Intelligent Reflecting Surface-Assisted Secure Multi-Input Single-Output Cognitive Radio Transmission
Abstract
:1. Introduction
1.1. Related Work
1.2. Contributions
2. Channel Model and Problem Formulation
3. Alternation Optimization Algorithm
3.1. Optimizing R Given Q
3.2. Optimizing Q Given R
Algorithm 1 (Bisection algorithm to solve P7 if Equation (12) is active) |
Require: Initialize and , set . repeat 1. Set . 2. Compute via (21). 3. If , set , otherwise set . until. 4. Output as the global optimal solution of P7. |
Algorithm 2 ((Minorization–maximization (MM) algorithm to solve P6) |
Require: Initialize starting point , set . 1. Set , compute . repeat 2. Set , 3. Compute via (19), if , then compute via Algorithm 1. 4. Compute . 5. Set as new starting point. until. 6. Output as the local optimal solution of P6. |
Algorithm 3 (Bisection algorithm to solve P5) |
Require: Initialize and , set . repeat 1. Set . 2. Compute via Algorithm 2 3. If , set , otherwise set . until. 4. Output . |
3.3. Overall AO Algorithm
Algorithm 4 ((Alternating optimization (AO) algorithm of solving P1) |
Require: Starting point and , . 1. Set , Compute . repeat(AO algorithm) 2. Set . 3. Optimize global optimal given fixed via CVX. 4. Optimize local optimal given fixed via Algorithm 3. 5. Compute . until. 7. output , as a limit point of P1. |
3.4. An Extension to Multi-Antenna PR Case
4. Simulation Results
4.1. Secrecy Rate and the Activeness of Constraints
4.2. Convergence of the Proposed AO Algorithm
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix A.1. Proof of Proposition 1
Appendix A.2. Proof of Proposition 2
Appendix A.3. Proof of Proposition 3
Appendix A.4. Proof of Proposition 4
Appendix A.5. Proof of Proposition 5
References
- Fragkiadakis, A.; Tragos, E.; Askoxylakis, I.G. A survey on security threats and detection techniques in cognitive radio networks. IEEE Commun. Surv. Tutorials 2013, 15, 428–445. [Google Scholar] [CrossRef]
- Bloch, M.; Barros, J. Physical-Layer Security: From Information Theory to Security Engineering; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Sharma, R.K.; Rawat, D.B. Advances on Security Threats and Countermeasures for Cognitive Radio Networks: A Survey. IEEE Commun. Surv. Tutorials 2014, 17, 1023–1043. [Google Scholar] [CrossRef]
- Khisti, A.; Wornell, G.W. Secure transmission with multiple antennas–part I: The MISOME wiretap channel. IEEE Trans. Inf. Theory 2010, 56, 5515–5532. [Google Scholar] [CrossRef] [Green Version]
- Khisti, A.; Wornell, G.W. Secure transmission with multiple antennass part II: The MIMOME wiretap channel. IEEE Trans. Inf. Theory 2010, 9, 1494–1502. [Google Scholar]
- Pei, Y.; Liang, Y.C.; Zhang, L.; Teh, K.C. Secure communication over MISO cognitive radio channels. IEEE Trans. Wirel. Commun. 2010, 9, 1494–1502. [Google Scholar] [CrossRef]
- Pei, Y.; Liang, Y.C.; Teh, K.C. Secure communication in multiantenna cognitive radio networks with imperfect channel state information. IEEE Trans. Signal Process. 2011, 59, 1683–1693. [Google Scholar] [CrossRef]
- Al-Nahari, A.; Geraci, G.; Al-Jamali, M.; Ahmed, M.H.; Yang, N. Beamforming with artificial noise for secure MISOME cognitive radio transmissions. IEEE Trans. Inf. Forensics Secur. 2018, 13, 1875–1889. [Google Scholar] [CrossRef]
- Nguyen, V.-D.; Duong, T.Q.; Dobre, O.A.; Shin, O.-S. Joint information and jamming beamforming for secrecy rate maximization in cognitive radio networks. IEEE Trans. Inf. Forensics Secur. 2016, 11, 2609–2623. [Google Scholar] [CrossRef] [Green Version]
- Dong, L.; Loyka, S.; Li, Y. The secrecy capacity of gaussian MIMO wiretap channels under interference constraints. IEEE J. Sel. Areas Commun. 2018, 36, 704–722. [Google Scholar] [CrossRef]
- Loyka, S.; Dong, L. Optimal full-rank signaling over MIMO wiretap channels under interference constraint. IEEE Wirel. Commun. Lett. 2018, 7, 534–537. [Google Scholar] [CrossRef]
- Dong, L.; Loyka, S.; Li, Y. An algorithm for optimal secure signaling over cognitive radio MIMO channels. In Proceedings of the 5th IEEE Global Conference on Signal and Information Processing (Globalsip), Montreal, QC, Canada, 14–16 November 2017; pp. 126–130. [Google Scholar]
- Fang, B.; Qian, Z.; Shao, W.; Zhong, W. AN-aided secrecy precoding for SWIPT in cognitive MIMO broadcast channels. IEEE Commun. Lett. 2015, 19, 1632–1635. [Google Scholar] [CrossRef]
- Zhao, J. A survey of intelligent reflecting surfaces (IRSs): Towards 6G wireless communication networks with massive MIMO 2.0. arXiv 2019. Available online: https://arxiv.org/pdf/1907.04789.pdf (accessed on 2 November 2019).
- Basar, E.; Di Renzo, M.; De Rosny, J.; Debbah, M.; Alouini, M.S.; Zhang, R. Wireless communications through reconfigurable intelligent surfaces. IEEE Access 2019, 7, 116753–116773. [Google Scholar] [CrossRef]
- Hu, S.; Rusek, F.; Edfor, O. Beyond massive MIMO: The potential of data transmission with large intelligent surfaces. IEEE Trans. Signal Process. 2018, 66, 2746–2758. [Google Scholar] [CrossRef] [Green Version]
- Ntontin, K.; Di Renzo, M.; Song, J.; Lazarakis, F.; De Rosny, J.; Phan-Huy, D.-T.; Simeone, O.; Zhang, R.; Debbah, M.; Lerosey, G.; et al. Reconfigurable intelligent surfaces vs. relaying: Differences, similarities, and performance comparison. arXiv 2019. Available online: https://arxiv.org/abs/1908.08747 (accessed on 23 August 2019).
- Wu, Q.; Zhang, R. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network. IEEE Commun. Mag. 2020, 58, 106–112. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Yu, X.; Schober, R. Resource Allocation for Intelligent Reflecting Surface-Assisted Cognitive Radio Networks. arXiv 2020. Available online: https://arxiv.org/abs/2001.11729 (accessed on 31 January 2020).
- Yuan, J.; Liang, Y.; Joung, J.; Feng, G.; Larsson, E. Intelligent Reflecting Surface-Assisted Cognitive Radio System. arXiv 2019. Available online: https://arxiv.org/abs/1912.1067 (accessed on 2 December 2019).
- Zhang, L.; Pan, C.; Wang, Y.; Ren, H.; Wang, K. Robust Beamforming Design for Intelligent Reflecting Surface Aided Cognitive Radio Systems with Imperfect Cascaded CSI. arXiv 2020. Available online: https://arxiv.org/abs/2004.04595 (accessed on 9 April 2020).
- Zhou, G.; Pan, C.; Ren, H.; Wang, K. Intelligent Reflecting Surface Aided Multigroup Multicast MISO Communication Systems. IEEE Trans. Signal Process. 2020, 1. [Google Scholar] [CrossRef] [Green Version]
- Cui, M.; Zhang, G.; Zhang, R. Secure wireless communication via intelligent reflecting surface. IEEE Wirel. Commun. Lett. 2019, 8, 1410–1414. [Google Scholar] [CrossRef] [Green Version]
- Shen, H.; Xu, W.; Gong, S.; He, Z.; Zhao, C. Secrecy rate maximization for intelligent reflecting surface assisted multi-antenna communications. IEEE Commun. Lett. 2019, 23, 1488–1492. [Google Scholar] [CrossRef] [Green Version]
- Feng, B.; Wu, Y.; Zheng, M. Secure Transmission Strategy for Intelligent Reflecting Surface Enhanced Wireless System. arXiv 2019. Available online: https://arxiv.org/abs/1909.00629v1 (accessed on 2 September 2019).
- Yu, X.; Schober, R. Enabling secure wireless communications via intelligent reflecting surfaces. arXiv 2019. Available online: https://arxiv.org/abs/1904.09573 (accessed on 21 April 2019).
- Chen, J.; Liang, Y.; Pei, Y.; Guo, H. Intelligent reflecting surface: A programmable wireless environment for physical layer security. IEEE Access 2019, 7, 82599–82612. [Google Scholar] [CrossRef]
- Xu, D.; Yu, X.; Sun, Y.; Ng, D.W.K.; Schober, R. Resource allocation for secure IRS-assisted multiuser MISO systems. arXiv 2019. Available online: https://arxiv.org/abs/1907.03085 (accessed on 6 July 2019).
- Available online: http://cvxr.com/cvx/ (accessed on 2 January 2020).
- Dinkelbach, W. On nonlinear fractional programming. Manag. Sci. 1967, 13, 492–498. [Google Scholar] [CrossRef]
- Hanif, M.F.; Ding, Z.; Ratnarajah, T.; Karagiannidis, G.K. A minorization-maximization method for optimizing sum rate in the downlink of non-orthogonal multiple access systems. IEEE Trans. Signal Process. 2016, 64, 76–88. [Google Scholar] [CrossRef] [Green Version]
- Song, J.; Babu, P.; Palomar, D.P. Optimization methods for designing sequences with low autocorrelation sidelobes. IEEE Trans. Signal Process. 2015, 63, 3998–4009. [Google Scholar] [CrossRef] [Green Version]
- Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Zhang, X.-D.; Vandenberghe, L. Matrix Analysis and Applications; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, H.; Dong, L.; Wang, W. Intelligent Reflecting Surface-Assisted Secure Multi-Input Single-Output Cognitive Radio Transmission. Sensors 2020, 20, 3480. https://doi.org/10.3390/s20123480
Xiao H, Dong L, Wang W. Intelligent Reflecting Surface-Assisted Secure Multi-Input Single-Output Cognitive Radio Transmission. Sensors. 2020; 20(12):3480. https://doi.org/10.3390/s20123480
Chicago/Turabian StyleXiao, Haitao, Limeng Dong, and Wenjie Wang. 2020. "Intelligent Reflecting Surface-Assisted Secure Multi-Input Single-Output Cognitive Radio Transmission" Sensors 20, no. 12: 3480. https://doi.org/10.3390/s20123480
APA StyleXiao, H., Dong, L., & Wang, W. (2020). Intelligent Reflecting Surface-Assisted Secure Multi-Input Single-Output Cognitive Radio Transmission. Sensors, 20(12), 3480. https://doi.org/10.3390/s20123480