Wildfire Smoke Adjustment Factors for Low-Cost and Professional PM2.5 Monitors with Optical Sensors
Abstract
:1. Introduction
2. Methods
2.1. Overview
2.2. Wildland Fires
2.2.1. Camp Fire
2.2.2. Carr and Mendocino Complex Fires
2.2.3. Pole Creek Fire
2.3. Monitors Deployed at LBNL
2.4. Data from Regulatory Air Quality Monitoring Stations
2.5. PurpleAir Network
2.6. Identification of Paired PA-II and Regulatory AQ Monitoring Data
2.7. Analysis of Data from PA-II Monitors
3. Results
3.1. Reference Measurements at LBNL
3.2. Measurements with Low-Cost, Professional and Research Monitors at LBNL
3.3. Adjustment Factors Based on LBNL Measurements
3.4. Measurements of PM2.5 and Adjustment Factors in Northern California and Utah
3.5. Impact of Adjustments on Air Quality Index Estimates
3.6. Impact of Environmental Conditions on Adjustment Factors
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abatzoglou, J.T.; Williams, A.P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. USA 2016, 113, 11770–11775. [Google Scholar] [CrossRef] [Green Version]
- Dennison, P.E.; Brewer, S.C.; Arnold, J.D.; Moritz, M.A. Large wildfire trends in the western United States, 1984–2011. Geophys. Res. Lett. 2014, 41, 2928–2933. [Google Scholar] [CrossRef]
- Rasker, R. Resolving the Increasing Risk from Wildfires in the American West. Solutions 2015, 6, 55–62. [Google Scholar]
- Schoennagel, T.; Balch, J.K.; Brenkert-Smith, H.; Dennison, P.E.; Harvey, B.J.; A Krawchuk, M.; Mietkiewicz, N.; Morgan, P.; Moritz, M.A.; Rasker, R.; et al. Adapt to more wildfire in western North American forests as climate changes. Proc. Natl. Acad. Sci. USA 2017, 114, 4582–4590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and Earlier Spring Increase Western U.S. Forest Wildfire Activity. Science 2006, 313, 940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radeloff, V.C.; Helmers, D.P.; Kramer, H.A.; Mockrin, M.H.; Alexandre, P.M.; Bar-Massada, A.; Butsic, V.; Hawbaker, T.J.; Martinuzzi, S.; Syphard, A.; et al. Rapid growth of the US wildland-urban interface raises wildfire risk. Proc. Natl. Acad. Sci. USA 2018, 115, 3314–3319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Künzli, N.; Avol, E.; Wu, J.; Gauderman, W.J.; Rappaport, E.; Millstein, J.; Bennion, J.; McConnell, R.; Gilliland, F.D.; Berhane, K.; et al. Health effects of the 2003 Southern California wildfires on children. Am. J. Respir. Crit. Care Med. 2006, 174, 1221–1228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.C.; Wilson, A.; Mickley, L.J.; Ebisu, K.; Sulprizio, M.P.; Wang, Y.; Peng, R.D.; Yue, X.; Dominici, F.; Bell, M. Who Among the Elderly Is Most Vulnerable to Exposure to and Health Risks of Fine Particulate Matter From Wildfire Smoke? Am. J. Epidemiol. 2017, 186, 730–735. [Google Scholar] [CrossRef]
- Reid, C.E.; Brauer, M.; Johnston, F.H.; Jerrett, M.; Balmes, J.R.; Elliott, C.T. Critical Review of Health Impacts of Wildfire Smoke Exposure. Environ. Health Perspect. 2016, 124, 1334–1343. [Google Scholar] [CrossRef] [Green Version]
- Cascio, W.E. Wildland fire smoke and human health. Sci. Total Environ. 2018, 624, 586–595. [Google Scholar] [CrossRef]
- Black, C.; Tesfaigzi, Y.; Bassein, J.A.; Miller, L. Wildfire smoke exposure and human health: Significant gaps in research for a growing public health issue. Environ. Toxicol. Pharmacol. 2017, 55, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, P.; Humphrey, J.L.; Carlton, E.J.; Adgate, J.L.; Barton, K.E.; Root, E.; Miller, S. Impact of Outdoor Air Pollution on Indoor Air Quality in Low-Income Homes during Wildfire Seasons. Int. J. Environ. Res. Public Health 2019, 16, 3535. [Google Scholar] [CrossRef] [Green Version]
- Fisk, W.J.; Chan, W.R. Health benefits and costs of filtration interventions that reduce indoor exposure to PM2.5 during wildfires. Indoor Air 2017, 27, 191–204. [Google Scholar] [CrossRef] [Green Version]
- Barn, P.; Larson, T.; Noullett, M.; Kennedy, S.; Copes, R.; Brauer, M. Infiltration of forest fire and residential wood smoke: An evaluation of air cleaner effectiveness. J. Expo. Sci. Environ. Epidemiol. 2008, 18, 503–511. [Google Scholar] [CrossRef] [Green Version]
- US EPA. National Ambient Air Quality Standards for Particulate Matter; Final Rule Issuing 2013; U.S. Environmental Protection Agency: Washington, DC, USA, 2013; Volume 78.
- US EPA. Final Report: Integrated Science Assessment for Particulate Matter; U.S. Environmental Protection Agency: Washington, DC, USA, 2009.
- US EPA. Technical Assistance Document for the Reporting of Daily Air Quality—The Air Quality Index (AQI); U.S. Environmental Protection Agency: Washington, DC, USA, 2018.
- Chow, J.C. Measurement Methods to Determine Compliance with Ambient Air-Quality Standards for Suspended Particles. J. Air Waste Manag. Assoc. 1995, 45, 320–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noble, C.A.; Vanderpool, R.W.; Peters, T.M.; McElroy, F.F.; Gemmill, D.B.; Wiener, R.W. Federal reference and equivalent methods for measuring fine particulate matter. Aerosol Sci. Technol. 2001, 34, 457–464. [Google Scholar] [CrossRef]
- US EPA. PM2.5 Continuous Monitor Comparability Assessments. 31 July 2019. Available online: https://www.epa.gov/outdoor-air-quality-data/pm25-continuous-monitor-comparability-assessments (accessed on 30 October 2019).
- Schweizer, D.; Cisneros, R.; Shaw, G. A comparative analysis of temporary and permanent beta attenuation monitors: The importance of understanding data and equipment limitations when creating PM2.5 air quality health advisories. Atmos. Pollut. Res. 2016, 7, 865–875. [Google Scholar] [CrossRef] [Green Version]
- CARPA. Met One E-BAM Portable PM2.5 Monitor and AIRSIS Data Telemetry System. 2010. Available online: https://ww3.arb.ca.gov/carpa/toolkit/data/ebam-guidance-2010.pdf (accessed on 30 October 2019).
- National Interagency Fire Center. Available online: https://www.nifc.gov/smoke/smoke_monitoring.html (accessed on 30 October 2019).
- Kelleher, S.; Quinn, C.W.; Miller-Lionberg, D.; Volckens, J. A low-cost particulate matter (PM2.5) monitor for wildland fire smoke. Atmos. Meas. Tech. 2018, 11, 1087–1097. [Google Scholar] [CrossRef] [Green Version]
- Gupta, P.; Doraiswamy, P.; Levy, R.C.; Pikelnaya, O.; Maibach, J.; Feenstra, B.; Polidori, A.; Kiros, F.; Mills, K.C. Impact of California Fires on Local and Regional Air Quality: The Role of a Low-Cost Sensor Network and Satellite Observations. GeoHealth 2018, 2, 172–181. [Google Scholar] [CrossRef]
- Sorensen, C.M.; Gebhart, J.; O’Hern, T.J.; Rader, D.J. Optical measurement techniques: Fundamentals and applications. In Aerosol Measurement: Principles, Techniques, and Applications, 3rd ed.; Kulkarni, P., Baron, P.A., Willeke, K., Eds.; Wiley: Hoboken, NJ, USA, 2011; pp. 269–312. [Google Scholar]
- Wang, X.; Chancellor, G.; Evenstad, J.; Farnsworth, J.E.; Hase, A.; Olson, G.M.; Sreenath, A.; Agarwal, J.K. A Novel Optical Instrument for Estimating Size Segregated Aerosol Mass Concentration in Real Time. Aerosol Sci. Technol. 2009, 43, 939–950. [Google Scholar] [CrossRef]
- Thomas, A.; Gebhart, J. Correlations between Gravimetry and Light-Scattering Photometry for Atmospheric Aerosols. Atmos. Environ. 1994, 28, 935–938. [Google Scholar] [CrossRef]
- Wallace, L.A.; Wheeler, A.J.; Kearney, J.; Van Ryswyk, K.; You, H.; Kulka, R.H.; Rasmussen, P.; Brook, J.R.; Xu, X. Validation of continuous particle monitors for personal, indoor, and outdoor exposures. J. Expo. Sci. Environ. Epidemiol. 2011, 21, 49–64. [Google Scholar] [CrossRef] [PubMed]
- Ahangar, F.E.; Freedman, F.R.; Venkatram, A. Using Low-Cost Air Quality Sensor Networks to Improve the Spatial and Temporal Resolution of Concentration Maps. Int. J. Environ. Res. Public Health 2019, 16, 1252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, M.L.; Cao, J.J.; Seto, E. A distributed network of low-cost continuous reading sensors to measure spatiotemporal variations of PM2.5 in Xi’an, China. Environ. Pollut. 2015, 199, 56–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiao, W.; Hagler, G.; Williams, R.; Sharpe, R.; Brown, R.; Garver, D.; Judge, R.; Caudill, M.; Rickard, J.; Davis, M.; et al. Community Air Sensor Network (CAIRSENSE) project: Evaluation of low-cost sensor performance in a suburban environment in the southeastern United States. Atmos. Meas. Tech. 2016, 9, 5281–5292. [Google Scholar] [CrossRef] [Green Version]
- Morawska, L.; Thai, P.K.; Liu, X.; Asumadu-Sakyi, A.; Ayoko, G.; Bartoňová, A.; Bedini, A.; Chai, F.; Christensen, B.; Dunbabin, M.; et al. Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone? Environ. Int. 2018, 116, 286–299. [Google Scholar] [CrossRef]
- Singer, B.C.; Delp, W.W. Response of consumer and research grade indoor air quality monitors to residential sources of fine particles. Indoor Air 2018, 28, 624–639. [Google Scholar] [CrossRef]
- Manikonda, A.; Zíková, N.; Hopke, P.K.; Ferro, A. Laboratory assessment of low-cost PM monitors. J. Aerosol Sci. 2016, 102, 29–40. [Google Scholar] [CrossRef]
- Zou, Y.; Young, M.; Chen, J.; Liu, J.; May, A.A.; Clark, J.D. Examining the functional range of commercially available low-cost airborne particle sensors and consequences for monitoring of indoor air quality in residences. Indoor Air 2019, 30, 213–234. [Google Scholar] [CrossRef]
- Sousan, S.; Koehler, K.; Thomas, G.; Park, J.H.; Hillman, M.; Halterman, A.; Peters, T.M. Inter-comparison of low-cost sensors for measuring the mass concentration of occupational aerosols. Aerosol Sci. Technol. 2016, 50, 462–473. [Google Scholar] [CrossRef] [Green Version]
- Dacunto, P.J.; Cheng, K.-C.; Acevedo-Bolton, V.; Jiang, R.; Repace, J.; Ott, W.R.; Hildemann, L.M.; Klepeis, N. Determining PM2.5 calibration curves for a low-cost particle monitor: Common indoor residential aerosols. Environ. Sci. Process. Impacts 2015, 17, 1959–1966. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.K.; Bergin, M.H.; Russell, A.G.; Hagler, G.S. Field Test of Several Low-Cost Particulate Matter Sensors in High and Low Concentration Urban Environments. Aerosol Air Qual. Res. 2018, 18, 565–578. [Google Scholar] [CrossRef]
- California Air Resources Board, Air Quality Data (PST) Query Tool. 2019. Available online: https://www.arb.ca.gov/aqmis2/aqdselect.php (accessed on 20 June 2019).
- Utah Department of Environmental QualityAir Quality Data Archive. 2019. Available online: http://www.airmonitoring.utah.gov/dataarchive/archpm25.htm (accessed on 20 June 2019).
- Sayahi, T.; Butterfield, A.; Kelly, K.E. Long-term field evaluation of the Plantower PMS low-cost particulate matter sensors. Environ. Pollut. 2019, 245, 932–940. [Google Scholar] [CrossRef] [PubMed]
- Kelly, K.; Whitaker, J.; Petty, A.; Widmer, C.; Dybwad, A.; Sleeth, D.; Martin, R.; Butterfield, A. Ambient and laboratory evaluation of a low-cost particulate matter sensor. Environ. Pollut. 2017, 221, 491–500. [Google Scholar] [CrossRef]
- Lane Regional Air Protection Agency. Air Quality Sensors. 2019. Available online: https://www.lrapa.org/DocumentCenter/View/4147/PurpleAir-Correction-Summary (accessed on 30 October 2019).
- Tryner, J.; L’Orange, C.; Mehaffy, J.; Miller-Lionberg, D.; Hofstetter, J.C.; Wilson, A.; Volckens, J. Laboratory evaluation of low-cost PurpleAir PM monitors and in-field correction using co-located portable filter samplers. Atmos. Environ. 2020, 220, 117067. [Google Scholar] [CrossRef]
- Malings, C.; Tanzer, R.; Hauryliuk, A.; Saha, P.K.; Robinson, A.L.; Presto, A.A.; Subramanian, R. Fine particle mass monitoring with low-cost sensors: Corrections and long-term performance evaluation. Aerosol Sci. Technol. 2020, 54, 160–174. [Google Scholar] [CrossRef]
- Mehadi, A.; Moosmüller, H.; Campbell, D.E.; Ham, W.; Schweizer, D.; Tarnay, L.; Hunter, J. Laboratory and field evaluation of real-time and near real-time PM2.5 smoke monitors. J. Air Waste Manag. Assoc. 2020, 70, 158–179. [Google Scholar] [CrossRef]
- Feenstra, B.; Papapostolou, V.; Hasheminassab, S.; Zhang, H.; der Boghossian, B.; Cocker, D.; Polidori, A. Performance evaluation of twelve low-cost PM2.5 sensors at an ambient air monitoring site. Atmos. Environ. 2019, 216, 116946. [Google Scholar] [CrossRef]
- Wang, Z.; WDelp, W.; Singer, B.C. Performance of low-cost indoor air quality monitors for PM2.5 and PM10 from residential sources. Build. Environ. 2020, 171, 106654. [Google Scholar] [CrossRef]
- Stampfer, O.; Austin, E.; Ganuelas, T.; Fiander, T.; Seto, E.; Karr, C.J. Use of low-cost PM monitors and a multi-wavelength aethalometer to characterize PM2.5 in the Yakama Nation reservation. Atmos. Environ. 2020, 224, 117292. [Google Scholar] [CrossRef]
- El Orch, Z.; Stephens, B.; Waring, M.S. Predictions and determinants of size-resolved particle infiltration factors in single-family homes in the US. Build. Environ. 2014, 74, 106–118. [Google Scholar] [CrossRef]
- Thatcher, T.L.; Lunden, M.M.; Revzan, K.L.; Sextro, R.G.; Brown, N.J. A concentration rebound method for measuring particle penetration and deposition in the indoor environment. Aerosol Sci. Technol. 2003, 37, 847–864. [Google Scholar] [CrossRef]
- Chen, C.; Zhao, B. Review of relationship between indoor and outdoor particles: I/O ratio, infiltration factor and penetration factor. Atmos. Environ. 2011, 45, 275–288. [Google Scholar] [CrossRef]
- McNamara, M.L.; Noonan, C.W.; Ward, T.J. Correction Factor for Continuous Monitoring of Wood Smoke Fine Particulate Matter. Aerosol Air Qual. Res. 2011, 11, 316–323. [Google Scholar] [CrossRef]
- Dacunto, P.J.; Cheng, K.-C.; Acevedo-Bolton, V.; Jiang, R.; Klepeis, N.; Repace, J.; Ott, W.R.; Hildemann, L.M. Real-time particle monitor calibration factors and PM2.5 emission factors for multiple indoor sources. Environ. Sci. Process. Impacts 2013, 15, 1511–1519. [Google Scholar] [CrossRef]
- United States Department of Agriculture. Laboratory Evaluation of Two Optical Instruments for Real-Time Monitoring of Smoke; Trent, P.L.A., Ed.; USDA Forest Service, Technology and Development Program: Missoula, MT, USA, 1999. Available online: https://www.fs.fed.us/t-d/pubs/pdfpubs/pdf99252806/pdf99252806.pdf (accessed on 20 June 2019).
ID | Device | Data | Particle Sensor(s) and Specifications for PM2.5 | Calibration and Quality Assurance Information Provided by Manufacturer |
---|---|---|---|---|
AQE | Air Quality Egg 2018 version | 1 min | Two Plantower PMS5003 1 Effective range: 0–500 μg/m3 Max. range: ≥1000 μg/m3 Max. consistency error: 0~100 μg/m3: ±10 μg/m3 100~500 μg/m3: ±10% | https://airqualityegg.com/home Reports mean PM2.5 and PM10 of the two sensors. Each unit checked for consistency with other devices before shipping by exposure to incense smoke in a small room. |
AVP | IQAir AirVisual Pro | 10 s | AirVisual AVPM25b Effective range: 0–1798 μg/m3 | https://www.airvisual.com/ Sensors calibrated through automatic process in controlled chamber, using distinct aerosols for PM1, PM2.5, PM10 using Grimm 11-A. |
PAI | PurpleAir Indoor | 80 s | Plantower PMS1003 Same specification as PMS5003 | https://www.purpleair.com/sensors Data direct from sensor: PM1, PM2.5 and PM10 in μg/m3, number density (#/0.1 L) of particles larger than the following optical diameters: 0.3, 0.5, 1.0, 2.5, 5.0, 10 μm. |
ELI | eLichens Indoor Air Quality Pro Station | 1 min | Plantower PMS7003 Same specification as PMS5003 | https://www.elichens.com/elsi-indoor-air-quality-station Each station individually calibrated against regulatory AQ stations meeting EU standards. Data are adjusted in real-time for environmental conditions. |
PA-II | PurpleAir II (outdoor) | 80 s | Two Plantower PMS5003 | https://www.purpleair.com/sensors Same as PAI. |
TEOM | Model 1045-DF Tapered Element Oscillating Microbalance with Filter Dynamic Measurement System | 12 min | Range: 0 to 1,000,000 μg/m3 Resolution: 0.1 μg/m3, Precision: ±2.0 μg/m3, 1-h avg | https://www.thermofisher.com/ Approved Federal Equivalent Method U.S. EPA PM-2.5 Equivalent Monitor EQPM-0609-182. |
WRAS | Model 1.371 Mini Wide-Range Aerosol Spectrometer | 1 min | Combined electrical mobility instrument with optical particle spectrometer. Range: 0.1 μg/m3–100 mg/m3 Electrical mobility sensing: 10 bins in range 10–193 nm, Optical sensing 31 bins in range 0.253–35 μm | https://www.grimm-aerosol.com Optical spectrometer calibrated using class I reference with NIST-certified, mono-disperse polystyrene latex (PSL) particles. Electrical sensor calibrated using GRIMM model 7811 with poly-disperse aerosol of particles with diameters of ~5 nm to ~300 nm generated from NaCl solution. Aerosol is dried and diffusion-neutralized. A Differential Mobility Analyzer (DMA) provides narrow size distributions simultaneously to the sensor and a reference Faraday cup electrometer. |
PDR | Thermo pDR-1500 | 10 s | Laser optical photometer Range: 0.001–400 mg/m3 Precision: larger of ±0.2% of reading or ±0.0005 mg/m3. Accuracy: ±0.5% reading ±precision | https://www.thermofisher.com/ Traceable to SAE Fine Test Dust. |
DT | TSI DustTrak II-8533 | 2 min | Laser optical photometer Range: 0.001 to 150 mg/m3 Flow Accuracy: ±5% factory setpoint Internal flow controlled | https://tsi.com/home/ Calibrated with ISO 12103–1, A1 Ultrafine Test Dust. |
PM2.5 (µg m−3), 4-h avgs. | Linear Fits of 4-h avg Data Relating PA-II to AQS | Adjustment Factors Based on 4-h Ratios of AQS/PA-II | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AQS Site | Distance (km) | Mean | 10th | 90th | Slope, Zero Intercept | Slope | Intercept | Mean | SD | Median | 10th | 90th |
Sacramento | 133 | 134 | 47 | 239 | 0.498 | 0.510 | −3.2 | 0.509 | 0.106 | 0.487 | 0.393 | 0.626 |
Davis | 137 | 82 | 15 | 169 | 0.425 | 0.410 | 3.0 | 0.411 | 0.165 | 0.419 | 0.293 | 0.558 |
Vallejo | 192 | 92 | 38 | 175 | 0.490 | 0.490 | 0.0 | 0.490 | 0.142 | 0.490 | 0.373 | 0.641 |
Concord | 206 | 87 | 33 | 160 | 0.474 | 0.445 | 4.9 | 0.494 | 0.167 | 0.494 | 0.341 | 0.758 |
San Pablo | 210 | 93 | 47 | 162 | 0.504 | 0.455 | 9.7 | 0.499 | 0.108 | 0.488 | 0.397 | 0.630 |
San Rafael | 213 | 89 | 46 | 153 | 0.495 | 0.505 | −2.0 | 0.631 | 0.255 | 0.635 | 0.439 | 1.092 |
Berkeley | 219 | 93 | 54 | 164 | 0.459 | 0.423 | 6.9 | 0.464 | 0.089 | 0.472 | 0.375 | 0.572 |
Oakland-West | 224 | 94 | 51 | 161 | 0.532 | 0.509 | 3.9 | 0.465 | 0.079 | 0.458 | 0.383 | 0.563 |
Oakland-Laney | 226 | 91 | 53 | 157 | 0.459 | 0.437 | 4.5 | 0.530 | 0.088 | 0.528 | 0.423 | 0.627 |
San Francisco | 232 | 93 | 45 | 156 | 0.511 | 0.498 | 2.5 | 0.504 | 0.160 | 0.520 | 0.318 | 0.692 |
Redwood City | 258 | 74 | 33 | 122 | 0.446 | 0.387 | 8.3 | 0.451 | 0.162 | 0.449 | 0.314 | 0.607 |
San Jose | 270 | 80 | 40 | 126 | 0.574 | 0.536 | 4.9 | 0.482 | 0.140 | 0.484 | 0.353 | 0.593 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delp, W.W.; Singer, B.C. Wildfire Smoke Adjustment Factors for Low-Cost and Professional PM2.5 Monitors with Optical Sensors. Sensors 2020, 20, 3683. https://doi.org/10.3390/s20133683
Delp WW, Singer BC. Wildfire Smoke Adjustment Factors for Low-Cost and Professional PM2.5 Monitors with Optical Sensors. Sensors. 2020; 20(13):3683. https://doi.org/10.3390/s20133683
Chicago/Turabian StyleDelp, William W., and Brett C. Singer. 2020. "Wildfire Smoke Adjustment Factors for Low-Cost and Professional PM2.5 Monitors with Optical Sensors" Sensors 20, no. 13: 3683. https://doi.org/10.3390/s20133683