4.2.4. Ground Truth
4.3. Experimental Setup
4.3.1. Baseline Method
4.3.2. Evaluation Metrics
4.4. Result
4.4.1. Comparison with Baseline Methods
4.4.2. Comparison with Variants of the Framework
4.4.3. Results Discussion
4.4.4. Comparation with Other Researches
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Atzori, L.; Lera, A.; Morabito, G. The Internet of Things: A survey. Comput. Netw. 2010, 54, 2787–2805. [Google Scholar] [CrossRef]
- Jin, J.; Gubbi, J.; Marusic, S.; Palaniswami, M. An information framework for creating a smart city through internet of things. IEEE Internet Things J. 2014, 1, 112–121. [Google Scholar] [CrossRef]
- Janowicz, K. Observation-driven geo-ontology engineering. Trans. GIS 2012, 16, 351–374. [Google Scholar] [CrossRef] [Green Version]
- Zhong, C.; Huang, X.; Arisona, S.M.; Schmitt, G.; Batty, M. Inferring building functions from a probabilistic model using public transportation data. Computers. Environ. Urban Syst. 2014, 48, 124–137. [Google Scholar] [CrossRef]
- Peng, C.; Jin, X.; Wong, K.C.; Shi, M.; Liò, P. Collective human mobility pattern from taxi trips in urban area. PLoS ONE 2012, 7, e34487. [Google Scholar]
- Yong, N.; Ni, S.; Shen, S.; Chen, P.; Ji, X. An understanding of human dynamics in urban subway traffic from the maximum entropy principle. Phys. A 2016, 456, 222–227. [Google Scholar] [CrossRef]
- Yong, N.; Ni, S.; Shen, S.; Chen, P.; Ji, X. Uncovering stable and occasional human mobility patterns: A case study of the beijing subway. Phys. A Stat. Mech. Appl. 2017, 492, 28–38. [Google Scholar] [CrossRef]
- Chen, K.; Jian, P.; Zhou, Z.; Zhang, D. Semantic annotation of high-resolution remote sensing images via Gaussian process multi-instance multilabel learning. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1285–1289. [Google Scholar] [CrossRef]
- Tokarczyk, P.; Wegner, J.D.; Walk, S.; Schindler, K. Features, color spaces, and boosting: New insights on semantic classification of remote sensing images. IEEE Trans. Geosci. Remote Sens. 2015, 53, 280–295. [Google Scholar] [CrossRef]
- Zhang, X.; Du, S. A linear dirichlet mixture model for decomposing scenes: Application to analyzing urban functional zonings. Remote Sens. Environ. 2015, 169, 37–49. [Google Scholar] [CrossRef]
- Singleton, A.; Longley, P. Data infrastructure requirements for new geodemographic classifications: The example of London’s workplace zones. Appl. Geogr. 2019, 109, 102038. [Google Scholar] [CrossRef]
- Chang, H.; Hwang, C. Time-Geographic Analysis of Trip Trajectories and Land Use Characteristics in Seoul Metropolitan Area by Using Multidimensional Sequence Alignment and Spatial Analysis; 2010AAG Annual Meeting: Washington, DC, USA, 2010. [Google Scholar]
- Qi, G.; Li, X.; Li, S.; Pan, G.; Wang, Z.; Zhang, D. Measuring social functions of city regions from large-scale taxi behaviors. In Proceedings of the 2011 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), Seattle, WA, USA, 21–25 March 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 384–388. [Google Scholar]
- Han, D.; Stroulia, E. HGrid: A Data Model for Large Geospatial Data Sets in HBase. In Proceedings of the IEEE 6th International Conference on Cloud Computing (CLOUD), Santa Clara, CA, USA, 27 June–3 July 2013; pp. 910–917. [Google Scholar]
- Gao, X.; Xu, Z.; Niu, F. Delineating the scope of urban agglomerations based upon the Ple-Axis theory. Prog. Geogr. 2015, 34, 280–289. [Google Scholar]
- Shen, T.Y.; Zhou, L.; Wang, L.W.; Lv, Y.Q. Traffic network point of services location choice: A case study of the central city area of Beijing. Prog. Geogr. 2015, 34, 947–956. [Google Scholar]
- Xu, Z.; Gao, X.L. A novel method for identifying the boundary of urban built-up areas with POI data. Acta Geogr. Sin. 2016, 71, 928–939. [Google Scholar]
- Lan, T.; Yu, M.; Xu, Z.B.; Wu, Y. Temporal and Spatial Variation Characteristics of Catering Facilities Based on POI Data: A Case Study within 5th Ring Road in Beijing. Procedia Comput. Sci. 2018, 131, 1260–1268. [Google Scholar] [CrossRef]
- Long, Y.; Thill, J.C. Combining smart card data and household travel survey to analyze jobs–housing relationships in Beijing. Comput. Environ. Urban Syst. 2015, 53, 19–35. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.; Min, Y.; Park, M.; Kim, K.; Oh, S. Precise estimation of connections of metro passengers from Smart Card data. Transportation 2016, 43, 749–769. [Google Scholar] [CrossRef]
- Gan, Z.; Feng, T.; Wu, Y.; Yang, M.; Timmermans, H. Station-based average travel distance and its relationship with urban form and land use: An analysis of smart card data in Nanjing City, China. Transp. Policy 2019, 79, 137–154. [Google Scholar] [CrossRef]
- Banzhaf, E.; Netzband, M. Monitoring urban land use changes with remote sensing techniques. In Applied urban ecology: A global framework; Wiley-Blackwell: Hoboken, NJ, USA, 2012; pp. 18–32. [Google Scholar]
- Magee, K.S. Segmentation, object-oriented applications for remote sensing land cover and land use classification. Ph.D. Thesis, University of Cincinnati, Cincinnati, OH, USA, 2011. [Google Scholar]
- Frohn, R.C.; Chaudhary, N. Multi-scale image segmentation and object-oriented processing for land cover classification. Gisci. Remote Sens. 2008, 45, 377–391. [Google Scholar] [CrossRef]
- Li, F.; Liu, Z.; Xu, Q.; Ren, H.; Yuan, Y. Land cover classification based on object-oriented with airborne lidar and high spectral resolution remote sensing image. In Proceedings of the International Symposium on Optoelectronic Technology and Application, Beijing, China, 9–11 May 2016. [Google Scholar]
- Liu, Y.; Liu, X.; Gao, S.; Gong, L.; Kang, C.; Zhi, Y.; Shi, L. Social sensing: A new approach to understanding our socioeconomic environments. Ann. Assoc. Am. Geogr. 2015, 105, 512–530. [Google Scholar] [CrossRef]
- Pei, T.; Sobolevsky, S.; Ratti, C.; Shaw, S.L.; Li, T.; Zhou, C. A new insight into land use classification based on aggregated mobile phone data. Int. J. Geogr. Inf. Sci. 2014, 28, 1988–2007. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.; Zheng, Y.; Xie, X. Discovering regions of different functions in a city using human mobility and POIs. In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, Beijing, China, 12–16 August 2012; pp. 186–194. [Google Scholar]
- Hu, Y.; Gao, S.; Janowicz, K.; Yu, B.; Li, W.; Prasad, S. Extracting and understanding urban areas of interest using geotagged photos. Comput. Environ. Urban Syst. 2015, 54, 240–254. [Google Scholar] [CrossRef]
- Sun, L.; Lee, D.H.; Erath, A.; Huang, X. Using smart card data to extract passenger’s spatio-temporal density and train’s trajectory of MRT system. In Proceedings of the ACM SIGKDD international workshop on urban computing, Beijing, China, 12 August 2012; pp. 142–148. [Google Scholar]
- Wen, D.; Huang, X.; Zhang, L.; Benediktsson, J.A. A novel automatic change detection method for urban high-resolution remotely sensed imagery based on mul-tiindex scene representation. IEEE Trans. Geosci. Remote Sens. 2016, 54, 609–625. [Google Scholar] [CrossRef]
- Burns, L.; See, L.; Heppenstall, A.; Birkin, M. Developing an individual-level geodemographic classification. Appl. Spat. Anal. Policy 2018, 11, 417–437. [Google Scholar] [CrossRef] [Green Version]
- Peter, L. Geodemographics: Creating a Classification at the Level of the Individual; University of Leeds: Leeds, UK, 2012. [Google Scholar]
- Voas, D.; Williamson, P. The diversity of diversity: A critique of geodemographic classification. Area 2001, 33, 63–76. [Google Scholar] [CrossRef]
- Petersen, J.; Gibin, M.; Longley, P.; Mateos, P.; Atkinson, P.; Ashby, D. Geodemographics as a tool for targeting neighbourhoods in public health campaigns. J. Geogr. Syst. 2011, 13, 173–192. [Google Scholar] [CrossRef]
- Singleton, A.; Wilson, A.; O’Brien, O. Geodemographics and spatial interaction: An integrated model for higher education. J. Geogr. Syst. 2012, 14, 223–241. [Google Scholar] [CrossRef]
- Thompson, C.; Clarke, G.; Clarke, M.; Stillwell, J. Modelling the future opportunities for deep discount food retailing in the UK. Int. Rev. Retail Distrib. Consum. Res. 2012, 22, 143–170. [Google Scholar] [CrossRef]
- Martin, D.; Cockings, S.; Harfoot, A. Development of a geographical framework for census workplace data. J. R. Stat. Soc. Ser. A (Stat. Soc.) 2013, 176, 585–602. [Google Scholar] [CrossRef]
- Adnan, M.; Longley, P.A.; Singleton, A.D.; Brunsdon, C. Towards real-time geodemographics: Clustering algorithm performance for large multidimensional spatial databases. Trans. GIS 2010, 14, 283–297. [Google Scholar] [CrossRef]
- Long, Y.; Shen, Z. Discovering Functional Zones Using Bus Smart Card Data and Points of Interest in Beijing. Geospatial Analysis to Support Urban Planning in Beijing; Springer: Cham, Switzerland, 2015; pp. 193–217. [Google Scholar]
- Liu, X.; Long, Y. Automated identification and characterization of parcels with OpenStreetMap and points of interest. Environ. Plan. B Plan. Des. 2015, 43, 341–360. [Google Scholar] [CrossRef]
- Wang, L.; Pijanowski, B.; Yang, W.; Zhai, R.; Omrani, H.; Li, K. Predicting multiple land use transitions under rapid urbanization and implications for land management and urban planning: The case of Zhanggong District in central China. Habitat Int. 2018, 82, 48–61. [Google Scholar] [CrossRef]
- Bao, J.; Xu, C.; Liu, P.; Wang, W. Exploring bikesharing travel patterns and trip purposes using smart card data and online point of interests. Netw. Spat. Econ. 2017, 17, 1231–1253. [Google Scholar] [CrossRef]
- Wang, J.; Kong, X.; Rahim, A.; Xia, F.; Tolba, A.; Al-Makhadmeh, Z. Is 2fun: Identification of subway station functions using massive urban data. IEEE Access 2017, 5, 27103–27113. [Google Scholar] [CrossRef]
- Tang, T.; Dong, X.; Wang, J.; Kong, X.; Rahim, A.; Yu, X.; Li, Y. FISS: Function identification of subway stations based on semantics mining and functional clustering. IET Intell. Transp. Syst. 2018, 12, 558–567. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Fan, W.; Zhai, X. Identification of land-use characteristics using bicycle sharing data: A deep learning approach. J. Transp. Geogr. 2020, 82, 102562. [Google Scholar] [CrossRef]
- Bao, J.; Shi, X.; Zhang, H. Spatial Analysis of Bikeshare Ridership With Smart Card and POI Data Using Geographically Weighted Regression Method. IEEE Access 2018, 6, 76049–76059. [Google Scholar] [CrossRef]
- Gan, Z.; Yang, M.; Feng, T.; Timmermans, H. Understanding Urban Mobility Patterns from a Spatiotemporal Perspective: Daily Ridership Profiles of Metro Stations. Transportation 2018, 47, 315–336. [Google Scholar] [CrossRef]
- Park, N.W.; Chi, K.H.; Kwon, B.D. Geostatistical integration of spectral and spatial information for land-cover mapping using remote sensing data. Geosci. J. 2003, 7, 335–341. [Google Scholar] [CrossRef]
- Tu, W.; Cao, R.; Yue, Y.; Zhou, B.; Li, Q.; Li, Q. Spatial variations in urban public ridership derived from GPS trajectories and smart card data. J. Transp. Geogr. 2018, 69, 45–57. [Google Scholar] [CrossRef] [Green Version]
- Zhai, W.; Bai, X.; Shi, Y.; Han, Y.; Peng, Z.R.; Gu, C. Beyond Word2vec: An approach for urban functional region extraction and identification by combining Place2vec and POIs. Computers. Environ. Urban Syst. 2019, 74, 1–12. [Google Scholar] [CrossRef]
- Guo, X.; Sun, H.; Wu, J.; Jin, J.; Zhou, J.; Gao, Z. Multiperiod-based timetable optimization for metro transit networks. Transp. Res. Part B Methodol. 2017, 96, 46–67. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; IEEE: Seattle, WA, USA, 2016; pp. 770–778. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Identity mappings in deep residual networks. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Amsterdam, The Netherlands, 2016; pp. 630–645. [Google Scholar]
- Cervero, R.; Murakami, J.; Miller, M. Direct Ridership Model of Bus Rapid Transit in Los Angeles County; Working Paper; University of California: Berkeley, CA, USA, 2009. [Google Scholar]
- Kuby, M.; Barranda, A.; Upchurch, C. Factors influencing light-rail station boardings in the United States. Transp. Res. Part A 2004, 38, 223–247. [Google Scholar] [CrossRef]
- Zhao, J.; Deng, W.; Song, Y.; Zhu, Y. Analysis of metro ridership at station level and station-to-station level in Nanjing: An approach based on direct demand models. Transportation 2014, 41, 133–155. [Google Scholar] [CrossRef]
- Liou, C.Y.; Cheng, W.C.; Liou, J.W.; Liou, D.R. Autoencoder for words. Neurocomputing 2014, 139, 84–96. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning Internal Representations by Error Propagation. Nature 1986, 323, 318–362. [Google Scholar] [CrossRef]
- Baldi, P. Autoencoders, unsupervised learning, and deep architectures. In ICML Workshop on Unsupervised and Transfer Learning; JMLR, Inc. and Microtome Publishing: Brookline, MA, USA, 2011; Volume 27, pp. 37–50. [Google Scholar]
- Kingma, D.P.; Welling, M. Auto-encoding variational bayes. arXiv 2014, arXiv:1312.6114. [Google Scholar]
- Liu, L.; Chen, R.C. A novel passenger flow prediction model using deep learning methods. Transp. Res. Part C: Emerg. Technol. 2017, 84, 74–91. [Google Scholar] [CrossRef]
- The People’s Government of Beijing Municipality. 2017; Beijing’s Overall Urban Plan (2016–2035). Available online: http://www.beijing.gov.cn/ywdt/jiedu/ztgh/ (accessed on 5 January 2020).
Method. (Stage1 + Stage2) | MSE | Method (Stage1 + Stage2) | MSE | ||
---|---|---|---|---|---|
LR + CNNs | 77.59 | 0.59 | SVR + ConvGRU | 56.14 | 0.72 |
LR + ConvLSTM | 72.39 | 0.61 | SVR + ResNet | 49.58 | 0.77 |
LR + ConvGRU | 70.65 | 0.63 | DNNs + CNNs | 59.54 | 0.72 |
LR + ResNet | 65.23 | 0.65 | DNNs + ConvLSTM | 54.28 | 0.78 |
RFR + CNNs | 59.75 | 0.62 | DNNs + ConvGRU | 54.69 | 0.79 |
RFR + ConvLSTM | 55.96 | 0.66 | DNNs + ResNet | 45.98 | 0.81 |
RFR + ConvGRU | 54.29 | 0.68 | SAE-DNNs + CNNs | 50.87 | 0.79 |
RFR + ResNet | 47.68 | 0.72 | SAE-DNNs + ConvLSTM | 48.85 | 0.83 |
SVR + CNNs | 65.49 | 0.68 | SAE-DNNs + ConvGRU | 49.58 | 0.83 |
SVR + ConvLSTM | 55.97 | 0.7 | SAE-DNNs + ResNet | 40.25 | 0.86 |
Hidden Layers | Hidden Units | MSE | |
---|---|---|---|
3 | [100, 100, 100] | 66.14 | 0.66 |
3 | [200, 200, 200] | 60.25 | 0.69 |
3 | [400, 400, 400] | 59.54 | 0.72 |
4 | [100, 100, 100, 100] | 46.28 | 0.78 |
4 | [100, 200, 200, 100] | 43.85 | 0.81 |
4 | [200, 200, 200, 200] | 42.36 | 0.83 |
4 | [200, 400, 400, 200] | 40.25 | 0.86 |
5 | [400, 400, 400, 400] | 41.89 | 0.85 |
5 | [400, 800, 800, 400] | 42.69 | 0.83 |
Dataset | SCD | POI | OTO | SCD + POI | SCD + OTO | POI + OTO | SCD + POI + OTO |
---|---|---|---|---|---|---|---|
52.08 | 54.94 | 65.32 | 46.98 | 49.58 | 48.34 | 40.25 | |
0.76 | 0.74 | 0.69 | 0.81 | 0.78 | 0.80 | 0.86 |
Types | Residential Regions | Work Regions | Hybrid Regions | Transport Regions | Total | Accuracy |
---|---|---|---|---|---|---|
Residential regions * | 65 | 2 | 11 | 0 | 78 | 0.833 |
Work regions * | 3 | 92 | 10 | 0 | 105 | 0.876 |
Hybrid regions * | 8 | 5 | 148 | 3 | 164 | 0.902 |
Transport regions * | 0 | 0 | 2 | 9 | 11 | 0.818 |
Types | A | B | C | D | E | F | G | H | Total | Accuracy |
---|---|---|---|---|---|---|---|---|---|---|
A * | 43 | 3 | 0 | 0 | 0 | 0 | 4 | 0 | 50 | 0.86 |
B * | 4 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 21 | 0.809 |
C * | 0 | 0 | 68 | 5 | 6 | 0 | 0 | 0 | 79 | 0.861 |
D * | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 5 | 1 |
E * | 0 | 0 | 4 | 0 | 8 | 0 | 0 | 0 | 12 | 0.667 |
F * | 0 | 0 | 4 | 0 | 0 | 86 | 4 | 0 | 94 | 0.915 |
G * | 3 | 0 | 3 | 0 | 0 | 2 | 78 | 0 | 86 | 0.907 |
H * | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 9 | 11 | 0.818 |
Research | City | Data | Results |
---|---|---|---|
Liu et al. [41] | Chinese cities | OpenStreetMap, POI | Match degree = 58.1% |
Wang et al. [42] | Zhanggong | GIS data | ACU = 61.6% |
Zhai et al. [49] | Wuxi | POI, Truck, Mobile phone | Overall accuracy = 0.7424 ± 0.0016 |
Zhao et al. [44] | San Francisco | Bicycle sharing | for each type |
Proposed method | Beijing | Smart card, POI, OTO | 0.86 and 0.89 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Liu, S.; Xue, G.; Gong, D. Soft Sensor with Deep Learning for Functional Region Detection in Urban Environments. Sensors 2020, 20, 3348. https://doi.org/10.3390/s20123348
Ma Y, Liu S, Xue G, Gong D. Soft Sensor with Deep Learning for Functional Region Detection in Urban Environments. Sensors. 2020; 20(12):3348. https://doi.org/10.3390/s20123348
Chicago/Turabian StyleMa, Yicao, Shifeng Liu, Gang Xue, and Daqing Gong. 2020. "Soft Sensor with Deep Learning for Functional Region Detection in Urban Environments" Sensors 20, no. 12: 3348. https://doi.org/10.3390/s20123348
APA StyleMa, Y., Liu, S., Xue, G., & Gong, D. (2020). Soft Sensor with Deep Learning for Functional Region Detection in Urban Environments. Sensors, 20(12), 3348. https://doi.org/10.3390/s20123348